1
|
Corre B, El Janati Elidrissi Y, Duval J, Quilhot M, Lefebvre G, Ecomard S, Lemaître F, Garcia Z, Bohineust A, Russo E, Bousso P. Integration of intermittent calcium signals in T cells revealed by temporally patterned optogenetics. iScience 2023; 26:106068. [PMID: 36824271 PMCID: PMC9942117 DOI: 10.1016/j.isci.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO). We found that a single round of calcium elevation was insufficient to promote nuclear factor of activated T cells (NFAT) activity and cytokine production in a T cell line. However, robust responses were detected after a second identical stimulation even when signals were separated by several hours. Our results suggest the existence of a biochemical memory of calcium signals in T cells that favors signal integration during temporally separated contacts and promote cytokine production. As illustrated here, TEMPO is a versatile approach for dissecting temporal integration in defined signaling pathways.
Collapse
Affiliation(s)
- Béatrice Corre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Yassine El Janati Elidrissi
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Justine Duval
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Mailys Quilhot
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Gaëtan Lefebvre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Solène Ecomard
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Armelle Bohineust
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Erica Russo
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France,Corresponding author
| |
Collapse
|
2
|
Heckler M, Ali LR, Clancy-Thompson E, Qiang L, Ventre KS, Lenehan P, Roehle K, Luoma A, Boelaars K, Peters V, McCreary J, Boschert T, Wang ES, Suo S, Marangoni F, Mempel TR, Long HW, Wucherpfennig KW, Dougan M, Gray NS, Yuan GC, Goel S, Tolaney SM, Dougan SK. Inhibition of CDK4/6 Promotes CD8 T-cell Memory Formation. Cancer Discov 2021; 11:2564-2581. [PMID: 33941591 PMCID: PMC8487897 DOI: 10.1158/2159-8290.cd-20-1540] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Katherine S Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Adrienne Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Kelly Boelaars
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vera Peters
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Julia McCreary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Program in Chemical Biology, Harvard Medical School, Boston, Massachusetts
| | - Tamara Boschert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric S Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shengbao Suo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francesco Marangoni
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Thorsten R Mempel
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Genetics and Genomic Sciences, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sara M Tolaney
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Harris MJ, Fuyal M, James JR. Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor. Mol Syst Biol 2021; 17:e10091. [PMID: 33988299 PMCID: PMC8120804 DOI: 10.15252/msb.202010091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response, which is hypothesized to depend on T cells combining stimuli from multiple antigen-presenting cell interactions into a more potent response. To quantify the capacity for T cells to accomplish this, we have developed an antigen receptor that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling. We observe limited persistence within the T-cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 min, and directly show sustained proximal receptor signaling is required to maintain gene transcription. T cells thus primarily accumulate the outputs of gene expression rather than integrate discrete intracellular signals. Engineering optical control in a clinically relevant chimeric antigen receptor (CAR), we show that this limited signal persistence can be exploited to increase CAR-T cell activation threefold using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.
Collapse
Affiliation(s)
- Michael J Harris
- Molecular Immunity UnitDepartment of MedicineMRC‐LMBUniversity of CambridgeCambridgeUK
| | - Muna Fuyal
- Division of Biomedical SciencesWarwick Medical SchoolUniversity of WarwickCoventryUK
| | - John R James
- Molecular Immunity UnitDepartment of MedicineMRC‐LMBUniversity of CambridgeCambridgeUK
- Division of Biomedical SciencesWarwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
4
|
Abstract
T cells can become activated in lymph nodes following a diverse set of interactions with antigen-presenting cells. These cellular contacts range from short and dynamic to stable and long-lasting interactions, termed kinapses and synapses, respectively. Here, we describe a methodology to generate naïve T cells expressing a fluorescent probe of interest through the generation of bone marrow chimeras and to image T cell dynamics using intravital two-photon microscopy. In these settings, the formation of kinapses and synapses can be triggered by the administration of low and high affinity peptides, respectively. Finally, 3D cell tracking can help classify distinct T cell behaviors. These approaches should offer new possibilities for dissecting the process of T cell activation in vivo.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France
- INSERM U1223, 75015, Paris, France
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015, Paris, France.
- INSERM U1223, 75015, Paris, France.
| |
Collapse
|
5
|
Moreau HD, Bogle G, Bousso P. A virtual lymph node model to dissect the requirements for T-cell activation by synapses and kinapses. Immunol Cell Biol 2016; 94:680-8. [PMID: 27089942 PMCID: PMC4980574 DOI: 10.1038/icb.2016.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
Abstract
The initiation of T-cell responses in lymph nodes requires T cells to integrate signals delivered by dendritic cells (DCs) during long-lasting contacts (synapses) or more transient interactions (kinapses). However, it remains extremely challenging to understand how a specific sequence of contacts established by T cells ultimately dictates T-cell fate. Here, we have coupled a computational model of T-cell migration and interactions with DCs with a real-time, flow cytometry-like representation of T-cell activation. In this model, low-affinity peptides trigger T-cell proliferation through kinapses but we show that this process is only effective under conditions of high DC densities and prolonged antigen availability. By contrast, high-affinity peptides favor synapse formation and a vigorous proliferation under a wide range of antigen presentation conditions. In line with the predictions, decreasing the DC density in vivo selectively abolished proliferation induced by the low-affinity peptide. Finally, our results suggest that T cells possess a biochemical memory of previous stimulations of at least 1–2 days. We propose that the stability of T-cell–DC interactions, apart from their signaling potency, profoundly influences the robustness of T-cell activation. By offering the ability to control parameters that are difficult to manipulate experimentally, the virtual lymph node model provides new possibilities to tackle the fundamental mechanisms that regulate T-cell responses elicited by infections or vaccines.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France.,INSERM U1223, Paris, France
| | - Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France.,INSERM U1223, Paris, France
| |
Collapse
|
6
|
Moreau HD, Bousso P. Visualizing how T cells collect activation signals in vivo. Curr Opin Immunol 2013; 26:56-62. [PMID: 24556401 DOI: 10.1016/j.coi.2013.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022]
Abstract
A decade ago the first movies depicting T cell behavior in vivo with the help of two-photon microscopy were generated. These initial experiments revealed that T cells migrate rapidly and randomly in secondary lymphoid organs at steady state and profoundly alter their behavior during antigen recognition, establishing both transient and stable contacts with antigen-presenting cells (APCs). Since then, in vivo imaging has continuously improved our understanding of T cell activation. In particular, recent studies uncovered how T cells may be guided in their search for the best APCs. Additionally, the development of more sophisticated fluorescent tools has permitted not only to visualize T cell-APC contacts but also to probe their functional impact on T cell activation. These recent progresses are providing new insights into how T cells sense antigen, collect activation signals during distinct types of interaction and integrate information over successive encounters.
Collapse
Affiliation(s)
- Hélène D Moreau
- Dynamics of Immune Responses Unit, Institut Pasteur, 75015 Paris, France; INSERM U668, 75015 Paris, France; Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr Roux, F-75015 Paris, France.
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, 75015 Paris, France; INSERM U668, 75015 Paris, France.
| |
Collapse
|
7
|
Abstract
Previous studies revealed the existence of foreign antigen-specific memory phenotype CD8 T cells in unimmunized mice. Considerable evidence suggests this population, termed "virtual memory" (VM) CD8 T cells, arise via physiological homeostatic mechanisms. However, the antigen-specific function of VM cells is poorly characterized, and hence their potential contribution to immune responses against pathogens is unclear. Here we show that naturally occurring, polyclonal VM cells have unique functional properties, distinct from either naïve or antigen-primed memory CD8 T cells. In striking contrast to conventional memory cells, VM cells showed poor T cell receptor-induced IFN-γ synthesis and preferentially differentiated into central memory phenotype cells after priming. Importantly, VM cells showed efficient control of Listeria monocytogenes infection, indicating memory-like capacity to eliminate certain pathogens. These data suggest naturally arising VM cells display unique functional traits, allowing them to form a bridge between the innate and adaptive phase of a response to pathogens.
Collapse
|
8
|
Giardino Torchia ML, Conze DB, Jankovic D, Ashwell JD. Balance between NF-κB p100 and p52 regulates T cell costimulation dependence. THE JOURNAL OF IMMUNOLOGY 2012; 190:549-55. [PMID: 23248260 DOI: 10.4049/jimmunol.1201697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
c-IAP1 and c-IAP2 are ubiquitin protein ligases (E3s) that repress noncanonical NF-κB activation. We have created mice that bear a mutation in c-IAP2 that inactivates its E3 activity and interferes, in a dominant-negative fashion, with c-IAP1 E3 activity (c-IAP2(H570A)). The immune response of these animals was explored by infecting them with the Th1-inducing parasite Toxoplasma gondii. Surprisingly, c-IAP2(H570A) mice succumbed because of T cell production of high levels of proinflammatory cytokines. Unlike naive wild-type (WT) cells, which require signals generated by the TCR and costimulatory receptors to become fully activated, naive c-IAP2(H570A) T cells proliferated and produced high levels of IL-2 and IFN-γ to stimulation via TCR alone. c-IAP2(H570A) T cells had constitutive noncanonical NF-κB activation, and IκB kinase inhibition reduced their proliferation to anti-TCR alone to WT levels but had no effect when costimulation via CD28 was provided. Notably, T cells from nfkb2(-/-) mice, which cannot generate the p52 component of noncanonical NF-κB, were also costimulation independent, consistent with the negative role of this unprocessed protein in canonical NF-κB activation. Whereas T cells from nfkb2(+/-) mice behaved like WT, coexpression of a single copy of c-IAP2(H570A) resulted in cleavage of p100, upregulation of p52, and T cell costimulation independence. Thus, p100 represses and p52 promotes costimulation, and the ratio regulates T cell dependence on costimulatory signals.
Collapse
|
9
|
A role for the immediate early gene product c-fos in imprinting T cells with short-term memory for signal summation. PLoS One 2011; 6:e18916. [PMID: 21552553 PMCID: PMC3084237 DOI: 10.1371/journal.pone.0018916] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
T cells often make sequential contacts with multiple DCs in the lymph nodes and are likely to be equipped with mechanisms that allow them to sum up the successive signals received. We found that a period of stimulation as short as two hours could imprint on a T cell a “biochemical memory” of that activation signal that persisted for several hours. This was evidenced by more rapid induction of activation markers and earlier commitment to proliferation upon subsequent stimulation, even when that secondary stimulation occurred hours later. Upregulation of the immediate early gene product c-fos, a component of the AP-1 transcription factor, was maximal by 1–2 hours of stimulation, and protein levels remained elevated for several hours after stimulus withdrawal. Moreover, phosphorylated forms of c-fos that are stable and transcriptionally active persisted for a least a day. Upon brief antigenic stimulation in vivo, we also observed a rapid upregulation of c-fos that could be boosted by subsequent stimulation. Accumulation of phosphorylated c-fos may therefore serve as a biochemical fingerprint of previous suboptimal stimulation, leaving the T cell poised to rapidly resume its activation program upon its next encounter with an antigen-bearing DC.
Collapse
|
10
|
Chung J, Kubota H, Ozaki YI, Uda S, Kuroda S. Timing-dependent actions of NGF required for cell differentiation. PLoS One 2010; 5:e9011. [PMID: 20126402 PMCID: PMC2814856 DOI: 10.1371/journal.pone.0009011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 01/06/2010] [Indexed: 01/25/2023] Open
Abstract
Background Continuous NGF stimulation induces PC12 cell differentiation. However, why continuous NGF stimulation is required for differentiation is unclear. In this study, we investigated the underlying mechanisms of the timing-dependent requirement of NGF action for cell differentiation. Methodology/Principal Findings To address the timing-dependency of the NGF action, we performed a discontinuous stimulation assay consisting of a first transient stimulation followed by an interval and then a second sustained stimulation and quantified the neurite extension level. Consequently, we observed a timing-dependent action of NGF on cell differentiation, and discontinuous NGF stimulation similarly induced differentiation. The first stimulation did not induce neurite extension, whereas the second stimulation induced fast neurite extension; therefore, the first stimulation is likely required as a prerequisite condition. These observations indicate that the action of NGF can be divided into two processes: an initial stimulation-driven latent process and a second stimulation-driven extension process. The latent process appears to require the activities of ERK and transcription, but not PI3K, whereas the extension-process requires the activities of ERK and PI3K, but not transcription. We also found that during the first stimulation, the activity of NGF can be replaced by PACAP, but not by insulin, EGF, bFGF or forskolin; during the second stimulation, however, the activity of NGF cannot be replaced by any of these stimulants. These findings allowed us to identify potential genes specifically involved in the latent process, rather than in other processes, using a microarray. Conclusions/Significance These results demonstrate that NGF induces the differentiation of PC12 cells via mechanically distinct processes: an ERK-driven and transcription-dependent latent process, and an ERK- and PI3K-driven and transcription-independent extension process.
Collapse
Affiliation(s)
- Jaehoon Chung
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kubota
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Yu-ichi Ozaki
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Shinsuke Uda
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
| | - Shinya Kuroda
- Department of Biophysics and Biochemistry, Graduate School of Science, CREST, Japan Science and Technology Agency, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Allam A, Conze DB, Giardino Torchia ML, Munitic I, Yagita H, Sowell RT, Marzo AL, Ashwell JD. The CD8+ memory T-cell state of readiness is actively maintained and reversible. Blood 2009; 114:2121-30. [PMID: 19617575 PMCID: PMC2744573 DOI: 10.1182/blood-2009-05-220087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022] Open
Abstract
The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G(1) to the G(0) cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-gamma production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase-dependent manner. Consistent with these results, maintenance of G(1) in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance.
Collapse
Affiliation(s)
- Atef Allam
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bancos S, Cao Q, Bowers WJ, Crispe IN. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4. Cell Immunol 2009; 257:44-54. [PMID: 19306992 PMCID: PMC2727064 DOI: 10.1016/j.cellimm.2009.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/19/2023]
Abstract
The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.
Collapse
Affiliation(s)
- Simona Bancos
- David H Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642USA.
| | | | | | | |
Collapse
|
13
|
Locasale JW. Computational investigations into the origins of short-term biochemical memory in T cell activation. PLoS One 2007; 2:e627. [PMID: 17637843 PMCID: PMC1905942 DOI: 10.1371/journal.pone.0000627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/17/2007] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that T cells can integrate signals between interrupted encounters with Antigen Presenting Cells (APCs) in such a way that the process of signal integration exhibits a form of memory. Here, we carry out a computational study using a simple mathematical model of T cell activation to investigate the ramifications of interrupted T cell-APC contacts on signal integration. We consider several mechanisms of how signal integration at these time scales may be achieved and conclude that feedback control of immediate early gene products (IEGs) appears to be a highly plausible mechanism that allows for effective signal integration and cytokine production from multiple exposures to APCs. Analysis of these computer simulations provides an experimental roadmap involving several testable predictions.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| |
Collapse
|
14
|
Garcia Z, Pradelli E, Celli S, Beuneu H, Simon A, Bousso P. Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc Natl Acad Sci U S A 2007; 104:4553-8. [PMID: 17360562 PMCID: PMC1838639 DOI: 10.1073/pnas.0610019104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The regulation of T cell-dendritic cell (DC) contacts during clonal expansion is poorly defined. Although optimal CD4 T cell responses require prolonged exposure to antigen (Ag), it is believed that stable T cell-DC interactions occur only during the first day of the activation process. Here we show that recently activated CD4 T cells are in fact fully competent for establishing contact with Ag-bearing DC. Using two-photon imaging, we found that whereas prolonged interactions between activated T cells and Ag-bearing DCs were infrequent at high T cell precursor frequency, they were readily observed for a period of at least 2 days when lower numbers of T cells were used. We provide evidence that, when present in high numbers, Ag-specific T cells still gained access to the DC surface but were competing for the limited number of sites on DCs with sufficient peptide-MHC complexes for the establishment of a long-lived interaction. Consistent with these findings, we showed that restoration of peptide-MHC level on DCs at late time points was sufficient to recover interactions between activated T cells and DCs. Thus, the period during which CD4 T cells continue to establish stable interactions with DCs is longer than previously thought, and its duration is dictated by both Ag levels and T cell numbers, providing a feedback mechanism for the termination of CD4 T cell responses.
Collapse
Affiliation(s)
- Zacarias Garcia
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
| | - Emmanuelle Pradelli
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
| | - Susanna Celli
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
| | - Hélène Beuneu
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
| | - Aurélie Simon
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
| | - Philippe Bousso
- Institut Pasteur, G5 Dynamiques des Réponses Immunes, F-75015 Paris, France; and Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, U668, F-75015 Paris, France
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Zhao Y, Conze DB, Hanover JA, Ashwell JD. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem 2007; 282:7777-82. [PMID: 17220297 DOI: 10.1074/jbc.m609146200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
TRAF2 and ASK1 play essential roles in tumor necrosis factor alpha (TNF-alpha)-induced mitogen-activated protein kinase signaling. Stimulation through TNF receptor 2 (TNFR2) leads to TRAF2 ubiquitination and subsequent proteasomal degradation. Here we show that TNFR2 signaling also leads to selective ASK1 ubiquitination and degradation in proteasomes. c-IAP1 was identified as the ubiquitin protein ligase for ASK1 ubiquitination, and studies with primary B cells from c-IAP1 knock-out animals revealed that c-IAP1 is required for TNFR2-induced TRAF2 and ASK1 degradation. Moreover, in the absence of c-IAP1 TNFR2-mediated p38 and JNK activation was prolonged. Thus, the ubiquitin protein ligase activity of c-IAP1 is responsible for regulating the duration of TNF signaling in primary cells expressing TNFR2.
Collapse
Affiliation(s)
- Yongge Zhao
- Laboratory of Immune Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Kreijveld E, Koenen HJPM, Hilbrands LB, van Hooff HJP, Joosten I. The immunosuppressive drug FK778 induces regulatory activity in stimulated human CD4+ CD25- T cells. Blood 2006; 109:244-52. [PMID: 16902146 DOI: 10.1182/blood-2006-05-021931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The induction of transplantation tolerance involves a T-cell-mediated process of immune regulation. In clinical transplantation, the use of immunosuppressive drugs that promote or facilitate this process would be highly desirable. Here, we investigated the tolerance-promoting potential of the immunosuppressive drug FK778, currently under development for clinical therapy. Using a human allogeneic in vitro model we showed that, upon T-cell receptor (TCR) triggering, FK778 induced a regulatory phenotype in CD4+ CD25- T cells. Purified CD4+ CD25- T cells primed in the presence of FK778 showed hyporesponsiveness upon restimulation with alloantigen in the absence of the drug. This anergic state was reversible by exogenous interleukin-2 (IL-2) and was induced independent of naturally occurring CD4+ CD25+ regulatory T cells. Pyrimidine restriction was a crucial requirement for the de novo induction of regulatory activity by FK778. The FK778-induced anergic cells showed suppressor activity in a cell-cell contact-dependent manner; were CD25(high), CD45RO+, CD27-, and CD62L-; and expressed cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR), and FoxP3. The cells revealed delayed p27(kip1) degradation and enhanced phosphorylation of STAT3. In conclusion, the new drug FK778 shows tolerizing potential through the induction of a regulatory T-cell subset in CD4+ CD25- T cells.
Collapse
Affiliation(s)
- Ellen Kreijveld
- Radboud University Nijmegen Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Germain RN, Castellino F, Chieppa M, Egen JG, Huang AYC, Koo LY, Qi H. An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 2005; 17:431-41. [PMID: 16216522 PMCID: PMC1462950 DOI: 10.1016/j.smim.2005.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past few years have seen the application of confocal and especially two-photon microscopy to the dynamic high-resolution imaging of lymphocytes and antigen presenting cells within organs such as lymph nodes and thymus. After summarizing some of the published results obtained to date using these methods, we describe our view of how this technology will develop and be applied in the near future. This includes its extension to a wide variety of non-lymphoid tissues, to the tracking of functional responses in addition to migratory behavior, to the analysis of molecular events previously studied only in vitro, to dissection of the interplay between hematopoietic and stromal elements, to visualization of a wider array of cell types including neutrophils, macrophages, NK cells, NKT cells and others, and to the interaction of the host with infectious agents. Reaching these goals will depend on a combination of new tools for genetic manipulations, novel fluorescent reporters, enhanced instrumentation, and better surgical techniques for the extended imaging of live animals. The end result will be a new level of understanding of how orchestrated cell movement and interaction contribute to the physiological and pathological activities of the immune system.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bldg. 10 Rm. 11N311, 10 Center Dr. MSC-1892 Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|