1
|
Lambert JM, Srour N, Delpy L. The Yin and Yang of RNA surveillance in B lymphocytes and antibody-secreting plasma cells. BMB Rep 2019. [PMID: 31619318 PMCID: PMC6941761 DOI: 10.5483/bmbrep.2019.52.12.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The random V(D)J recombination process ensures the diversity of the primary immunoglobulin (Ig) repertoire. In two thirds of cases, imprecise recombination between variable (V), diversity (D), and joining (J) segments induces a frameshift in the open reading frame that leads to the appearance of premature termination codons (PTCs). Thus, many B lineage cells harbour biallelic V(D)J-rearrangements of Ig heavy or light chain genes, with a productively-recombined allele encoding the functional Ig chain and a nonproductive allele potentially encoding truncated Ig polypeptides. Since the pattern of Ig gene expression is mostly biallelic, transcription initiated from nonproductive Ig alleles generates considerable amounts of primary transcripts with out-of-frame V(D)J junctions. How RNA surveillance pathways cooperate to control the noise from nonproductive Ig genes will be discussed in this review, focusing on the benefits of nonsense-mediated mRNA decay (NMD) activation during B-cell development and detrimental effects of nonsense-associated altered splicing (NAS) in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- Jean-Marie Lambert
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Nivine Srour
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Laurent Delpy
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| |
Collapse
|
2
|
Ashi MO, Srour N, Lambert JM, Marchalot A, Martin O, Le Noir S, Pinaud E, Ayala MV, Sirac C, Saulière J, Moreaux J, Cogné M, Delpy L. Physiological and druggable skipping of immunoglobulin variable exons in plasma cells. Cell Mol Immunol 2018; 16:810-819. [PMID: 30127381 DOI: 10.1038/s41423-018-0160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
The error-prone V(D)J recombination process generates considerable amounts of nonproductive immunoglobulin (Ig) pre-mRNAs. We recently demonstrated that aberrant Ig chains lacking variable (V) domains can be produced after nonsense-associated altered splicing (NAS) events. Remarkably, the expression of these truncated Ig polypeptides heightens endoplasmic reticulum stress and shortens plasma cell (PC) lifespan. Many questions remain regarding the molecular mechanisms underlying this new truncated Ig exclusion (TIE-) checkpoint and its restriction to the ultimate stage of B-cell differentiation. To address these issues, we evaluated the extent of NAS of Ig pre-mRNAs using an Ig heavy chain (IgH) knock-in model that allows for uncoupling of V exon skipping from TIE-induced apoptosis. We found high levels of V exon skipping in PCs compared with B cells, and this skipping was correlated with a biallelic boost in IgH transcription during PC differentiation. Chromatin analysis further revealed that the skipped V exon turned into a pseudo-intron. Finally, we showed that hypertranscription of Ig genes facilitated V exon skipping upon passive administration of splice-switching antisense oligonucleotides (ASOs). Thus, V exon skipping is coupled to transcription and increases as PC differentiation proceeds, likely explaining the late occurrence of the TIE-checkpoint and opening new avenues for ASO-mediated strategies in PC disorders.
Collapse
Affiliation(s)
- Mohamad Omar Ashi
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Nivine Srour
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Jean-Marie Lambert
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Anne Marchalot
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Ophélie Martin
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Sandrine Le Noir
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Eric Pinaud
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Maria Victoria Ayala
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Christophe Sirac
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Jérôme Saulière
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Jérôme Moreaux
- Institute of Human Genetics, CNRS-UM UMR9002, Department of Biological Haematology, CHU Montpellier, University of Montpellier, UFR Medecine, Montpellier, France
| | - Michel Cogné
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Université de Limoges, Limoges, France
| | - Laurent Delpy
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, INSERM U1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France.
| |
Collapse
|
3
|
Pichugin A, Iarovaia OV, Gavrilov A, Sklyar I, Barinova N, Barinov A, Ivashkin E, Caron G, Aoufouchi S, Razin SV, Fest T, Lipinski M, Vassetzky YS. The IGH locus relocalizes to a "recombination compartment" in the perinucleolar region of differentiating B-lymphocytes. Oncotarget 2018; 8:40079-40089. [PMID: 28445143 PMCID: PMC5522243 DOI: 10.18632/oncotarget.16941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
The immunoglobulin heavy chain (IGH) gene loci are subject to specific recombination events during B-cell differentiation including somatic hypermutation and class switch recombination which mark the end of immunoglobulin gene maturation in germinal centers of secondary lymph nodes. These two events rely on the activity of activation-induced cytidine deaminase (AID) which requires DNA double strand breaks be created, a potential danger to the cell. Applying 3D-fluorescence in situ hybridization coupled with immunofluorescence staining to a previously described experimental system recapitulating normal B-cell differentiation ex vivo, we have kinetically analyzed the radial positioning of the two IGH gene loci as well as their proximity with the nucleolus, heterochromatin and γH2AX foci. Our observations are consistent with the proposal that these IGH gene rearrangements take place in a specific perinucleolar “recombination compartment” where AID could be sequestered thus limiting the extent of its potentially deleterious off-target effects.
Collapse
Affiliation(s)
- Andrey Pichugin
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga V Iarovaia
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Alexey Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Ilya Sklyar
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Natalja Barinova
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Aleksandr Barinov
- LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Evgeny Ivashkin
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Department of Experimental Neurocytology, Research Center of Neurology, Branch of Brain Research, Moscow, Russia
| | - Gersende Caron
- INSERM U1236, CHU de Rennes, Université Rennes 1, Rennes, France
| | - Said Aoufouchi
- UMR8200 CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Moscow State University, Moscow, Russia
| | - Thierry Fest
- INSERM U1236, CHU de Rennes, Université Rennes 1, Rennes, France
| | - Marc Lipinski
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France
| | - Yegor S Vassetzky
- UMR8126, CNRS, Université Paris Sud Paris Saclay, Institut Gustave Roussy, Villejuif, France.,LIA 1066, Laboratoire Franco-Russe de Recherche en Oncologie, Villejuif, France.,Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Iarovaia OV, Ioudinkova ES, Razin SV, Vassetzky YS. Role of the Nucleolus in Rearrangements of the IGH Locus. Mol Biol 2018. [DOI: 10.1134/s0026893317050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Le Noir S, Laffleur B, Carrion C, Garot A, Lecardeur S, Pinaud E, Denizot Y, Skok J, Cogné M. The IgH locus 3' cis-regulatory super-enhancer co-opts AID for allelic transvection. Oncotarget 2017; 8:12929-12940. [PMID: 28088785 PMCID: PMC5355067 DOI: 10.18632/oncotarget.14585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin heavy chain (IgH) alleles have ambivalent relationships: they feature both allelic exclusion, ensuring monoallelic expression of a single immunoglobulin (Ig) allele, and frequent inter-allelic class-switch recombination (CSR) reassembling genes from both alleles. The IgH locus 3' regulatory region (3'RR) includes several transcriptional cis-enhancers promoting activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) and CSR, and altogether behaves as a strong super-enhancer. It can also promote deregulated expression of translocated oncogenes during lymphomagenesis. Besides these rare, illegitimate and pathogenic interactions, we now show that under physiological conditions, the 3'RR super-enhancer supports not only legitimate cis- , but also trans-recruitment of AID, contributing to IgH inter-allelic proximity and enabling the super-enhancer on one allele to stimulate biallelic SHM and CSR. Such inter-allelic activating interactions define transvection, a phenomenon well-known in drosophila but rarely observed in mammalian cells, now appearing as a unique feature of the IgH 3'RR super-enhancer.
Collapse
Affiliation(s)
- Sandrine Le Noir
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Brice Laffleur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Claire Carrion
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Armand Garot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Sandrine Lecardeur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Eric Pinaud
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Yves Denizot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Jane Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michel Cogné
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| |
Collapse
|
6
|
Laffleur B, Basu U, Lim J. RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. J Mol Biol 2017; 429:3230-3241. [PMID: 28069372 DOI: 10.1016/j.jmb.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
The eukaryotic RNA exosome is a well-conserved protein complex with ribonuclease activity implicated in RNA metabolism. Various families of non-coding RNAs have been identified as substrates of the complex, underscoring its role as a non-coding RNA processing/degradation unit. However, the role of RNA exosome and its RNA processing activity on DNA mutagenesis/alteration events have not been investigated until recently. B lymphocytes use two DNA alteration mechanisms, class switch recombination (CSR) and somatic hypermutation (SHM), to re-engineer their antibody gene expressing loci until a tailored antibody gene for a specific antigen is satisfactorily generated. CSR and SHM require the essential activity of the DNA activation-induced cytidine deaminase (AID). Causing collateral damage to the B-cell genome during CSR and SHM, AID induces unwanted (and sometimes oncogenic) mutations at numerous non-immunoglobulin gene sequences. Recent studies have revealed that AID's DNA mutator activity is regulated by the RNA exosome complex, thus providing an example of a mechanism that relates DNA mutagenesis to RNA processing. Here, we review the emergent functions of RNA exosome during CSR, SHM, and other chromosomal alterations in B cells, and discuss implications relevant to mechanisms that maintain B-cell genomic integrity.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Srour N, Chemin G, Tinguely A, Ashi MO, Oruc Z, Péron S, Sirac C, Cogné M, Delpy L. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 2015; 213:109-22. [PMID: 26666261 PMCID: PMC4710196 DOI: 10.1084/jem.20131511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
Aberrantly rearranged immunoglobulin (Ig) alleles are frequent. They are usually considered sterile and innocuous as a result of nonsense-mediated mRNA decay. However, alternative splicing can yield internally deleted proteins from such nonproductively V(D)J-rearranged loci. We show that nonsense codons from variable (V) Igκ exons promote exon-skipping and synthesis of V domain-less κ light chains (ΔV-κLCs). Unexpectedly, such ΔV-κLCs inhibit plasma cell (PC) differentiation. Accordingly, in wild-type mice, rearrangements encoding ΔV-κLCs are rare in PCs, but frequent in B cells. Likewise, enforcing expression of ΔV-κLCs impaired PC differentiation and antibody responses without disturbing germinal center reactions. In addition, PCs expressing ΔV-κLCs synthesize low levels of Ig and are mostly found among short-lived plasmablasts. ΔV-κLCs have intrinsic toxic effects in PCs unrelated to Ig assembly, but mediated by ER stress-associated apoptosis, making PCs producing ΔV-κLCs highly sensitive to proteasome inhibitors. Altogether, these findings demonstrate a quality control checkpoint blunting terminal PC differentiation by eliminating those cells expressing nonfunctionally rearranged Igκ alleles. This truncated Ig exclusion (TIE) checkpoint ablates PC clones with ΔV-κLCs production and exacerbated ER stress response. The TIE checkpoint thus mediates selection of long-lived PCs with limited ER stress supporting high Ig secretion, but with a cost in terms of antigen-independent narrowing of the repertoire.
Collapse
Affiliation(s)
- Nivine Srour
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Guillaume Chemin
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Aurélien Tinguely
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Mohamad Omar Ashi
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Zéliha Oruc
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Sophie Péron
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Christophe Sirac
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France Institut Universitaire de France, Université de Limoges, 87000 Limoges, France
| | - Laurent Delpy
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
8
|
Complete cis Exclusion upon Duplication of the Eμ Enhancer at the Immunoglobulin Heavy Chain Locus. Mol Cell Biol 2015; 35:2231-41. [PMID: 25896912 DOI: 10.1128/mcb.00294-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Developing lymphocytes somatically diversify their antigen-receptor loci through V(D)J recombination. The process is associated with allelic exclusion, which results in monoallelic expression of an antigen receptor locus. Various cis-regulatory elements control V(D)J recombination in a developmentally regulated manner, but their role in allelic exclusion is still unclear. At the immunoglobulin heavy chain locus (IgH), the Eμ enhancer plays a critical role in V(D)J recombination. We generated a mouse line with a replacement mutation in the constant region of the locus that duplicates the Eμ enhancer and allows premature expression of the γ3 heavy chain. Strikingly, IgM expression was completely and specifically excluded in cis from the mutant allele. This cis exclusion recapitulated the main features of allelic exclusion, including differential exclusion of variable genes. Notably, sense and antisense transcription within the distal variable domain and distal V(H)-DJ(H) recombination were inhibited. cis exclusion was established and stably maintained despite an active endogenous Eμ enhancer. The data reveal the importance of the dynamic, developmental stage-dependent interplay between IgH locus enhancers and signaling in the induction and maintenance of allelic exclusion.
Collapse
|
9
|
Hansen TØ, Lange AB, Barington T. Sterile DJH rearrangements reveal that distance between gene segments on the human Ig H chain locus influences their ability to rearrange. THE JOURNAL OF IMMUNOLOGY 2015; 194:973-82. [PMID: 25556246 DOI: 10.4049/jimmunol.1401443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rearrangement of the Ig locus occurs in two steps. First, a JH gene is rearranged to a D gene followed by a VH gene rearranging to the DJH rearrangement. By next generation sequencing, we analyzed 9969 unique DJH rearrangements and 5919 unique VHDJH rearrangements obtained from peripheral blood B cells from 110 healthy adult donors. We found that DJH rearrangements and nonproductive VHDJH rearrangements share many features but differ significantly in their use of D genes and propensity for somatic hypermutation. In D to JH gene rearrangements, the D genes proximal to the JH locus are used more frequently than JH locus distal D genes, whereas VH locus proximal D genes were observed more frequently in nonproductive VHDJH rearrangements. We further demonstrate that the distance between VH, D, and JH gene segments influence their ability to rearrange within the human Ig locus.
Collapse
Affiliation(s)
- Tina Østergaard Hansen
- Department of Clinical Biochemistry, Roskilde University Hospital, DK-5000 Odense, Denmark
| | - Anders Blaabjerg Lange
- Maersk Mc-Kinney Moller Institute, Faculty of Sciences, University of Southern Denmark, DK-5000 Odense, Denmark; and
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense, Denmark
| |
Collapse
|
10
|
Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination. Genes Immun 2014; 15:341-6. [PMID: 24848929 DOI: 10.1038/gene.2014.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/23/2022]
Abstract
Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.
Collapse
|
11
|
Holwerda SJB, van de Werken HJG, Ribeiro de Almeida C, Bergen IM, de Bruijn MJW, Verstegen MJAM, Simonis M, Splinter E, Wijchers PJ, Hendriks RW, de Laat W. Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Res 2013; 41:6905-16. [PMID: 23748562 PMCID: PMC3737562 DOI: 10.1093/nar/gkt491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element.
Collapse
Affiliation(s)
- Sjoerd J B Holwerda
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cross talk between immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. Mol Cell Biol 2011; 32:107-17. [PMID: 22037763 DOI: 10.1128/mcb.06138-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin (Ig) genes naturally acquire frequent premature termination codons during the error-prone V(D)J recombination process. Although B cell differentiation is linked to the expression of productive Ig alleles, the transcriptional status of nonfunctionally recombined alleles remains unclear. Here, we tracked transcription and posttranscriptional regulation for both Ig heavy-chain (IgH) alleles in mice carrying a nonfunctional knock-in allele. We show that productively and nonproductively VDJ-rearranged alleles are transcribed throughout B cell development, carry similar active chromatin marks, and even display equivalent RNA polymerase II (RNAPII) loading after B cell stimulation. Hence, these results challenge the idea that the repositioning of one allele to heterochromatin could promote the silencing of nonproductive alleles. Interestingly, the efficiency of downstream RNA surveillance mechanisms fluctuates according to B cell activation and terminal differentiation: unspliced nonfunctional transcripts accumulate in primary B cells, while B cell activation promotes IgH transcription, RNA splicing, and nonsense-mediated mRNA decay (NMD). Altogether, IgH transcription and RNA splicing rates determine by which RNA surveillance mechanisms a B cell can get rid of nonproductive IgH mRNAs.
Collapse
|
13
|
Arons E, Roth L, Sapolsky J, Suntum T, Stetler-Stevenson M, Kreitman RJ. Evidence of canonical somatic hypermutation in hairy cell leukemia. Blood 2011; 117:4844-51. [PMID: 21368287 PMCID: PMC3100693 DOI: 10.1182/blood-2010-11-316737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/12/2011] [Indexed: 12/12/2022] Open
Abstract
To compare hairy cell leukemia (HCL) with chronic lymphocytic leukemia (CLL) and normal B cells with respect to their B-cell receptors, somatic hypermutation (SHM) features in HCL were examined in a series of 130 immunoglobulin gene heavy chain rearrangements, including 102 from 100 classic (HCLc) and 28 from 26 variant (HCLv) patients. The frequency of unmutated rearrangements in HCLc was much lower than that in HCLv (17% vs 54%, P < .001) or historically in CLL (17% vs 46%, P < .001), but HCLv and CLL were similar (P = .45). As previously reported for CLL, evidence of canonical SHM was observed in HCLc rearrangements, including: (1) a higher ratio of replacement to silent mutations in the complementarity determining regions than in the framework regions (2.83 vs 1.41, P < .001), (2) higher transition to transversion ratio than would be expected if mutations were random (1.49 vs 0.5, P < .001), and (3) higher than expected concentration of mutations within RGYW hot spots (13.92% vs 3.33%, P < .001). HCLv met these 3 criteria of canonical SHM to a lesser extent. These data suggest that, whereas HCLc cells may recognize antigen-like CLL and normal B cells before malignant transformation, HCLv cells from some patients may originate differently, possibly without undergoing antigen recognition.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- Base Pairing
- Complementarity Determining Regions/genetics
- DNA, Neoplasm/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Variable Region/genetics
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Somatic Hypermutation, Immunoglobulin
Collapse
Affiliation(s)
- Evgeny Arons
- Laboratories of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chemin G, Tinguely A, Sirac C, Lechouane F, Duchez S, Cogné M, Delpy L. Multiple RNA Surveillance Mechanisms Cooperate to Reduce the Amount of Nonfunctional Igκ Transcripts. THE JOURNAL OF IMMUNOLOGY 2010; 184:5009-17. [DOI: 10.4049/jimmunol.0902949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Daly J, Licence S, Nanou A, Morgan G, Mårtensson IL. Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO J 2007; 26:4273-82. [PMID: 17805345 PMCID: PMC2230841 DOI: 10.1038/sj.emboj.7601846] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/08/2007] [Indexed: 01/18/2023] Open
Abstract
The process of allelic exclusion ensures that each B cell expresses a B-cell receptor encoded by only one of its Ig heavy (IgH) and light (IgL) chain alleles. Although its precise mechanism is unknown, recruitment of the nonfunctional IgH allele to centromeric heterochromatin correlates with the establishment of allelic exclusion. Similarly, recruitment in activated splenic B cells correlates with cell division. In the latter, the recruited IgH allele was reported to be transcriptionally silent. However, it is not known whether monoallelic recruitment during establishment of allelic exclusion correlates with transcriptional silencing. To investigate this, we assessed the transcriptional status of both IgH alleles in single primary cells over the course of B-cell development, using RNA fluorescence in situ hybridization. Before allelic exclusion both alleles are transcribed. Thereafter, in pre-BII and subsequent developmental stages both functional and nonfunctional VDJ- and DJ-transcription is observed. Thus, after the establishment of IgH allelic exclusion, monoallelic recruitment to heterochromatin does not silence VDJ- or DJ-transcription, but serves another purpose.
Collapse
Affiliation(s)
- Janssen Daly
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Steve Licence
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Aikaterini Nanou
- Chromatin and Gene expression, The Babraham Institute, Cambridge, UK
| | - Geoff Morgan
- Flow Cytometry Facility, The Babraham Institute, Cambridge, UK
| | - Inga-Lill Mårtensson
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, The Babraham Research Campus, Cambridge CB2 4AT, UK. Tel.: +44 1223 496469; Fax: +44 1223 496023; E-mail:
| |
Collapse
|
16
|
|
17
|
Ohm-Laursen L, Barington T. Analysis of 6912 unselected somatic hypermutations in human VDJ rearrangements reveals lack of strand specificity and correlation between phase II substitution rates and distance to the nearest 3' activation-induced cytidine deaminase target. THE JOURNAL OF IMMUNOLOGY 2007; 178:4322-34. [PMID: 17371989 DOI: 10.4049/jimmunol.178.7.4322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The initial event of somatic hypermutation (SHM) is the deamination of cytidine residues by activation-induced cytidine deaminase (AID). Deamination is followed by the replication over uracil and/or different error-prone repair events. We sequenced 659 nonproductive human IgH rearrangements (IGHV3-23*01) from blood B lymphocytes enriched for CD27-positive memory cells. Analyses of 6,912 unique, unselected substitutions showed that in vivo hot and cold spots for the SHM of C and G residues corresponded closely to the target preferences reported for AID in vitro. A detailed analysis of all possible four-nucleotide motifs present on both strands of the V(H) gene showed significant correlations between the substitution frequencies in reverse complementary motifs, suggesting that the SHM machinery targets both strands equally well. An analysis of individual J(H) and D gene segments showed that the substitution frequencies in the individual motifs were comparable to the frequencies found in the V(H) gene. Interestingly, J(H)6-carrying sequences were less likely to undergo SHM (average 15.2 substitutions per V(H) region) than sequences using J(H)4 (18.1 substitutions, p = 0.03). We also found that the substitution rates in G and T residues correlated inversely with the distance to the nearest 3' WRC AID hot spot motif on both the nontranscribed and transcribed strands. This suggests that phase II SHM takes place 5' of the initial AID deamination target and primarily targets T and G residues or, alternatively, the corresponding A and C residues on the opposite strand.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense C, Denmark
| | | |
Collapse
|
18
|
Xiao Z, Ray M, Jiang C, Clark AB, Rogozin IB, Diaz M. Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias. Mol Immunol 2007; 44:2659-66. [PMID: 17240451 PMCID: PMC1868521 DOI: 10.1016/j.molimm.2006.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/10/2006] [Indexed: 12/14/2022]
Abstract
The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction for AID delivery which is then masked by the mechanism that introduces A:T mutations. Additionally, we asked if any of the known components of the A:T mutation machinery underscore the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels of wild-type, full-length DNA polymerase eta. In addition, Ramos cells have high levels of uracil DNA glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional unidentified factors are required for full spectrum hypermutation in vivo.
Collapse
Affiliation(s)
- Zheng Xiao
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Madhumita Ray
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Chuancang Jiang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Alan B. Clark
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Libray of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
- * Corresponding author: , Phone Number: 919-541-4740, Fax: 919-541-7593
| |
Collapse
|
19
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
20
|
Ohm-Laursen L, Larsen SR, Barington T. Identification of two new alleles, IGHV3-23*04 and IGHJ6*04, and the complete sequence of the IGHV3-h pseudogene in the human immunoglobulin locus and their prevalences in Danish Caucasians. Immunogenetics 2005; 57:621-7. [PMID: 16133446 DOI: 10.1007/s00251-005-0035-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 07/26/2005] [Indexed: 11/29/2022]
Abstract
More than 100 variable (V), 27 diversity (D), and six joining (J) genes are encoded in the human heavy chain locus, and many of these genes exists in different allelic forms. The number of genes and the allelic differences help to create diversity in the immunoglobulin receptors, a key feature of the adaptive immune system. We here report the identification of two novel and seemingly functional alleles of human heavy chain genes. The variable IGHV3-23*04 allele is found with an allele frequency of 0.21 amongst Danish Caucasians, whereas the novel joining IGHJ6*04 allele is rare (allele frequency 0.02). We also report the full sequence of IGHV3-h. The gene exists in two allelic forms but is only found in 58% of the Danish Caucasians studied. The methionine translation initiation codon is mutated, ATG-->AAG, and we therefore propose that the gene is a pseudogene incapable of being translated.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Department of Clinical Immunology, Odense University Hospital, 5000, Odense C, Denmark
| | | | | |
Collapse
|
21
|
Abstract
Lymphocytes are characterised by monoclonal expression of antigen receptors. This is achieved by silencing of one of two homologous antigen receptor alleles, a process known as allelic exclusion. This process is regulated both before and after V(D)J recombination, by a variety of mechanisms. These include nuclear localisation, changes in chromatin structure and histone modifications, non-coding sense and antisense RNA transcription, epigenetic alterations at the DNA level, feedback signalling from expressed alleles, locus contraction and decontraction, recruitment to heterochromatin. This review will focus on recent advances in the immunoglobulin heavy and kappa light chain loci. The current picture is of a complex, temporally ordered sequence of events, in which these loci share many contributory mechanisms, but clear and intriguing differences are emerging.
Collapse
Affiliation(s)
- Anne E Corcoran
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB24AT, UK.
| |
Collapse
|