1
|
Chowdhary VR, Krogman A, Tilahun AY, Alexander MP, David CS, Rajagopalan G. Concomitant Disruption of CD4 and CD8 Genes Facilitates the Development of Double Negative αβ TCR + Peripheral T Cells That Respond Robustly to Staphylococcal Superantigen. THE JOURNAL OF IMMUNOLOGY 2017; 198:4413-4424. [PMID: 28468970 DOI: 10.4049/jimmunol.1601991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/14/2023]
Abstract
Mature peripheral double negative T (DNT) cells expressing αβ TCR but lacking CD4/CD8 coreceptors play protective as well as pathogenic roles. To better understand their development and functioning in vivo, we concomitantly inactivated CD4 and CD8 genes in mice with intact MHC class I and class II molecules with the hypothesis that this would enable the development of DNT cells. We also envisaged that these DNT cells could be activated by bacterial superantigens in vivo as activation of T cells by superantigens does not require CD4 and CD8 coreceptors. Because HLA class II molecules present superantigens more efficiently than murine MHC class II molecules, CD4 CD8 double knockout (DKO) mice transgenically expressing HLA-DR3 or HLA-DQ8 molecules were generated. Although thymic cellularity was comparable between wild type (WT) and DKO mice, CD3+ αβ TCR+ thymocytes were significantly reduced in DKO mice, implying defects in thymic-positive selection. Splenic CD3+ αβ TCR+ cells and Foxp3+ T regulatory cells were present in DKO mice but significantly reduced. However, the in vivo inflammatory responses and immunopathology elicited by acute challenge with the staphylococcal superantigen enterotoxin B were comparable between WT and DKO mice. Choric exposure to staphylococcal enterotoxin B precipitated a lupus-like inflammatory disease with characteristic lympho-monocytic infiltration in lungs, livers, and kidneys, along with production of anti-nuclear Abs in DKO mice as in WT mice. Overall, our results suggest that DNT cells can develop efficiently in vivo and chronic exposure to bacterial superantigens may precipitate a lupus-like autoimmune disease through activation of DNT cells.
Collapse
Affiliation(s)
- Vaidehi R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Ashton Krogman
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | | | - Mariam P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - Chella S David
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | | |
Collapse
|
2
|
The impact of Staphylococcus aureus-associated molecular patterns on staphylococcal superantigen-induced toxic shock syndrome and pneumonia. Mediators Inflamm 2014; 2014:468285. [PMID: 25024509 PMCID: PMC4082930 DOI: 10.1155/2014/468285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/25/2014] [Accepted: 03/29/2014] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is capable of causing a spectrum of human illnesses. During serious S. aureus infections, the staphylococcal pathogen-associated molecular patterns (PAMPs) such as peptidoglycan, lipoteichoic acid, and lipoproteins and even intact S. aureus, are believed to act in conjunction with the staphylococcal superantigens (SSAg) to activate the innate and adaptive immune system, respectively, and cause immunopathology. However, recent studies have shown that staphylococcal PAMPs could suppress inflammation by several mechanisms and protect from staphylococcal toxic shock syndrome, a life-threatening systemic disease caused by toxigenic S. aureus. Given the contradictory pro- and anti-inflammatory roles of staphylococcal PAMPs, we examined the effects of S. aureus-derived molecular patterns on immune responses driven by SSAg in vivo using HLA-DR3 and HLA-DQ8 transgenic mice. Our study showed that neither S. aureus-derived peptidoglycans (PGN), lipoteichoic acid (LTA), nor heat-killed Staphylococcus aureus (HKSA) inhibited SSAg-induced T cell proliferation in vitro. They failed to antagonize the immunostimulatory effects of SSAg in vivo as determined by their inability to attenuate systemic cytokine/chemokine response and reduce SSAg-induced T cell expansion. These staphylococcal PAMPs also failed to protect HLA-DR3 as well as HLA-DQ8 transgenic mice from either SSAg-induced toxic shock or pneumonia induced by a SSAg-producing strain of S. aureus.
Collapse
|
3
|
Chowdhary VR, Tilahun AY, Clark CR, Grande JP, Rajagopalan G. Chronic exposure to staphylococcal superantigen elicits a systemic inflammatory disease mimicking lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2054-62. [PMID: 22798666 DOI: 10.4049/jimmunol.1201097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic nasal and skin colonization with superantigen (SAg)-producing Staphylococcus aureus is well documented in humans. Given that trans-mucosal and trans-cutaneous absorption of SAgs can occur, we determined whether chronic exposure to small amounts of SAg per se could activate autoreactive CD4(+) and CD8(+) T cells and precipitate any autoimmune disease without further external autoantigenic stimulation. Because HLA class II molecules present SAg more efficiently than do mouse MHC class II molecules, HLA-DQ8 transgenic mice were implanted s.c. with mini-osmotic pumps capable of continuously delivering the SAg, staphylococcal enterotoxin B (total of 10 μg/mouse), or PBS over 4 wk. Chronic exposure to staphylococcal enterotoxin B resulted in a multisystem autoimmune inflammatory disease with features similar to systemic lupus erythematosus. The disease was characterized by mononuclear cell infiltration of lungs, liver, and kidneys, accompanied by the production of anti-nuclear Abs and deposition of immune complexes in the renal glomeruli. The inflammatory infiltrates in various organs predominantly consisted of CD4(+) T cells bearing TCR Vβ8. The extent of immunopathology was markedly reduced in mice lacking CD4(+) T cells and CD28, indicating that the disease is CD4(+) T cell mediated and CD28 dependent. The absence of disease in STAT4-deficient, as well as IFN-γ-deficient, HLA-DQ8 mice suggested the pathogenic role of Th1-type cytokines, IL-12 and IFN-γ. In conclusion, our study suggests that chronic exposure to extremely small amounts of bacterial SAg could be an etiological factor for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vaidehi R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
4
|
Human leukocyte antigen class II transgenic mouse model unmasks the significant extrahepatic pathology in toxic shock syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2760-73. [PMID: 21641398 DOI: 10.1016/j.ajpath.2011.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 01/10/2011] [Accepted: 02/07/2011] [Indexed: 11/22/2022]
Abstract
Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4(+) and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS.
Collapse
|
5
|
Shachar I, Haran M. The secret second life of an innocent chaperone: the story of CD74 and B cell/chronic lymphocytic leukemia cell survival. Leuk Lymphoma 2011; 52:1446-54. [PMID: 21417823 DOI: 10.3109/10428194.2011.565437] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review deals with the cytokine macrophage migration inhibitory factor (MIF) and its receptor, CD74. MIF and CD74 have been shown to regulate peripheral B cell survival and were associated with tumor progression and metastasis. CD74 expression has been suggested to serve as a prognostic factor in many cancers, with higher relative expression of CD74 behaving as a marker of tumor progression. In chronic lymphocytic leukemia (CLL) cells, binding of MIF to CD74 induces nuclear factor-κB (NF-κB) activation and up-regulation of TAp63 expression, resulting in the secretion of interleukin 8 (IL-8), which in turn promotes cell survival. In addition, TAp63 expression elevates expression of the integrin VLA-4, particularly during the advanced stage of the disease. Blocking of CD74, TAp63, or VLA-4 inhibits the in vivo homing of CLL cells to the BM. Thus, CD74 and its target genes, TAp63 and VLA-4, facilitate migration of CLL cells back to the BM, where they interact with the supportive BM environment that helps rescue them from apoptosis. These results are expected to pave the way toward novel therapeutic strategies aimed at interrupting this survival pathway. One such agent, the monocolonal antibody milatuzumab directed at CD74, is already being studied in early clinical trials.
Collapse
Affiliation(s)
- Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
6
|
Rajagopalan G, Mangalam AK, Sen MM, Cheng S, Kudva YC, David CS. Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans. Autoimmunity 2009; 40:169-79. [PMID: 17453715 DOI: 10.1080/08916930701201083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease with a strong HLA association particularly, HLA-DQ8. We investigated whether islet-specific expression of granulocyte/macrophage colony-stimulating factor (Ins.GM-CSF) in A Beta degrees.NOD.DQ8 mice (HLA-DQ8 transgenic mice on a NOD background lacking endogenous mouse MHC class II molecules) would predispose to development of spontaneous autoimmune diabetes. A Beta degrees.NOD.DQ8 mice expressing GM-CSF in the pancreatic ss cells (8+ G+) as well as litter mates lacking either HLA-DQ8 (8 - G+) or GM-CSF (8+ G -) or both (8 - G -) exhibited insulitis and sialadenitis of varying degrees. But none of the mice progressed to develop T1D. Other than the marked mononuclear cell infiltration in livers of mice expressing GM-CSF irrespective of HLA-DQ8 expression (8+ G+ or 8 - G+), no other changes were observed in the animals. Thus, we have shown for the first time that expression of HLA-DQ8 in the diabetes-predisposing mileu of NOD genetic background is not sufficient to predispose to development of autoimmune diabetes even when the potent immunostimulatory cytokine, GM-CSF is expressed in the pancreatic islets.
Collapse
|
7
|
Rajagopalan G, Polich G, Sen MM, Singh M, Epstein BE, Lytle AK, Rouse MS, Patel R, David CS. Evaluating the role of HLA-DQ polymorphisms on immune response to bacterial superantigens using transgenic mice. ACTA ACUST UNITED AC 2007; 71:135-45. [PMID: 18086265 DOI: 10.1111/j.1399-0039.2007.00986.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial superantigens bind directly to human leukocyte antigen (HLA) class II molecules and vigorously activate T cells expressing certain T-cell receptor variable region families. As interaction with HLA class II molecules is the primary step in this process, polymorphic variations in HLA class II can determine the extent of superantigen binding to HLA class II molecules, govern the magnitude of immune activation induced by given superantigens and determine the outcome of superantigen-mediated diseases. As direct assessment of the influence of HLA class II polymorphism in humans is impossible because of expression of more than one HLA class II alleles in a given individual and toxicity of superantigens, transgenic mice expressing HLA-DQ6 (HLA-DQA1*0103 and HLA-DQB1*0601) and HLA-DQ8 (HLA-DQA1*0301 and HLA-DQB1*0302) were used to achieve this goal. HLA-DQ6 and HLA-DQ8 elicited comparable in vitro and in vivo immune response to staphylococcal enterotoxins (SE) A, SEB, SEH and SEK, toxic shock syndrome toxin-1, streptococcal pyrogenic exotoxin (SPE) A and SPEC and streptococcal mitogenic exotoxin Z (SMEZ). However, each superantigen had a unique T-cell receptor activation profile. In vivo challenge with Streptococcus pyogenes, H305, capable of elaborating SPEA and SMEZ, yielded a similar clinical outcome in HLA-DQ6 and HLA-DQ8 transgenic mice. In conclusion, HLA-DQ6 and HLA-DQ8 elicited comparable response to certain bacterial superantigens. Our report highlights the advantages of HLA class II transgenic mice in such studies.
Collapse
Affiliation(s)
- G Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cook E, Wang X, Robiou N, Fries BC. Measurement of staphylococcal enterotoxin B in serum and culture supernatant with a capture enzyme-linked immunosorbent assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1094-101. [PMID: 17634506 PMCID: PMC2043325 DOI: 10.1128/cvi.00183-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Staphylococcal enterotoxin B (SEB) is a select agent because it is a potent mitogen that elicits life-threatening polyclonal T-cell proliferation and cytokine production at very low concentrations. Efforts are in progress to develop therapeutic reagents and vaccines that neutralize or prevent the devastating effects of this toxin. Because of its rapid binding to in vivo receptors, this toxin is difficult to detect in serum. This rapid binding also constitutes a major challenge for the development of effective therapeutic reagents that can neutralize the effects of the toxin in vivo. We have developed a highly sensitive capture enzyme-linked immunosorbent assay that detects SEB in body fluids at very low levels. With this assay, the peak levels of SEB in serum and renal clearance can be measured in mice. After either oral ingestion or nasal inhalation of SEB by mice, this assay documents the transcytosis of SEB across the mucosal membranes into serum within 2 h. Furthermore, this assay was used to compare the SEB levels in different murine models for SEB-induced lethal shock and demonstrated that the coadministration of toxin-enhancing chemicals, such as D-galactosamine and lipopolysaccharide, can alter the peak serum SEB levels. Hence, this assay is a potentially useful tool for the study of the pharmacokinetics of SEB and the effects of potential therapeutic reagents on serum SEB levels.
Collapse
Affiliation(s)
- E Cook
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
9
|
Rajagopalan G, Smart MK, Murali N, Patel R, David CS. Acute systemic immune activation following vaginal exposure to staphylococcal enterotoxin B—Implications for menstrual shock. J Reprod Immunol 2007; 73:51-9. [PMID: 17070600 DOI: 10.1016/j.jri.2006.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/17/2022]
Abstract
Menstrual toxic shock syndrome (mTSS) is an acute systemic inflammatory disease associated with the superantigenic exotoxin, toxic shock syndrome toxin (TSST)-1, produced by Staphylococcus aureus and the use of high absorbency tampons. Even though S. aureus is capable of elaborating several other superantigenic exotoxins, only TSST-1 has been implicated in the pathogenesis of mTSS possibly because most other superantigenic exotoxins are known enterotoxins. Nonetheless, we have shown recently that one of the enterotoxigenic staphylococcal superantigens, staphylococcal enterotoxin B (SEB), can cause robust systemic immune activation following exposure through non-enteric mucosa, including nasal or conjunctival routes. In a similar manner, we show here that vaginal administration of SEB in HLA class II transgenic mice can cause robust systemic immune activation characterized by profound elevation of proinflammatory cytokines in the serum, activation and expansion of SEB-reactive CD4(+) and CD8(+) T cells in peripheral lymphoid organs and SEB-induced deletion of immature thymocytes. Vaginal administration of SEB also caused leukocytic infiltration in major organs, such as liver and lung, reminiscent of human toxic shock syndrome. Systemic immune activation following vaginal superantigen delivery was independent of the stage of the estrus cycle in the mouse. Using HLA class II transgenic mice, we have shown that exposure to SEB through the vaginal canal can cause robust systemic immune activation. SEB could thus play a role in the pathogenesis of mTSS.
Collapse
Affiliation(s)
- Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
10
|
Rajagopalan G, Iijima K, Singh M, Kita H, Patel R, David CS. Intranasal exposure to bacterial superantigens induces airway inflammation in HLA class II transgenic mice. Infect Immun 2006; 74:1284-96. [PMID: 16428778 PMCID: PMC1360368 DOI: 10.1128/iai.74.2.1284-1296.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is widely prevalent in the nasopharynges of healthy individuals (carriers) but can also cause serious infections. S. aureus can elaborate a variety of superantigen exotoxins in "carrier" or "pathogenic" states. Streptococcus pyogenes can also colonize the nasopharynx and elaborate superantigens. Unlike the acute effects of superantigen exotoxins absorbed through the gut or vaginal mucosa, little is known regarding the pathogenesis of superantigens entering through the intranasal route. In the current study, we evaluated the local and systemic effects of staphylococcal enterotoxin B (SEB) and streptococcal pyrogenic exotoxin A (SPEA) delivered through the intranasal route. Superantigens were administered intranasally on multiple occasions, and experimental animals were sacrificed on day 8 for experimental analyses. SEB-induced airway inflammation was more pronounced for HLA-DR3 transgenic mice than for BALB/c mice, consistent with bacterial superantigens binding more efficiently to human than murine major histocompatibility complex class II. The nature of the airway inflammation in HLA-DR3 mice was determined by the concentration of SEB applied intranasally. Low concentrations (20 ng) induced eosinophilic airway inflammation as well as eosinophil degranulation, whereas intranasal exposure to higher concentrations (2,000 ng) resulted in neutrophilic airway inflammation, permanent airway destruction, toxic shock, and mortality. SEB-induced eosinophilic inflammatory response was enhanced in signal transducer and activator of transcription (STAT)-4-deficient HLA-DQ8 transgenic mice with defective interleukin-12 signaling. Intranasal administration of SPEA induced airway inflammation and systemic immune activation in HLA-DQ8 transgenic mice. In conclusion, repeated chronic intranasal exposure to bacterial superantigens causes airway inflammation and systemic immune activation.
Collapse
Affiliation(s)
- Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
11
|
Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TMC, Mellins ED. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 2005; 207:242-60. [PMID: 16181341 DOI: 10.1111/j.0105-2896.2005.00306.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.
Collapse
Affiliation(s)
- Robert Busch
- Division of Pediatric Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94705, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rajagopalan G, Sen MM, David CS. In vitro and in vivo evaluation of staphylococcal superantigen peptide antagonists. Infect Immun 2004; 72:6733-7. [PMID: 15501813 PMCID: PMC522998 DOI: 10.1128/iai.72.11.6733-6737.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Superantigen peptide antagonists failed to block T-cell activation and cytokine production as well as toxic shock induced by staphylococcal enterotoxin B (SEB) in HLA class II transgenic mice. They also failed to inhibit the binding of SEB to HLA class II molecules as well as activation of human T lymphocytes in vitro.
Collapse
Affiliation(s)
- Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
13
|
Dissanayake SK, Thompson JA, Bosch JJ, Clements VK, Chen PW, Ksander BR, Ostrand-Rosenberg S. Activation of Tumor-specific CD4+ T Lymphocytes by Major Histocompatibility Complex Class II Tumor Cell Vaccines. Cancer Res 2004; 64:1867-74. [PMID: 14996751 DOI: 10.1158/0008-5472.can-03-2634] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mouse tumor cells transfected with syngeneic MHC class II and costimulatory molecule genes are therapeutic vaccines in mice, provided they do not coexpress the class II-associated invariant chain (Ii). We demonstrated previously that the vaccine cells present tumor peptides via the endogenous antigen presentation pathway to activate CD4(+) and CD8(+) T cells. Because of their efficacy in mice, we are translating this vaccine strategy for clinical use. To obtain MHC class II(+)CD80(+)Ii(-) human tumor cells, we developed retroviruses encoding HLA-DR and CD80. The HLA-DR virus encodes the DRalpha and DRbeta0101 chains using an internal ribosomal entry site to coordinate expression. SUM159PT mammary carcinoma and Mel 202 ocular melanoma cells transduced with the retroviruses DRB1/CD80 express high levels of DRB0101 and CD80 on the cell surface in the absence of Ii. Irradiated SUM159PT/DR1/CD80 vaccines stimulate proliferation of non-HLA-DRB0101 peripheral blood mononuclear cells and present an exogenous DR1-restricted tetanus toxoid (TT) peptide, indicating that the transduced DRB0101 is functional. SUM159PT/DR1/CD80 vaccines were further transduced with a retrovirus encoding the TT fragment C gene, as a model tumor antigen. These cells stimulate IFN-gamma release from TT-primed human DRB0101 peripheral blood mononuclear cells, demonstrating their ability to present "endogenous" tumor antigen. Depletion and antibody blocking experiments confirm that MHC class II-restricted, endogenously synthesized epitopes are presented to CD4(+) T cells. Therefore, the MHC class II vaccines are efficient antigen-presenting cells that activate tumor-specific MHC class II-restricted, CD4(+) T lymphocytes, and they are a novel and potential immunotherapeutic for metastatic cancers.
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rajagopalan G, Smart MK, Cheng S, Krco CJ, Johnson KL, David CS. Expression and function of HLA-DR3 and DQ8 in transgenic mice lacking functional H2-M. TISSUE ANTIGENS 2003; 62:149-61. [PMID: 12889995 DOI: 10.1034/j.1399-0039.2003.00088.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
H2-M or HLA-DM are non-classical class II molecules encoded by the MHC and play an important role during antigen presentation. They catalyze exchange of CLIP (Class II-associated invariant chain peptide) or other low-affinity peptides bound to class II molecules for peptides capable of more efficient binding. The phenotype of mice lacking H2-M is determined by the allotype of the MHC class II molecules expressed. In general, H2-M deficiency does not affect the surface expression of mature class II molecules. The class II molecules in such cases predominantly contain CLIP in their peptide-binding groove. In some mice strains, H2-M deficiency results in defective CD4+ T-cell development accompanied by defective responses to conventional antigens and superantigens. Even though the HLA class II molecules show similar dependency for HLA-DM for presenting antigens in vitro, their interaction in vivo is not known. By using transgenic approach we show here that DQ8 and DR3 are expressed at normal levels in H2-M-deficient mice and the CD4+ T-cell development is unaltered. However, the ability of DQ8 molecules to present peptide antigens is compromised in a H2-M-deficient state. Presentation of exogenous bacterial superantigens by both DQ8 and DR3 is unaffected in H2-M-deficient mice. Unexpectedly, Staphylococcal Enterotoxin B-induced systemic IFN-gamma production was significantly higher in H2-M-deficient DQ8/DR3 transgenic mice and these mice were susceptible to SEB-induced toxic shock at doses that are non-lethal to H2-M-sufficient counterparts.
Collapse
Affiliation(s)
- G Rajagopalan
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|