1
|
Lee H, Haque S, Gupta R, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. BCL2 Protein Progressively Declines during Robust CLL Clonal Expansion: Potential Impact on Venetoclax Clinical Efficacy and Insights on Mechanism. LYMPHATICS 2024; 2:50-78. [PMID: 39664277 PMCID: PMC11632909 DOI: 10.3390/lymphatics2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse. Using CFSE-labeled, purified CLL populations known to respond with vigorous cycling in d6 cultures stimulated with TLR9-activating ODN (oligodeoxynucleotide) + IL15, we show that BCL2 protein progressively declines during consecutive cell divisions. In contrast, MCL1 and survivin are maintained/slightly elevated during cycling. Delayed pulsing of quiescent and activated CLL cultures with selective inhibitors of BCL2 or survivin revealed selective targeting of noncycling and cycling populations, respectively, raising implications for therapy. To address the hypothesis that BCL2-repressive miRs (miR15a/miR16-1), encoded in Chr13, are mechanistically involved, we compared BCL2 protein levels within ODN + IL15-stimulated CLL cells, with/without del(13q), yielding results suggesting these miRs contribute to BCL2 reduction. In support, within ODN-primed CLL cells, an IL15-driven STAT5/PI-3K pathway (required for vigorous cycling) triggers elevated p53 TF protein known to directly activate the miR15a/miR16-1 locus. Furthermore, IL15 signaling elicits the repression of BCL2 mRNA within 24 h. Additional comparisons of del(13q)+ and del(13q)-/- cohorts for elevated p53 TF expression during cycling suggest that a documented miR15a/miR16-1-mediated negative feedback loop for p53 synthesis is active during cycling. Findings that robust CLL cycling associates with progressively decreasing BCL2 protein that directly correlates with decreasing venetoclax susceptibility, combined with past findings that these cycling cells have the greatest potential for activation-induced cytosine deaminase (AICDA)-driven mutations, suggest that venetoclax treatment should be accompanied by modalities that selectively target the cycling compartment without eliciting further mutations. The employment of survivin inhibitors might be such an approach.
Collapse
Affiliation(s)
- Hyunjoo Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Shabirul Haque
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Rashmi Gupta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Patricia K. A. Mongini
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Dobaño-López C, Valero JG, Araujo-Ayala F, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Arenas F, Grau M, López C, López-Oreja I, Serrat N, Martínez-Farran A, Hernández L, Playa-Albinyana H, Giménez R, Beà S, Campo E, Lagarde JM, López-Guillermo A, Magnano L, Colomer D, Bezombes C, Pérez-Galán P. Patient-derived follicular lymphoma spheroids recapitulate lymph node signaling and immune profile uncovering galectin-9 as a novel immunotherapeutic target. Blood Cancer J 2024; 14:75. [PMID: 38697976 PMCID: PMC11636880 DOI: 10.1038/s41408-024-01041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma, constitutes a paradigm of immune tumor microenvironment (TME) contribution to disease onset, progression, and heterogenous clinical outcome. Here we present the first FL-Patient Derived Lymphoma Spheroid (FL-PDLS), including fundamental immune actors and features of TME in FL lymph nodes (LNs). FL-PDLS is organized in disc-shaped 3D structures composed of proliferating B and T cells, together with macrophages with an intermediate M1/M2 phenotype. FL-PDLS recapitulates the most relevant B-cell transcriptional pathways present in FL-LN (proliferation, epigenetic regulation, mTOR, adaptive immune system, among others). The T cell compartment in the FL-PDLS preserves CD4 subsets (follicular helper, regulatory, and follicular regulatory), also encompassing the spectrum of activation/exhaustion phenotypes in CD4 and CD8 populations. Moreover, this system is suitable for chemo and immunotherapy testing, recapitulating results obtained in the clinic. FL-PDLS allowed uncovering that soluble galectin-9 limits rituximab, rituximab, plus nivolumab/TIM-3 antitumoral activities. Blocking galectin-9 improves rituximab efficacy, highlighting galectin-9 as a novel immunotherapeutic target in FL. In conclusion, FL-PDLS maintains the crosstalk between malignant B cells and the immune LN-TME and constitutes a robust and multiplexed pre-clinical tool to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Carla Faria
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | | | | | - Fabian Arenas
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Marta Grau
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Irene López-Oreja
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Neus Serrat
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ares Martínez-Farran
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Lluís Hernández
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Silvia Beà
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Laura Magnano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- IMACTIV-3D, Toulouse, France
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Christine Bezombes
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
4
|
Kim N, Lannan KL, Thatcher TH, Pollock SJ, Woeller CF, Phipps RP. Lipoxin B 4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:3343-3351. [PMID: 30348736 DOI: 10.4049/jimmunol.1700503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/21/2018] [Indexed: 11/19/2022]
Abstract
Vaccination has been the most effective way to prevent or reduce infectious diseases; examples include the eradication of smallpox and attenuation of tetanus and measles. However, there is a large segment of the population that responds poorly to vaccines, in part because they are immunocompromised because of disease, age, or pharmacologic therapy and are unable to generate long-term protection. Specialized proresolving mediators are endogenously produced lipids that have potent proresolving and anti-inflammatory activities. Lipoxin B4 (LXB4) is a member of the lipoxin family, with its proresolving effects shown in allergic airway inflammation. However, its effects on the adaptive immune system, especially on human B cells, are not known. In this study, we investigated the effects of LXB4 on human B cells using cells from healthy donors and donors vaccinated against influenza virus in vitro. LXB4 promoted IgG Ab production in memory B cells and also increased the number of IgG-secreting B cells. LXB4 enhanced expression of two key transcription factors involved in plasma cell differentiation, BLIMP1 and XBP1. Interestingly, LXB4 increased expression of cyclooxygenase-2 (COX2), an enzyme that is required for efficient B cell Ab production. The effects of LXB4 are at least partially COX2-dependent as COX2 inhibitors attenuated LXB4-stimulated BLIMP1 and Xpb-1 expression as well as IgG production. Thus, our study reveals for the first time, to our knowledge, that LXB4 boosts memory B cell activation through COX2 and suggests that LXB4 can serve as a new vaccine adjuvant.
Collapse
Affiliation(s)
- Nina Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY 14642
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642; .,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
5
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
6
|
Haque S, Yan XJ, Rosen L, McCormick S, Chiorazzi N, Mongini PKA. Effects of prostaglandin E2 on p53 mRNA transcription and p53 mutagenesis during T-cell-independent human B-cell clonal expansion. FASEB J 2013; 28:627-43. [PMID: 24145719 DOI: 10.1096/fj.13-237792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Within T-cell-dependent germinal centers, p53 gene transcription is repressed by Bcl-6 and is thus less vulnerable to mutation. Malignant lymphomas within inflamed extranodal sites exhibit a relatively high incidence of p53 mutations. The latter might originate from normal B-cell clones manifesting activation-induced cytosine deaminase (AID) and up-regulated p53 following T-cell-independent (TI) stimulation. We here examine p53 gene transcription in such TI clones, with a focus on modulatory effects of prostaglandin E2 (PGE2), and evaluate progeny for p53 mutations. Resting IgM(+)IgD(+)CD27(-) B cells from human tonsils were labeled with CFSE and stimulated in vitro with complement-coated antigen surrogate, IL-4, and BAFF ± exogenous PGE2 (50 nM) or an analog specific for the EP2 PGE2 receptor. We use flow cytometry to measure p53 and AID protein within variably divided blasts, qRT-PCR of p53 mRNA from cultures with or without actinomycin D to monitor mRNA transcription/stability, and single-cell p53 RT-PCR/sequencing to assess progeny for p53 mutations. We report that EP2 signaling triggers increased p53 gene transcriptional activity in AID(+) cycling blasts (P<0.01). Progeny exhibit p53 mutations at a frequency (8.5 × 10(-4)) greater than the baseline error rate (<0.8 × 10(-4)). We conclude that, devoid of the repressive influences of Bcl-6, dividing B lymphoblasts in inflamed tissues should display heightened p53 transcription and increased risk of p53 mutagenesis.
Collapse
Affiliation(s)
- Shabirul Haque
- 1Laboratory of B-Cell Biology, Karches Center for CLL Research and Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lee H, Haque S, Nieto J, Trott J, Inman JK, McCormick S, Chiorazzi N, Mongini PKA. A p53 axis regulates B cell receptor-triggered, innate immune system-driven B cell clonal expansion. THE JOURNAL OF IMMUNOLOGY 2012; 188:6093-108. [PMID: 22611237 DOI: 10.4049/jimmunol.1103037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resting mature human B cells undergo a dynamic process of clonal expansion, followed by clonal contraction, during an in vitro response to surrogate C3d-coated Ag and innate immune system cytokines, IL-4 and BAFF. In this study, we explore the mechanism for clonal contraction through following the time- and division-influenced expression of several pro- and anti-apoptotic proteins within CFSE-labeled cultures. Several findings, involving both human and mouse B cells, show that a mitochondria-dependent apoptotic pathway involving p53 contributes to the high activation-induced cell death (AICD) susceptibility of replicating blasts. Activated B cell clones exhibit elevated p53 protein and elevated mRNA/protein of proapoptotic molecules known to be under direct p53 transcriptional control, Bax, Bad, Puma, Bid, and procaspase 6, accompanied by reduced anti-apoptotic Bcl-2. Under these conditions, Bim levels were not increased. The finding that full-length Bid protein significantly declines in AICD-susceptible replicating blasts, whereas Bid mRNA does not, suggests that Bid is actively cleaved to short-lived, proapoptotic truncated Bid. AICD was diminished, albeit not eliminated, by p53 small interfering RNA transfection, genetic deletion of p53, or Bcl-2 overexpression. DNA damage is a likely trigger for p53-dependent AICD because susceptible lymphoblasts expressed significantly elevated levels of both phosphorylated ataxia telangiectasia mutated-Ser(1980) and phospho-H2AX-Ser(139). Deficiency in activation-induced cytosine deaminase diminishes but does not ablate murine B cell AICD, indicating that activation-induced cytosine deaminase-induced DNA damage is only in part responsible. Evidence for p53-influenced AICD during this route of T cell-independent clonal expansion raises the possibility that progeny bearing p53 mutations might undergo positive selection in peripherally inflamed tissues with elevated levels of IL-4 and BAFF.
Collapse
Affiliation(s)
- Hyunjoo Lee
- Laboratory of B Cell Biology, Karches Center for Chronic Lymphocytic Leukemia Research, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Beltrán E, Hernández A, Lafuente EM, Coret F, Simó-Castelló M, Boscá I, Pérez-Miralles FC, Burgal M, Casanova B. Neuronal antigens recognized by cerebrospinal fluid IgM in multiple sclerosis. J Neuroimmunol 2012; 247:63-9. [PMID: 22498100 DOI: 10.1016/j.jneuroim.2012.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 12/31/2022]
Abstract
Axonal injury is the major cause of disability in patients with multiple sclerosis (MS), but the mechanisms leading to axonal damage are poorly understood. Oligoclonal IgM against lipids predicts an aggressive disease course in MS; however, the antigen that elicits the immune response has not yet been identified. We screened the CSF of 12 patients with MS, 7 patients with neuromyelitis optica (NMO), and 5 controls with non-inflammatory neurological disease (NIND) for the presence of IgM-type antibodies (IgM-Ab) against neuronal surface antigens, and analyzed the relationship between IgM-Ab level and the extent of brain atrophy. The CSF of MS patients displayed significantly higher levels of IgM-Ab compared to NIND or NMO patients. Furthermore, we document for the first time that these IgM-Ab recognize neuronal surface antigens, and that the levels of neuronal-bound IgM-Ab were independent of the IgM concentration and correlate with brain atrophy. Our findings suggest a role for the CSF IgM-Ab in the development of MS pathophysiology.
Collapse
Affiliation(s)
- Eduardo Beltrán
- Multiple Sclerosis Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain; Multiple Sclerosis Unit, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee H, Trott JS, Haque S, McCormick S, Chiorazzi N, Mongini PKA. A Cyclooxygenase-2/Prostaglandin E2Pathway Augments Activation-Induced Cytosine Deaminase Expression within Replicating Human B Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5300-14. [DOI: 10.4049/jimmunol.1000574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol 2010; 23:33-45. [PMID: 20620969 PMCID: PMC2921990 DOI: 10.1016/j.beha.2010.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
B cell-type chronic lymphocytic leukaemia (CLL) has long been considered a disease of resting lymphocytes. However, cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the build-up of leukaemic cells is due to an inherent defect in cell death. However, in vivo labelling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients.
Collapse
Affiliation(s)
- Rajendra N. Damle
- The Feinstein Institute for Medical Research, Manhasset, NY, and Department of Medicine, NYU School of Medicine, NY, NY, Tel: 516-562-1080, Fax: 516-562-1011
| | - Carlo Calissano
- The Feinstein Institute for Medical Research, Manhasset, NY, Tel: 011-39-02-26437104, Fax: 011-39-02-2643-4723
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Manhasset, NY, and Departments of Cell Biology and of Medicine, Albert Einstein College of Medicine, Bronx, NY, Tel: 516-562-1090, Fax: 516-562-1011
| |
Collapse
|
11
|
In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009; 114:4832-42. [PMID: 19789386 DOI: 10.1182/blood-2009-05-219634] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clonal evolution and outgrowth of cellular variants with additional chromosomal abnormalities are major causes of disease progression in chronic lymphocytic leukemia (CLL). Because new DNA lesions occur during S phase, proliferating cells are at the core of this problem. In this study, we used in vivo deuterium ((2)H) labeling of CLL cells to better understand the phenotype of proliferating cells in 13 leukemic clones. In each case, there was heterogeneity in cellular proliferation, with a higher fraction of newly produced CD38+ cells compared with CD38- counterparts. On average, there were 2-fold higher percentages of newly born cells in the CD38+ fraction than in CD38- cells; when analyzed on an individual patient basis, CD38+ (2)H-labeled cells ranged from 6.6% to 73%. Based on distinct kinetic patterns, interclonal heterogeneity was also observed. Specifically, 4 patients exhibited a delayed appearance of newly produced CD38+ cells in the blood, higher leukemic cell CXC chemokine receptor 4 (CXCR4) levels, and increased risk for lymphoid organ infiltration and poor outcome. Our data refine the proliferative compartment in CLL based on CD38 expression and suggest a relationship between in vivo kinetics, expression of a protein involved in CLL cell retention and trafficking to solid tissues, and clinical outcome.
Collapse
|
12
|
Levesque MC. Translational Mini-Review Series on B Cell-Directed Therapies: Recent advances in B cell-directed biological therapies for autoimmune disorders. Clin Exp Immunol 2009; 157:198-208. [PMID: 19604259 PMCID: PMC2730845 DOI: 10.1111/j.1365-2249.2009.03979.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2009] [Indexed: 02/06/2023] Open
Abstract
B cell-directed therapies are promising treatments for autoimmune disorders. Besides targeting CD20, newer B cell-directed therapies are in development that target other B cell surface molecules and differentiation factors. An increasing number of B cell-directed therapies are in development for the treatment of autoimmune disorders. Like rituximab, which is approved as a treatment for rheumatoid arthritis (RA), many of these newer agents deplete B cells or target pathways essential for B cell development and function; however, many questions remain about their optimal use in the clinic and about the role of B cells in disease pathogenesis. Other therapies besides rituximab that target CD20 are the furthest along in development. Besides targeting CD20, the newer B cell-directed therapies target CD22, CD19, CD40-CD40L, B cell activating factor belonging to the TNF family (BAFF) and A proliferation-inducing ligand (APRIL). Rituximab is being tested in an ever-increasing number of autoimmune disorders and clinical studies of rituximab combined with other biological therapies are being pursued for the treatment of rheumatoid arthritis (RA). B cell-directed therapies are being tested in clinical trials for a variety of autoimmune disorders including RA, systemic lupus erythematosus (SLE), Sjögren's syndrome, vasculitis, multiple sclerosis (MS), Graves' disease, idiopathic thrombocytopenia (ITP), the inflammatory myopathies (dermatomyositis and polymyositis) and the blistering skin diseases pemphigus and bullous pemphigoid. Despite the plethora of clinical studies related to B cell-directed therapies and wealth of new information from these trials, much still remains to be discovered about the pathophysiological role of B cells in autoimmune disorders.
Collapse
Affiliation(s)
- M C Levesque
- Department of Medicine, Division of Rheumatology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Turner ML, Hawkins ED, Hodgkin PD. Quantitative Regulation of B Cell Division Destiny by Signal Strength. THE JOURNAL OF IMMUNOLOGY 2008; 181:374-82. [DOI: 10.4049/jimmunol.181.1.374] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Levesque MC, St Clair EW. B cell–directed therapies for autoimmune disease and correlates of disease response and relapse. J Allergy Clin Immunol 2008; 121:13-21; quiz 22-3. [PMID: 18206502 DOI: 10.1016/j.jaci.2007.11.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
Affiliation(s)
- Marc C Levesque
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
15
|
Ng LG, Ng CH, Woehl B, Sutherland APR, Huo J, Xu S, Mackay F, Lam KP. BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur J Immunol 2006; 36:1837-46. [PMID: 16791880 DOI: 10.1002/eji.200635956] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B cell-activating factor belonging to the TNF family (BAFF) and its receptor BAFF-R play critical roles in the maturation and survival of conventional peripheral B cells. However, they appeared to be dispensable for the generation and maintenance of CD5(+) B-1 cells as BAFF(-/-) and BAFF-R(-/-) mice have normal B-1 cell populations. Hence, it is presently unclear if B-1 cells are responsive to BAFF and if BAFF regulates some aspects of B-1 cell function. We show here that BAFF-R and transmembrane activator and CAML interactor (TACI) are the major receptors expressed by B-1 cells. Specifically, we show that BAFF treatment of B-1 cells leads to increased NF-kappaB p100 processing and CD21/CD35 expression. Interestingly, toll-like receptor (TLR) engagement of B-1 cells augmented the surface expression of BAFF receptors and rendered them responsive to BAFF costimulation, as evidenced by their increased proliferation, expression of cell surface activation markers and secretion of the pro-inflammatory cytokine IL-6 and the anti-inflammatory cytokine IL-10. This costimulatory effect is achieved primarily through BAFF-R as BAFF failed to costimulate B-1 cells obtained from A/WySnJ mice which have defective BAFF-R signaling. Thus, as TLR are innate immune receptors and B-1 cells are "innate-like" lymphocytes, our data provide evidence that BAFF plays a role in innate immunity.
Collapse
Affiliation(s)
- Lai Guan Ng
- Laboratory of Immunology, Center for Molecular Medicine and Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Naïve peripheral B cells survive in vivo because of active stimulation by the TNF superfamily ligand B lymphocyte stimulator (BLyS/BAFF). Although the survival promoting properties of BLyS are well known, the signal pathways and molecular effectors that characterize this stimulation are still being elucidated. In this communication, we discuss the signal cascades that effect BLyS dependent survival and the regulation of BLyS induced signaling. We also examine the role of BLyS as a growth factor and propose that BLyS induced metabolic enhancement optimizes the B cell response to BCR and TLR-dependent signaling.
Collapse
Affiliation(s)
- Robert T Woodland
- Department of Molecular Genetics and Microbiolgy, Immunology and Virology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
17
|
Mongini PKA, Inman JK, Han H, Fattah RJ, Abramson SB, Attur M. APRIL and BAFF promote increased viability of replicating human B2 cells via mechanism involving cyclooxygenase 2. THE JOURNAL OF IMMUNOLOGY 2006; 176:6736-51. [PMID: 16709833 DOI: 10.4049/jimmunol.176.11.6736] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Of relevance to both protective and pathogenic responses to Ag is the recent finding that soluble molecules of the innate immune system, i.e., IL-4, B cell-activation factor of the TNF family (BAFF), and C3, exhibit significant synergy in promoting the clonal expansion of human B2 cells following low-level BCR ligation. Although IL-4, BAFF, and C3dg each contribute to early cell cycle entry and progression to S phase, only BAFF promotes later sustained viability of progeny needed for continued cycling. The present study sought to further clarify the mechanisms for BAFF's multiple functions. By comparing BAFF and a proliferation-inducing ligand (APRIL) efficacy at different stages in the response (only BAFF binds BR3; both bind transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation Ag, the early role was attributed to BR3, while the later role was attributed to TACI/B cell maturation Ag. Importantly, BAFF- and APRIL-promoted viability of cycling lymphoblasts was associated with sustained expression of cyclooxygenase 2 (COX-2), the rate-limiting enzyme for PGE2 synthesis, within replicating cells. Supernatants of cultures with BAFF and APRIL contained elevated PGE2. Although COX-2 inhibitors diminished daughter cell viability, exogenous PGE2 (1-1000 nM) increased the viability and recovery of lymphoblasts. Increased yield of viable progeny was associated with elevated Mcl-1, suggesting that a BAFF/APRIL --> TACI --> COX-2 --> PGE2--> Mcl-1 pathway reduces activation-related, mitochondrial apoptosis in replicating human B2 cell clones.
Collapse
Affiliation(s)
- Patricia K A Mongini
- Department of Medicine, Division of Rheumatology, New York University Hospital for Joint Diseases, New York University Medical Center, New York, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|