1
|
Burg AR, Erickson JJ, Turner LH, Pham G, Kinder JM, Way SS. Persistent Zika Virus Clinical Susceptibility despite Reduced Viral Burden in Mice with Expanded Virus-Specific CD8 + T Cells Primed by Recombinant Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2020; 205:447-453. [PMID: 32522837 DOI: 10.4049/jimmunol.1901412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
Vaccines against Zika virus (ZIKV) infection that target CD8+ T cells are of considerable interest because Abs may enhance infection susceptibility. However, whether CD8+ T cells are protective or promote susceptibility to clinical infection symptoms remains uncertain. To more precisely investigate ZIKV-specific CD8+ T cells in isolation, we engineered a Listeria monocytogenes-based vector to express a single MHC class I-restricted immune dominant peptide, E294-302, from ZIKV envelope protein. We show accumulation of activated ZIKV-specific CD8+ T cells primed by recombinant L. monocytogenes is associated with reductions in circulating virus levels after ZIKV challenge in type I IFN receptor-deficient mice and wildtype mice administered neutralizing Abs against type I IFN receptor. Interestingly, susceptibility to ZIKV clinical infection including weight loss and mortality each persists and is neither significantly improved nor worsened compared with isogenic L. monocytogenes-primed control mice. These data demonstrating persistent ZIKV clinical susceptibility despite reduced viral burden in mice with expanded virus-specific CD8+ T cells highlights the need for targeting other adaptive immune components in developing vaccines against ZIKV infection.
Collapse
Affiliation(s)
- Ashley R Burg
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229.,Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - John J Erickson
- Division of Neonatology, Cincinnati Children's Hospital, Cincinnati, OH 45229
| | - Lucien H Turner
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229.,Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Giang Pham
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229.,Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Jeremy M Kinder
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229.,Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Sing Sing Way
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; .,Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| |
Collapse
|
2
|
Zhang M, Gillaspy AF, Gipson JR, Cassidy BR, Nave JL, Brewer MF, Stoner JA, Chen J, Drevets DA. Neuroinvasive Listeria monocytogenes Infection Triggers IFN-Activation of Microglia and Upregulates Microglial miR-155. Front Immunol 2018; 9:2751. [PMID: 30538705 PMCID: PMC6277692 DOI: 10.3389/fimmu.2018.02751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155−/−) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155−/− mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155−/− mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155−/− microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155−/− microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Allison F Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jenny R Gipson
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica L Nave
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Misty F Brewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Chen
- Histology and Immunohistochemistry Core, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Huber AK, Duncker PC, Irani DN. Immune responses to non-tumor antigens in the central nervous system. Front Oncol 2014; 4:328. [PMID: 25431758 PMCID: PMC4230036 DOI: 10.3389/fonc.2014.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.
Collapse
Affiliation(s)
- Amanda K Huber
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - David N Irani
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
4
|
Romo-González T, Chavarría A, Pérez-H J. Central nervous system: a modified immune surveillance circuit? Brain Behav Immun 2012; 26:823-9. [PMID: 22310920 DOI: 10.1016/j.bbi.2012.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/29/2022] Open
Abstract
Immune surveillance in the central nervous system (CNS) was considered impossible because: (i) the brain parenchyma is separated from the blood circulation by the blood-brain barrier (BBB); (ii) the brain lacks lymphatic drainage and (iii) the brain displays low major histocompatibility complex class II (MHCII) expression. In this context, the BBB prevents entry of immune molecules and effector cells to the CNS. The absence of lymphatic vessels avoids CNS antigens from reaching the lymph nodes for lymphocyte presentation and activation. Finally, the low MHCII expression hinders effective antigen presentation and re-activation of T cells for a competent immune response. All these factors limit the effectiveness of the afferent and efferent arms necessary to carry out immune surveillance. Nevertheless, recent evidence supports that CNS is monitored by the immune system through a modified surveillance circuit; this work reviews these findings.
Collapse
Affiliation(s)
- Tania Romo-González
- Grupo de Biología y Salud Integral, Instituto de Investigaciones biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | |
Collapse
|
5
|
Villegas-Mendez A, Greig R, Shaw TN, de Souza JB, Gwyer Findlay E, Stumhofer JS, Hafalla JCR, Blount DG, Hunter CA, Riley EM, Couper KN. IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. THE JOURNAL OF IMMUNOLOGY 2012; 189:968-79. [PMID: 22723523 DOI: 10.4049/jimmunol.1200688] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, Karupiah G, Smyth MJ, Heath WR, Engwerda CR. Granzyme B Expression by CD8+T Cells Is Required for the Development of Experimental Cerebral Malaria. THE JOURNAL OF IMMUNOLOGY 2011; 186:6148-56. [DOI: 10.4049/jimmunol.1003955] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Oevermann A, Zurbriggen A, Vandevelde M. Rhombencephalitis Caused by Listeria monocytogenes in Humans and Ruminants: A Zoonosis on the Rise? Interdiscip Perspect Infect Dis 2010; 2010:632513. [PMID: 20204066 PMCID: PMC2829626 DOI: 10.1155/2010/632513] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/25/2009] [Indexed: 02/05/2023] Open
Abstract
Listeriosis is an emerging zoonotic infection of humans and ruminants worldwide caused by Listeria monocytogenes (LM). In both host species, CNS disease accounts for the high mortality associated with listeriosis and includes rhombencephalitis, whose neuropathology is strikingly similar in humans and ruminants. This review discusses the current knowledge about listeric encephalitis, and involved host and bacterial factors. There is an urgent need to study the molecular mechanisms of neuropathogenesis, which are poorly understood. Such studies will provide a basis for the development of new therapeutic strategies that aim to prevent LM from invading the brain and spread within the CNS.
Collapse
Affiliation(s)
- Anna Oevermann
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Andreas Zurbriggen
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Marc Vandevelde
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
8
|
Sanchez-Ruiz M, Wilden L, Müller W, Stenzel W, Brunn A, Miletic H, Schlüter D, Deckert M. Molecular mimicry between neurons and an intracerebral pathogen induces a CD8 T cell-mediated autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 180:8421-33. [PMID: 18523310 DOI: 10.4049/jimmunol.180.12.8421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify basic mechanisms of how infections may induce a neuron-specific autoimmune response, we generated mice expressing OVA as neuronal autoantigen under control of the neuron-specific enolase promoter (NSE-OVA mice). Intracerebral, but not systemic, infection with attenuated Listeria monocytogenes-secreting OVA induced an atactic-paretic neurological syndrome in NSE-OVA mice after bacterial clearance from the brain, whereas wild-type mice remained healthy. Immunization with attenuated Listeria monocytogenes-secreting OVA before intracerebral infection strongly increased the number of intracerebral OVA-specific CD8 T cells aggravating neurological disease. T cell depletion and adoptive transfer experiments identified CD8 T cells as decisive mediators of the autoimmune disease. Importantly, NSE-OVA mice having received OVA-specific TCR transgenic CD8 T cells developed an accelerated, more severe, and extended neurological disease. Adoptively transferred pathogenic CD8 T cells specifically homed to OVA-expressing MHC class I(+) neurons and, corresponding to the clinical symptoms, approximately 30% of neurons in the anterior horn of the spinal cord became apoptotic. Thus, molecular mimicry between a pathogen and neurons can induce a CD8 T cell-mediated neurological disease, with its severity being influenced by the frequency of specific CD8 T cells, and its induction, but not its symptomatic phase, requiring the intracerebral presence of the pathogen.
Collapse
|
9
|
Drevets DA, Schawang JE, Dillon MJ, Lerner MR, Bronze MS, Brackett DJ. Innate responses to systemic infection by intracellular bacteria trigger recruitment of Ly-6Chigh monocytes to the brain. THE JOURNAL OF IMMUNOLOGY 2008; 181:529-36. [PMID: 18566419 DOI: 10.4049/jimmunol.181.1.529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood borne Listeria monocytogenes enter the CNS via migration of parasitized Ly-6Chigh monocytes, but the signals that trigger this migration are not known. To understand more completely events leading to monocyte recruitment, experiments presented here combined microarray analysis of gene expression in the brains of experimentally infected mice with measurements of bacterial CFU and serum cytokines following i.v. infection with L. monocytogenes. At 24 and 48 h postinfection, the brain was sterile but there were significant changes in transcriptional activity related to serum proinflammatory cytokines. Real-time PCR confirmed mRNA up-regulation of genes related to IFN-gamma, IL-1, and TNF-alpha, although IFN-gamma itself was not up-regulated in the brain. Infection with Deltaacta, but not Deltahly mutants, increased serum concentrations of IFN-gamma, IL-6, and to a lesser extent TNF-alpha. The brain was not infected but there was widespread mRNA up-regulation in it and an influx of Ly-6Chigh monocytes in Deltaacta-infected mice. Moreover, DeltaactA-infected IFN-gamma-/- mice had no brain influx of Ly-6Chigh monocytes despite normal monocyte trafficking from bone marrow to blood and spleen. Additionally, IFN-gamma-/- mice showed diminished mRNA expression for monocyte-attracting chemokines, and significantly less CXCL9 and CXCL10 protein in the brain compared with normal mice. These data demonstrate that monocyte recruitment to the brain is independent of bacterial invasion of the CNS and is triggered by proinflammatory cytokines, in particular IFN-gamma, produced by the innate immune response to intracellular infection in peripheral organs.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Deckert M, Virna S, Sakowicz-Burkiewicz M, Lütjen S, Soltek S, Bluethmann H, Schlüter D. Interleukin-1 receptor type 1 is essential for control of cerebral but not systemic listeriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:990-1002. [PMID: 17322383 PMCID: PMC1864874 DOI: 10.2353/ajpath.2007.060507] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Listeria monocytogenes may infect the central nervous system and several peripheral organs. To explore the function of IL-1 receptor type 1 (IL-1R1) in cerebral versus systemic listeriosis, IL-1R1(-/-) and wild-type mice were infected either intracerebrally or intraperitoneally with L. monocytogenes. After intracerebral infection with various numbers of attenuated Listeria, IL-1R1(-/-) mice succumbed due to an insufficient control of intracerebral Listeria, whereas all wild-type mice survived, efficiently restricting growth of Listeria. IL-1R1(-/-) mice recruited increased numbers of leukocytes, especially granulocytes, to the brain compared with wild-type mice. In contrast, both IL-1R1(-/-) and wild-type mice survived a primary and secondary intraperitoneal infection with Listeria without differences in the hepatic bacterial load. In addition, both strains developed similar frequencies of Listeria-specific CD4 and CD8 T cells after primary and secondary intraperitoneal infection. However, an intraperitoneal immunization before intracerebral challenge infection neither protected IL-1R1(-/-) mice from death nor reduced the intracerebral bacterial load, although numbers of intracerebral Listeria-specific CD4 and CD8 T cells and levels of inducible nitric oxide synthase, tumor necrosis factor, and interferon-gamma mRNA were identical in IL-1R1(-/-) and wild-type mice. Collectively, these findings illustrate a crucial role of IL-1R1 in cerebral but not systemic listeriosis.
Collapse
Affiliation(s)
- Martina Deckert
- Abteilung für Neuropathologie, Universität zu Köln, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Virna S, Deckert M, Lütjen S, Soltek S, Foulds KE, Shen H, Körner H, Sedgwick JD, Schlüter D. TNF Is Important for Pathogen Control and Limits Brain Damage in Murine Cerebral Listeriosis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3972-82. [PMID: 16951360 DOI: 10.4049/jimmunol.177.6.3972] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral listeriosis is a life-threatening disease. However, little is known about the bacterial virulence factors responsible for the severe course of disease and the factors of the immune system contributing to the control of Listeria monocytogenes (LM) or even to the damage of the brain. To analyze the importance of the actA gene of LM, which mediates cell-to-cell spread of intracellular LM, the function of TNF in murine cerebral listeriosis was studied. C57BL/6 mice survived an intracerebral (i.c.) infection with actA-deficient LM, but succumbed to infection with wild-type (WT) LM. Upon infection with actA-deficient LM, macrophages and microglial cells rapidly, and later LM-specific CD4 and CD8 T cells, produced TNF. In contrast to WT mice, TNF-deficient animals succumbed to the infection within 4 days due to failure of control of LM. Histology identified a more severe meningoencephalitis, brain edema, and neuronal damage, but a reduced inducible NO synthase expression in TNF-deficient mice. Reciprocal bone marrow chimeras between WT and TNF-deficient mice revealed that hematogenously derived TNF was essential for survival, whereas TNF produced by brain-resident cells was less important. Death of TNF-deficient mice could be prevented by LM-specific T cells induced by an active immunization before i.c. infection. However, brain pathology and inflammation of immunized TNF-deficient mice were still more severe. In conclusion, these findings identify a crucial role of TNF for the i.c. control of LM and survival of cerebral listeriosis, whereas TNF was not responsible for the destruction of brain tissue.
Collapse
Affiliation(s)
- Simona Virna
- Institut für Medizinische Mikrobiologie und Hygiene, Fakultät für klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miletic H, Utermöhlen O, Wedekind C, Hermann M, Stenzel W, Lassmann H, Schlüter D, Deckert M. P0(106-125) is a neuritogenic epitope of the peripheral myelin protein P0 and induces autoimmune neuritis in C57BL/6 mice. J Neuropathol Exp Neurol 2005; 64:66-73. [PMID: 15715086 DOI: 10.1093/jnen/64.1.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present study describes a new model of autoimmune neuritis in C57BL/6 mice induced by immunization with the novel neuritogenic epitope P0(106-125), derived from mouse peripheral myelin protein P0. Immunization with this peptide in combination with pertussis toxin induced high levels of peptide-specific CD4+ T cells in spleen and popliteal lymph nodes. Clinical symptoms of autoimmune neuritis started with a flaccid tail at day 10 postimmunization (p.i.), progressed to moderate paraparesis at day 15 p.i., declining thereafter with undetectable symptoms at day 40 p.i. Clinical disease activity paralleled decreased sciatic nerve motor conduction and histopathologic alterations of sciatic nerves. These included inflammatory infiltrates, mainly consisting of inducible nitric oxide synthase (iNOS)+ macrophages and CD4+ T cells. These data fit into the pathogenetic concept of murine autoimmune neuritis as a CD4+ TH1 cell-mediated disease. Our new mouse model provides an attractive tool to identify critical factors that regulate the severity of autoimmune responses in the peripheral nervous system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Injections, Subcutaneous
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Myelin P0 Protein/administration & dosage
- Myelin P0 Protein/genetics
- Myelin P0 Protein/immunology
- Neuritis, Autoimmune, Experimental/genetics
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Hrvoje Miletic
- Abteilung für Neuropathologie, Universität zu Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkötter C, Leenen PJM. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:4418-24. [PMID: 15034057 DOI: 10.4049/jimmunol.172.7.4418] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mononuclear phagocytes can be used by intracellular pathogens to disseminate throughout the host. In the bloodstream these cells are generically referred to as monocytes. However, blood monocytes are a heterogeneous population, and the exact identity of the leukocyte(s) relevant for microbial spreading is not known. Experiments reported in this study used Listeria monocytogenes-infected mice to establish the phenotype of parasitized blood leukocytes and to test their role in systemic dissemination of intracellular bacteria. More than 90% of the blood leukocytes that were associated with bacteria were CD11b(+) mononuclear cells. Analysis of newly described monocyte subsets showed that most infected cells belonged to the Ly-6C(high) monocyte subset and that Ly-6C(high) and Ly-6C(neg-low) monocytes harbored similar numbers of bacteria per cell. Interestingly, systemic infection with wild-type or DeltaactA mutants of L. monocytogenes, both of which escape from phagosomes and replicate intracellularly, caused expansion of the Ly-6C(high) subset. In contrast, this was not evident after infection with Deltahly mutants, which neither escape phagosomes nor replicate intracellularly. Importantly, when CD11b(+) leukocytes were isolated from the brains of lethally infected mice, 88% of these cells were identified as Ly-6C(high) monocytes. Kinetic analysis showed a significant influx of Ly-6C(high) monocytes into the brain 2 days after systemic infection. This coincided with both bacterial invasion and up-regulation of brain macrophage chemoattractant protein-1 gene expression. These data indicate that the Ly-6C(high) monocyte subset transports L. monocytogenes into the brain and establish their role as Trojan horses in vivo.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, and Veterans Affairs Medical Center, Oklahoma City, OK 73014, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Safdar A, Armstrong D. Listeriosis in patients at a comprehensive cancer center, 1955-1997. Clin Infect Dis 2003; 37:359-64. [PMID: 12884160 DOI: 10.1086/376631] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 03/25/2003] [Indexed: 11/03/2022] Open
Abstract
Listeria monocytogenes infection occurred in 94 patients during 1955-1997 at Memorial Sloan-Kettering Cancer Center. The incidence was 0.5 (1955-1966), 0.96 (1970-1979), and 0.14 (1985-1997) cases per 1000 new admissions. Eighty-five patients (90%) were bacteremic, and 34 (36%) had evidence of intracranial infection. In 91 patients with cancer, 70 (77%) received chemotherapy for advanced or relapsed malignancy (n=51; 56%); 64 (68%) received corticosteroids. Breast cancer was the most common solid-organ cancer (n=14; 45%), and 34 (36%) had preexisting advanced liver disease. In 14 (39%) of 37 patients who died of listeriosis, death occurred within 48 h of L. monocytogenes isolation. Four (80%) of 5 patients with extracranial foci of infection died of their infection, compared with 33 (37%) of 89 patients with isolated bacteremia and/or intracranial infection (odds ratio, 2.34; P=.05). Most infections (60%) were due to L. monocytogenes serotype 1/2, and the remainder (40%) were due to serovar 4b. Listeriosis in these patients with cancer occurred most often in individuals receiving antineoplastic therapy for advanced or relapsed malignancy and systemic corticosteroids. The presence of advanced liver disease may have increased the risk of systemic listeriosis in susceptible patients with underlying cancer.
Collapse
Affiliation(s)
- Amar Safdar
- Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|