1
|
Brown EM, Nguyen PNU, Xavier RJ. Emerging biochemical, microbial and immunological evidence in the search for why HLA-B ∗27 confers risk for spondyloarthritis. Cell Chem Biol 2025; 32:12-24. [PMID: 39168118 PMCID: PMC11741937 DOI: 10.1016/j.chembiol.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The strong association of the human leukocyte antigen B∗27 alleles (HLA-B∗27) with spondyloarthritis and related rheumatic conditions has long fascinated researchers, yet the precise mechanisms underlying its pathogenicity remain elusive. Here, we review how interplay between the microbiome, the immune system, and the enigmatic HLA-B∗27 could trigger spondyloarthritis, with a focus on whether HLA-B∗27 presents an arthritogenic peptide. We propose mechanisms by which the unique biochemical characteristics of the HLA-B∗27 protein structure, particularly its peptide binding groove, could dictate its propensity to induce pathological T cell responses. We further provide new insights into how TRBV9+ CD8+ T cells are implicated in the disease process, as well as how the immunometabolism of T cells modulates tissue-specific inflammatory responses in spondyloarthritis. Finally, we present testable models and suggest approaches to this problem in future studies given recent advances in computational biology, chemical biology, structural biology, and small-molecule therapeutics.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Braun J, Rudwaleit M, Sieper J. [The role of HLA-B27 in the pathogenesis and diagnosis of axial spondyloarthritis : 50 years after discovery of the strong genetic association]. Z Rheumatol 2024; 83:125-133. [PMID: 38112753 DOI: 10.1007/s00393-023-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The association of the human lymphocyte antigen B27 (HLA-B27) with ankylosing spondylitis (AS), also now called axial spondylarthritis (axSpA), was first described 50 years ago. OBJECTIVE This article gives an overview of the available knowledge on the topic. MATERIAL AND METHODS This is a narrative review based on the experience of the authors. RESULTS The HLA-B27 is a member of the HLA class I family of genes of the major histocompatibility complex (MHC). The prevalence of HLA-B27 in the central European population is approximately 8 %, i.e., the vast majority of carriers of HLA-B27+ remain healthy. The frequency of HLA-B27 shows a decline from north to south. The HLA-B27 explains only 30 % of the genetic burden of axSpA. The prevalence of the disease correlates with the frequency of HLA-B27 in the population, i.e., there are geographic differences. Approximately 60-90 % of patients with axSpA worldwide are HLA-B27+. Some 200 subtypes of HLA-B27 can be differentiated using the polymerase chain reaction (PCR). In Thailand and Sardinia two subtypes were found that are not associated with axSpA. The physiological function of HLA class I molecules is the defence of the organism against microbes. Microbial peptides are presented to the immune system, which can be specifically attacked by CD8+ T‑cells. Genetic polymorphisms of the enzyme endoplasmic reticulum aminopeptidase 1 (ERAP1), which breaks down peptides in the endoplasmic reticulum, are associated only with HLA-B27+ diseases. DISCUSSION The pathogenesis of axSpA is unclear but a major hypothesis is that of the arthritogenic peptides. In this it is assumed that potentially pathogenic foreign or autologous peptides can be presented by HLA-B27. If nothing else, HLA-B27 plays an important role in the diagnosis, classification and determination of the severity of axSpA.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumatologisches Versorgungszentrum Steglitz, Berlin, Deutschland.
- Ruhr Universität Bochum, Bochum, Deutschland.
- , Berlin, Deutschland.
| | - Martin Rudwaleit
- Klinikum Bielefeld, Universitätsklinikum OWL der Universität Bielefeld, Bielefeld, Deutschland
| | | |
Collapse
|
3
|
Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 Anterior Uveitis: Immunology and Immunopathology. Ocul Immunol Inflamm 2016; 24:450-9. [PMID: 27245590 DOI: 10.3109/09273948.2016.1158283] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute anterior uveitis (AAU) is the commonest type of uveitis and HLA-B27 AAU is the most frequently recognized type of acute anterior uveitis and anterior uveitis overall. Recent evidence indicates that acute anterior uveitis is a heterogenous disease, is polygenic and is frequently associated with the spondyloarthropathies (SpA). Studies of patients with AAU and animal models of disease indicate a role for innate immunity, the IL-23 cytokine pathway and exogenous factors, in the pathogenesis of both SpA and acute anterior uveitis. Recently described genetic associations cluster around immunologic pathways, including the IL-17 and IL-23 pathways, antigen processing and presentation, and lymphocyte development and activation. Patients with ankylosing spondylitis (AS) and AAU share other genetic markers, such as ERAP-1, which show strong evidence of gene-gene interaction and point to new mechanisms of disease pathogenesis. These observations have major implications for understanding the pathogenesis of HLA-B27 diseases, such as AAU, and may lead to the development of more specific therapy for AAU. Received 6 January 2016; revised 6 February 2016; accepted 18 February 2016; published online 31 May 2016.
Collapse
Affiliation(s)
- Denis Wakefield
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - William Yates
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - Shahriar Amjadi
- a Laboratory of Ocular Immunology , University of New South Wales , Kensington , Sydney , Australia
| | - Peter McCluskey
- b Save Sight Institute, Discipline of Ophthalmology , Sydney Medical School, The University of Sydney , Sydney , Australia
| |
Collapse
|
4
|
Affiliation(s)
- Chikashi Terao
- Center for Genomic Medicine; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
5
|
Sorrentino R, Böckmann RA, Fiorillo MT. HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity. Mol Immunol 2013; 57:22-7. [PMID: 23916069 DOI: 10.1016/j.molimm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The HLA-B27 is historically studied as a susceptibility factor in spondyloarthropathies and, primarily, in ankylosing spondylitis (AS). Over the recent years however, it has been rediscovered as protective factor against some severe viral infections. This is due to the high capacity of virus-specific, HLA-B27-restricted CD8+ T cells for both intrinsic (i.e. polyfunctionality, high avidity, low sensitivity to Treg cell-mediated suppression) and extrinsic (i.e. rapid and efficient antigen processing and presentation) factors. It is tempting to speculate that these two aspects are not independent and that the association of B27 molecules to autoimmunity is the downside of this superior functional efficacy which, in given genetic backgrounds and environmental conditions, can support a chronic inflammation leading to spondyloarthropathies. Still, the pathogenic role of HLA-B27 molecules in AS is elusive. Here, we focus on the biology of HLA-B27 from the genetics to the biochemistry and to the structural/dynamical properties of B27:peptide complexes as obtained from atomistic molecular dynamics simulation. Overall, the results point at the antigen presentation as the key event in the disease pathogenesis. In particular, an extensive comparison of HLA-B*2705 and B*2709 molecules, that differ in a single amino acid (Asp116 to His116) and are differentially associated with AS, indicates that position 116 is crucial for shaping the entire peptide-presenting groove.
Collapse
Affiliation(s)
- Rosa Sorrentino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, Italy; Department of Biology and Biotechnology "C. Darwin", Sapienza, University of Rome, Italy
| | | | | |
Collapse
|
6
|
Association of Takayasu arteritis with HLA-B*67:01 and two amino acids in HLA-B protein. Rheumatology (Oxford) 2013; 52:1769-74. [DOI: 10.1093/rheumatology/ket241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Magnacca A, Persiconi I, Nurzia E, Caristi S, Meloni F, Barnaba V, Paladini F, Raimondo D, Fiorillo MT, Sorrentino R. Characterization of a proteasome and TAP-independent presentation of intracellular epitopes by HLA-B27 molecules. J Biol Chem 2012; 287:30358-67. [PMID: 22807446 DOI: 10.1074/jbc.m112.384339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.
Collapse
Affiliation(s)
- Adriana Magnacca
- Department of Biology and Biotechnology C. Darwin, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Loffredo JT, Sidney J, Bean AT, Beal DR, Bardet W, Wahl A, Hawkins OE, Piaskowski S, Wilson NA, Hildebrand WH, Watkins DI, Sette A. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7763-75. [PMID: 19494300 PMCID: PMC2701622 DOI: 10.4049/jimmunol.0900111] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans. We therefore defined a detailed peptide-binding motif for Mamu-B*08 and investigated binding similarities between the macaque and human MHC class I molecules. Analysis of a panel of approximately 900 peptides revealed that despite substantial sequence differences between Mamu-B*08 and HLA-B*2705, the peptide-binding repertoires of these two MHC class I molecules share a remarkable degree of overlap. Detailed knowledge of the Mamu-B*08 peptide-binding motif enabled us to identify six additional novel Mamu-B*08-restricted SIV-specific CD8(+) T cell immune responses directed against epitopes in Gag, Vpr, and Env. All 13 Mamu-B*08-restricted epitopes contain an R at the position 2 primary anchor and 10 also possess either R or K at the N terminus. Such dibasic peptides are less prone to cellular degradation. This work highlights the relevance of the Mamu-B*08-positive SIV-infected Indian rhesus macaque as a model to examine elite control of immunodeficiency virus replication. The remarkable similarity of the peptide-binding motifs and repertoires for Mamu-B*08 and HLA-B*2705 suggests that the nature of the peptide bound by the MHC class I molecule may play an important role in control of immunodeficiency virus replication.
Collapse
Affiliation(s)
- John T. Loffredo
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alex T. Bean
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
| | - Dominic R. Beal
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
| | - Wilfried Bardet
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Angela Wahl
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Oriana E. Hawkins
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Shari Piaskowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
| | - William H. Hildebrand
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,Madison, WI 53706
- Wisconsin National Primate Research Center (WNPRC), University of Wisconsin-Madison, Madison, WI 53715
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
9
|
KIR genes and their role in spondyloarthropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:286-99. [PMID: 19731638 DOI: 10.1007/978-1-4419-0298-6_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular activity of natural killer cells (NK cells) is defined by the balance between activating and inhibitory signals coming from their receptors. With respect to this response, killer immunoglobulin-like receptors (KIR) are unique because of their diversity and capacity to recognize specific human leukocyte antigen (HLA) class I allotypes. Up to the present few studies have experimentally been developed concerning the role of KIR genes in spondyloarthropathies (SpA) and its clear relationship with HLA-B27. However, the role of the HLA-B27 heavy chain homodimers and their possible recognition by KIR receptors in the pathogenesis of spondylarthritides has been studied. Moreover, it has been suggested that NK cells and their receptors could play a role in ankylosing spondylitis (AS) development. Several association studies based on a model in which KIRs synergize with HLAs have also been published. This interaction may generate compound genotypes which provide different levels of activation or inhibition. Furthermore, some of these have been associated with certain SpA, such as ankylosing spondylitis (AS) and psoriatic arthritis (PsA).
Collapse
|
10
|
Lopez-Larrea C, Blanco-Gelaz MA, Torre-Alonso JC, Armas JB, Suarez-Alvarez B, Pruneda L, Couto AR, Gonzalez S, Lopez-Vázquez A, Martinez-Borra J. Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 Caucasian populations. Arthritis Res Ther 2007; 8:R101. [PMID: 16805919 PMCID: PMC1779409 DOI: 10.1186/ar1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/05/2006] [Accepted: 06/05/2006] [Indexed: 12/19/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) loci are both highly polymorphic, and some HLA class I molecules bind and trigger cell-surface receptors specified by KIR genes. We examined whether the combination of KIR3DS1/3DL1 genes in concert with HLA-B27 genotypes is associated with susceptibility to ankylosing spondylitis (AS). Two HLA-B27-positive Caucasian populations were selected, one from Spain (71 patients and 105 controls) and another from the Azores (Portugal) (55 patients and 75 controls). All were typed for HLA-B and KIR (3DS1 and 3DL1) genes. Our results show that in addition to B27, the allele 3DS1 is associated with AS compared with B27 controls (p < 0.0001 and p < 0.003 in the Spanish population and Azoreans, respectively). We also observed that the association of KIR3DS1 to AS was found in combination with HLA-B alleles carrying Bw4-I80 in trans position in the Spanish population (30.9% in AS versus 15.2% in B27 controls, p = 0.02, odds ratio (OR) = 2.49) and in Azoreans (27.2% in AS versus 8.7% in B27 controls, p = 0.01, OR = 4.4 in Azoreans). On the other hand, 3DL1 was decreased in patients compared with B27 controls (p < 0.0001 in the Spanish population and p < 0.003 in Azoreans). The presence of this allele in combination with Bw4-I80 had a protective effect against the development of AS in the Spanish population (19.7% in AS, 35.2% in B27 controls; p = 0.03, OR = 0.45). The presence of KIR3DS1 or KIR3DL1 in combination with HLA-B*27s/HLA-B Bw4-I80 genotypes may modulate the development of AS. The susceptibility to AS could be determined by the overall balance of activating and inhibitory composite KIR-HLA genotypes.
Collapse
Affiliation(s)
- Carlos Lopez-Larrea
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| | - Miguel Angel Blanco-Gelaz
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| | - Juan Carlos Torre-Alonso
- Rheumatology Unit, Hospital Monte Naranco, Avda Dres Fernandez Vega 107. 33012 Oviedo, Asturias, Spain
| | - Jacome Bruges Armas
- Immunogenetic Service, Hospital de Santo Espirito de Angra do Heroismo, Vinha Brava. 9700 Angra do Heroismo, Azores, Portugal
| | - Beatriz Suarez-Alvarez
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| | - Laura Pruneda
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| | - Ana Rita Couto
- Immunogenetic Service, Hospital de Santo Espirito de Angra do Heroismo, Vinha Brava. 9700 Angra do Heroismo, Azores, Portugal
| | - Segundo Gonzalez
- Functional Biology Department, University of Oviedo, Avda Julian Claveria s/n. 33006 Oviedo, Asturias, Spain
| | - Antonio Lopez-Vázquez
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| | - Jesus Martinez-Borra
- Histocompatibility and Transplantation Unit, Hospital Universtario Central de Asturias, Celestino Villamil s/n. 33006 Oviedo, Asturias, Spain
| |
Collapse
|
11
|
Saleki K, Hartigan N, Lith MV, Bulleid N, Benham AM. Differential oxidation of HLA-B2704 and HLA-B2705 in lymphoblastoid and transfected adherent cells. Antioxid Redox Signal 2006; 8:292-9. [PMID: 16677075 DOI: 10.1089/ars.2006.8.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MHC class I molecules are predominantly involved in the presentation of antigens from viral proteins to CD8+ T cells of the immune system. However, MHC proteins can also be linked to autoimmune diseases, and the HLA-B27 allele is expressed by 95% of people with the rheumatic condition ankylosing spondylitis (AS). A precise molecular explanation for the association between HLA-B27 and AS is still lacking, although it is known that inappropriately disulfide bonded HLA-B27 heavy chains can be found at both the cell surface and in the endoplasmic reticulum (ER) of HLA-B27 expressing cells. This papers shows that HLA-B27 heavy chain misfolding does not depend on any unpaired cysteine residue per se when HLA-B27 is highly expressed. Also shown is that major differences exist in the disulfide-dependent conformations of two HLA-B27 subtypes, HLA-B2704 and HLA-B2705. The results imply that residues 77, 152, and/or 211 influence the redox potential of the MHC class I heavy chain and suggest that manipulating the redox environment can alter the conformational state of HLA-B27 subtypes.
Collapse
Affiliation(s)
- Khalil Saleki
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Abstract
Self-reactivity is an intrinsic property of the human immune system. Autoreactive T cells derive directly from the developmental requirement for TCR engagement by self-antigens during lymphocyte maturation. The fundamental questions implicating these autoreactive cells in human autoimmunity then, are not "Where do they come from?", but rather "Why do they persist?", "How do they become activated?", and "How are they regulated or deleted?". New technologies, in which peptide-MHC (pMHC) ligands used for T-cell recognition are utilized as soluble fluorescent multimers, now permit the direct visualization of antigen-specific autoreactive T-lymphocytes. By using multimer technology to study self-reactive cells present in autoimmune patients and control individuals, a very broad range of autoreactive potential has been identified.
Collapse
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| |
Collapse
|