1
|
Kologrivova IV, Naryzhnaya NV, Suslova TE. Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines 2024; 12:1408. [PMID: 39061983 PMCID: PMC11273826 DOI: 10.3390/biomedicines12071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The thymus represents a primary organ of the immune system, harboring the generation and maturation of T lymphocytes. Starting from childhood, the thymus undergoes involution, being replaced with adipose tissue, and by an advanced age nearly all the thymus parenchyma is represented by adipocytes. This decline of thymic function is associated with compromised maturation and selection of T lymphocytes, which may directly impact the development of inflammation and induce various autoinflammatory disorders, including atherosclerosis. For a long time, thymus health in adults has been ignored. The process of adipogenesis in thymus and impact of thymic fat on cardiometabolism remains a mysterious process, with many issues being still unresolved. Meanwhile, thymus functional activity has a potential to be regulated, since islets of thymopoeisis remain in adults even at an advanced age. The present review describes the intricate process of thymic adipose involution, focusing on the issues of the thymus' role in the development of atherosclerosis and metabolic health, tightly interconnected with the state of vessels. We also review the recent information on the key molecular pathways and biologically active substances that may be targeted to manipulate both thymic function and atherosclerosis.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (N.V.N.); (T.E.S.)
| | | | | |
Collapse
|
2
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
3
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Orlova E, Loginova O, Shirshev S. Leptin regulates thymic plasmacytoid dendritic cell ability to influence the thymocyte distribution in vitro. Int Immunopharmacol 2023; 117:109912. [PMID: 36857934 DOI: 10.1016/j.intimp.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity. Thymic plasmacytoid DCs (pDCs) are predominated in the thymus. They play an important role in thymocyte differentiation. We have analyzed whether leptin mediates its effects on human thymocytes by influencing on pDCs. We used leptin at concentration corresponding to its level during II-III trimesters of physiological pregnancy. We cultivated leptin-primed pDCs with autologous thymocytes and estimated the main thymocyte subsets expressing αβ chains of the T-cell receptor (αβTCR), natural regulatory T-cells (tTreg), natural T-helpers producing interleukin-17 (nTh17) and invariant natural killer T-cells (iNKT) in vitro. We have shown that leptin augmented CD86, CD276 expressions and depressed IL-10 productions by pDCs. Leptin-primed pDCs decreased the percentage of CD4+CD8+αβTCR+ thymocytes, increased CD4hiCD8-/loαβTCR+ cells. pDCs cultivated with leptin decreased the number of iNKT precursors, and did not change the number of tTreg and nTh17 precursors. Thus, leptin's important role in regulation of thymic pDC abilities to influence on the thymocyte distribution was indicated in vitro.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Olga Loginova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Sergei Shirshev
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| |
Collapse
|
6
|
Vick LV, Collins CP, Khuat LT, Wang Z, Dunai C, Aguilar EG, Stoffel K, Yendamuri S, Smith R, Mukherjee S, Barbi J, Canter RJ, Monjazeb AM, Murphy WJ. Aging augments obesity-induced thymic involution and peripheral T cell exhaustion altering the "obesity paradox". Front Immunol 2023; 13:1012016. [PMID: 36776393 PMCID: PMC9910174 DOI: 10.3389/fimmu.2022.1012016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The incidence of obesity, a condition characterized by systemic chronic inflammation, has reached pandemic proportions and is a poor prognostic factor in many pathologic states. However, its role on immune parameters has been diverse and at times contradictory. We have previously demonstrated that obesity can result in what has been called the "obesity paradox" which results in increased T cell exhaustion, but also greater efficacy of immune checkpoint blockade in cancer treatment. Methods The role of obesity, particularly in the context of aging, has not been robustly explored using preclinical models. We therefore evaluated how age impacts the immune environment on T cell development and function using diet-induced obese (DIO) mice. Results We observed that DIO mice initially displayed greater thymopoiesis but then developed greater thymic involution over time compared to their lean counterparts. Both aging and obesity resulted in increased T cell memory conversion combined with increased expression of T cell exhaustion markers and Treg expansion. This increased T cell immunosuppression with age then resulted in a loss of anti-tumor efficacy by immune checkpoint inhibitors (ICIs) in older DIO mice compared to the younger DIO counterparts. Discussion These results suggest that both aging and obesity contribute to T cell dysfunction resulting in increased thymic involution. This combined with increased T cell exhaustion and immunosuppressive parameters affects immunotherapy efficacy reducing the advantage of obesity in cancer immunotherapy responses.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Craig P. Collins
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Lam T. Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ethan G. Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kevin Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall Smith
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph Barbi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
7
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Kellogg C, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum Vaccin Immunother 2021; 17:638-643. [PMID: 33064620 PMCID: PMC7993178 DOI: 10.1080/21645515.2020.1818519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
The thymus is a largely neglected organ but plays a significant role in the regulation of adaptive immune responses. The effect of aging on the thymus and immune senescence is well established, and the resulting inflammaging is found to be implicated in the development of many chronic diseases including atherosclerosis, hypertension and type 2 diabetes. Both aging and diseases of inflammaging are associated with severe COVID-19 disease, and a dysfunctional thymus may be a predisposing factor. In addition, insults on the thymus during childhood may lead to abnormal thymic function and may explain severe COVID-19 disease among younger individuals; therefore, measurement of thymic function may assist COVID-19 care. Those with poor thymic function may be treated prophylactically with convalescent serum or recombinant antibodies, and they may respond better to high-dose or adjuvanted COVID-19 vaccines. Treatments inducing thymic regeneration may improve patients' overall health and may be incorporated in COVID-19 management.
Collapse
Affiliation(s)
- Caitlyn Kellogg
- University of California, San Diego School of Medicine, San Diego, CA, USA
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| | - Ozlem Equils
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| |
Collapse
|
9
|
Ishikawa T, Akiyama N, Akiyama T. In Pursuit of Adult Progenitors of Thymic Epithelial Cells. Front Immunol 2021; 12:621824. [PMID: 33717123 PMCID: PMC7946825 DOI: 10.3389/fimmu.2021.621824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
10
|
André I, Simons L, Ma K, Moirangthem RD, Diana JS, Magrin E, Couzin C, Magnani A, Cavazzana M. Ex vivo generated human T-lymphoid progenitors as a tool to accelerate immune reconstitution after partially HLA compatible hematopoietic stem cell transplantation or after gene therapy. Bone Marrow Transplant 2020; 54:749-755. [PMID: 31431705 DOI: 10.1038/s41409-019-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged T-cell immunodeficiency following HLA- incompatible hematopoietic stem cell transplantation (HSCT) represents a major obstacle hampering the more widespread use of this approach. Strategies to fasten T-cell reconstitution in this setting are highly warranted as opportunistic infections and an increased risk of relapse account for high rates of morbidity and mortality especially during early month following this type of HSCT. We have implemented a feeder free cell system based on the use of the notch ligand DL4 and cytokines allowing for the in vitro differentiation of human T-Lymphoid Progenitor cells (HTLPs) from various sources of CD34+ hematopoietic stem and precursor cells (HSPCs). Co- transplantion of human T-lymphoid progenitors (HTLPs) and non- manipulated HSPCs into immunodeficient mice successfully accelerated the reconstitution of a polyclonal T-cell repertoire. This review summarizes preclinical data on the use of T-cell progenitors for treatment of post- transplantation immunodeficiency and gives insights into the development of GMP based protocols for potential clinical applications including gene therapy approaches. Future clinical trials implementing this protocol will aim at the acceleration of immune reconstitution in different clinical settings such as SCID and leukemia patients undergoing allogeneic transplantation. Apart from pure cell-therapy approaches, the combination of DL-4 culture with gene transduction protocols will open new perspectives in terms of gene therapy applications for primary immunodeficiencies.
Collapse
Affiliation(s)
- Isabelle André
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France. .,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France. .,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France.
| | - Laura Simons
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kuiying Ma
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ranjita Devi Moirangthem
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jean-Sébastien Diana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elisa Magrin
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Couzin
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alessandra Magnani
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
11
|
Abstract
Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology. [BMB Reports 2019; 52(6): 360-372].
Collapse
Affiliation(s)
- Bikash Thapa
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keunwook Lee
- Institute of Bioscience and Biotechnology, and Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165642. [PMID: 31866417 DOI: 10.1016/j.bbadis.2019.165642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.
Collapse
|
13
|
Elfeky R, Lazareva A, Qasim W, Veys P. Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources. Expert Rev Clin Immunol 2019; 15:735-751. [PMID: 31070946 DOI: 10.1080/1744666x.2019.1612746] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Adequate immune reconstitution post-HSCT is crucial for the success of transplantation, and can be affected by both patient- and transplant-related factors. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses is performed to investigate immune recovery posttransplant. In this review, we discuss the pattern of immune recovery in the post-transplant period focusing on the impact of stem cell source (bone marrow, peripheral blood stem cells, and cord blood) on immune recovery and HSCT outcome. We examine the impact of serotherapy on immune reconstitution and the need to tailor dosing of serotherapy agents when using different stem cell sources. We discuss new techniques being used particularly with cord blood and haploidentical grafts to improve immune recovery in each scenario. Expert opinion: Cord blood T cells provide a unique CD4+ biased immune reconstitution. Initial studies using targeted serotherapy with cord grafts showed improved immune recovery with limited alloreactivity. Two competing haploidentical approaches have developed in recent years including TCRαβ/CD19 depleted grafts and post-cyclophosphamide haplo-HSCT. Both approaches have comparable survival rates with limited alloreactivity. However, delayed immune reconstitution is still an ongoing problem and could be improved by modified donor lymphocyte infusions from the same haploidentical donor.
Collapse
Affiliation(s)
- Reem Elfeky
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Arina Lazareva
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Waseem Qasim
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Paul Veys
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| |
Collapse
|
14
|
Simons L, Cavazzana M, André I. Concise Review: Boosting T-Cell Reconstitution Following Allogeneic Transplantation-Current Concepts and Future Perspectives. Stem Cells Transl Med 2019; 8:650-657. [PMID: 30887712 PMCID: PMC6591542 DOI: 10.1002/sctm.18-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a large number of malignant and nonmalignant (inherited) diseases of the hematopoietic system. Nevertheless, non‐HLA identical transplantations are complicated by a severe T‐cell immunodeficiency associated with a high rate of infection, relapse and graft‐versus‐host disease. Initial recovery of T‐cell immunity following HSCT relies on peripheral expansion of memory T cells mostly driven by cytokines. The reconstitution of a diverse, self‐tolerant, and naive T‐cell repertoire, however, may take up to 2 years and crucially relies on the interaction of T‐cell progenitors with the host thymic epithelium, which may be altered by GvHD, age or transplant‐related toxicities. In this review, we summarize current concepts to stimulate reconstitution of a peripheral and polyclonal T‐cell compartment following allogeneic transplantation such as graft manipulation (i.e., T‐cell depletion), transfusion of ex vivo manipulated donor T cells or the exogenous administration of cytokines and growth factors to stimulate host‐thymopoiesis with emphasis on approaches which have led to clinical trials. Particular attention will be given to the development of cellular therapies such as the ex vivo generation of T‐cell precursors to fasten generation of a polyclonal and functional host‐derived T‐cell repertoire. Having been tested so far only in preclinical mouse models, clinical studies are now on the way to validate the efficacy of such T‐cell progenitors in enhancing immune reconstitution following HSCT in various clinical settings. stem cells translational medicine2019;00:1–8
Collapse
Affiliation(s)
- Laura Simons
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
15
|
Enhancement of immune maturation in suckling rats by leptin and adiponectin supplementation. Sci Rep 2019; 9:1786. [PMID: 30742004 PMCID: PMC6370875 DOI: 10.1038/s41598-018-38418-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Leptin and adiponectin, adipokines present in breast milk, have shown immunomodulatory properties. The current study aimed to ascertain whether a nutritional supplementation with leptin or adiponectin in neonatal rats was able to influence the maturation of the systemic immune response in early life. To achieve this, suckling Wistar rats were supplemented with either leptin (0.7 μg/kg/day) or adiponectin (35 μg/kg/day) during the whole suckling period. Plasmatic immunoglobulins were quantified, and spleen lymphocyte composition and their ability to proliferate and release cytokines were evaluated during (day 14) and at the end (day 21) of the suckling period. Rats fed with either adipokine showed higher plasma IgM and IgG1 concentrations and adiponectin supplementation also increased IgG2a at both studied days (P < 0.05). With regard to the lymphocyte composition, both adipokine supplementations increased T cell proportion and both CD4+ and CD8+ T cell subsets after two weeks of supplementation (P < 0.05). Moreover, only leptin administration increased NK and NKT cell proportions at the end of the suckling period. Finally, both adipokines influenced the cytokine secretion pattern by splenocytes. In conclusion, these results suggest that leptin and adiponectin play a role in the maturation of the systemic immune response during the suckling period.
Collapse
|
16
|
Solders M, Erkers T, Gorchs L, Poiret T, Remberger M, Magalhaes I, Kaipe H. Mucosal-Associated Invariant T Cells Display a Poor Reconstitution and Altered Phenotype after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2017; 8:1861. [PMID: 29312341 PMCID: PMC5742569 DOI: 10.3389/fimmu.2017.01861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells which are important in the defense against certain bacteria and yeast. The reconstitution of MAIT cells after allogeneic hematopoietic stem cell transplantation (HSCT) is not known. We investigated MAIT cell phenotype and function in 17 patients devoid of relapse and severe graft-versus-host disease (GvHD) in paired samples collected 1-2, 3-6, 12, and 24 months after transplantation. Data were compared to 17 healthy controls (HC), as well as 22 patients with acute GvHD grade 2-3. The frequency of MAIT cells within CD3+ cells was approximately 10-fold lower than in HC and did not increase over the 2 years following HSCT. MAIT cells in HSCT patients displayed an elevated expression of CD69 and intracellular granzyme B and were predominantly composed of CD4/CD8 double-negative cells. The expression of PD-1 on MAIT cells was low and did not change during the observational time, whereas the CD3+CD161dim/negTCRVα7.2dim/neg cells (non-MAIT T cells) displayed a high expression early after HSCT that decreased to normal levels at 24 months. MAIT cells collected 2-6 months post-HSCT showed an impaired IFN-γ and perforin response after bacterial stimulation, but the response was restored at 24 months. Patients with acute GvHD had similar proportions of MAIT cells as patients with grade 0-1, but consisted mainly of CD8+ cells. Finally, MAIT cells were more sensitive to cyclosporine A and sirolimus than non-MAIT T cells. To conclude, MAIT cell reconstitution following HSCT is deficient compared to non-MAIT T cells and GvHD grade ≥2 is not correlated with MAIT cell frequency. MAIT cell functionality was impaired early after HSCT, but restored at 24 months post-HSCT. MAIT cells have an increased sensibility to common immunosuppressive drugs, which maybe could explain their hampered reconstitution after HSCT.
Collapse
Affiliation(s)
- Martin Solders
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tom Erkers
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
18
|
Exploring the link between innate immune activation and thymic function by measuring sCD14 and TRECs in HIV patients living in Belgium. PLoS One 2017; 12:e0185761. [PMID: 29049344 PMCID: PMC5648129 DOI: 10.1371/journal.pone.0185761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial translocation is now viewed as a central event in the pathogenesis of chronic inflammation during HIV infection. Thymic function failure is another crucial factor involved in HIV disease progression. The goal of this study was to explore the hypothesis of potential links between microbial translocation and thymic function in HIV-1 patients living in Belgium. The extent of microbial translocation was assessed through the measurement of soluble CD14 (sCD14). T-cell receptor excision circles (sjTRECs and dβTRECs) were used as a measure of thymic function. Data were collected from 75 HIV-infected patients. Simple and complex linear regressions were done to analyze the link between these two processes. We found a statistically relevant negative correlation between thymopoiesis (sjTREC) and sCD14 level (p = 0.004). These results suggest a link between thymic function failure, microbial translocation and innate immune activation.
Collapse
|
19
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan
- University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
21
|
Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Mol Immunol 2017; 90:255-263. [PMID: 28846923 DOI: 10.1016/j.molimm.2017.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/03/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Sepsis mouse models revealed thymus atrophy, characterised by decreased thymus weight and loss of thymocytes due to apoptosis. Mice suffered from lymphopenia, a lack of T cells in the periphery, which attenuates their ability to fight against recurring and secondary infections during sepsis progression. Key players in thymus atrophy are IL-6, which is directly involved in thymus involution, and the sphingosine-1-phosphate - sphingosine-1-phosphate receptor 1 signaling, influencing thymocytes emigration. In healthy individuals a sphingosine-1-phosphate (S1P) gradient from lymphoid organs to the circulatory system serves as signal for mature T cell egress. In the present study we investigated, whether inhibition of S1P generation improves thymus involution. In sepsis, induced by cecal ligation and puncture (CLP), S1P in the thymus increased, while it decreased in serum, thus disrupting the naturally occurring S1P gradient. As a potential source of S1P we identified increased numbers of apoptotic cells in the thymic cortex of septic mice. Pharmacological inhibition of the S1P generating sphingosine kinases, by 4- [[4-(4-Chlorophenyl)-2-thiazolyl]amino]phenol (SK I-II), administered directly following CLP, prevented thymus atrophy. This was reflected by lymphocytosis, diminished apoptosis, decreased IL-6 expression, and an unaltered thymus weight. In addition SK I-II-treatment preserved the S1P balance and prevented S1P-dependent internalization of the sphingosine-1-phosphate receptor 1. Our data suggest that inhibition of sphingosine kinase and thus, S1P generation during sepsis restores thymic T cell egress, which might improve septic outcome.
Collapse
|
22
|
Chaudhry MS, Velardi E, Malard F, van den Brink MRM. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation: Time To T Up the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:40-46. [PMID: 27994167 DOI: 10.4049/jimmunol.1601100] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023]
Abstract
The success of allogeneic hematopoietic stem cell transplantation, a key treatment for many disorders, is intertwined with T cell immune reconstitution. The thymus plays a key role post allogeneic hematopoietic stem cell transplantation in the generation of a broad but self-tolerant T cell repertoire, but it is exquisitely sensitive to a range of insults during the transplant period, including conditioning regimens, corticosteroids, infections, and graft-versus-host disease. Although endogenous thymic repair is possible it is often suboptimal, and there is a need to develop exogenous strategies to help regenerate the thymus. Therapies currently in clinical trials in the transplant setting include keratinocyte growth factor, cytokines (IL-7 and IL-22), and hormonal modulation including sex steroid inhibition and growth hormone administration. Such regenerative strategies may ultimately enable the thymus to play as prominent a role after transplant as it once did in early childhood, allowing a more complete restoration of the T cell compartment.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Enrico Velardi
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Florent Malard
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
23
|
Hastings KT, Elizalde D, Muppana L, Levine S, Kamel CM, Ingram WM, Kirkpatrick JT, Hu C, Rausch MP, Gallitano AL. Nab2 maintains thymus cellularity with aging and stress. Mol Immunol 2017; 85:185-195. [PMID: 28282643 DOI: 10.1016/j.molimm.2017.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Thymic cellularity is influenced by a variety of biological and environmental factors, such as age and stress; however, little is known about the molecular genetic mechanisms that regulate this process. Immediate early genes of the Early growth response (Egr) family have critical roles in immune function and response to environmental stress. The transcription factors, Egr1, Egr2 and Egr3, play roles in the thymus and in peripheral T-cell activation. Nab2, which binds Egrs 1, 2, and 3 as a co-regulator of transcription, also regulates peripheral T-cell activation. However, a role for Nab2 in the thymus has not been reported. Using Nab2-deficient (KO) mice we found that male Nab2KO mice have reduced thymus size and decreased numbers of thymocytes, compared with age-matched wildtype (WT) mice. Furthermore, the number of thymocytes in Nab2KO males decreases more rapidly with age. This effect is sex-dependent as female Nab2KO mice show neither reduced thymocyte numbers nor accelerated thymocyte loss with age, compared to female WT littermates. Since stress induces expression of Nab2 and the Egrs, we examined whether loss of Nab2 alters stress-induced decrease in thymic cellularity. Restraint stress induced a significant decrease in thymic cellularity in Nab2KO and WT mice, with significant changes in the thymocyte subset populations only in the Nab2KO mice. Stress reduced the percentage of DP cells by half and increased the percentage of CD4SP and CD8SP cells by roughly three-fold in Nab2KO mice. These findings indicate a requirement for Nab2 in maintaining thymocyte number in male mice with age and in response to stress.
Collapse
Affiliation(s)
- K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA.
| | - Diana Elizalde
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Leela Muppana
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Sarah Levine
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Christy M Kamel
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Wendy M Ingram
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Jennifer T Kirkpatrick
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Chengcheng Hu
- Department of Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 714 E. Van Buren St., Phoenix, AZ, 85004, USA.
| | - Matthew P Rausch
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA.
| |
Collapse
|
24
|
Huang H, Liu A, Wu H, Ansari AR, Wang J, Huang X, Zhao X, Peng K, Zhong J, Liu H. Transcriptome analysis indicated that Salmonella lipopolysaccharide-induced thymocyte death and thymic atrophy were related to TLR4-FOS/JUN pathway in chicks. BMC Genomics 2016; 17:322. [PMID: 27142675 PMCID: PMC4855877 DOI: 10.1186/s12864-016-2674-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Thymus is the crucial site for T cell development and once believed to be immune privileged. Recently, thymus has gained special attention as it is commonly targeted by infectious agents which may cause pathogenic tolerance and subsequent immunosuppression. RESULTS We analyzed thymic responses to the challenge with Salmonella typhimurium (STm) or lipopolysaccharide (LPS) derived from STm in chicks. Newly hatched chicks were injected intraperitoneally with 5 × 10(4) CFU/mL STm or 50 mg/kg LPS. After LPS treatment, maximum thymocyte death (3 ~ 5-fold change) compared to controls was found at 12 h, and maximum loss of thymic weight (35 %) and reduced thymic index (20 %) were found at 36 h. After STm infection, maximum thymocyte death and thymic atrophy occurred at 36 and 72 h, respectively. No significant changes of thymic structure, chT1+ and CD4+/CD8+ T cell ratio were observed in thymus or spleen tissues after LPS treatment. Furthermore, transcriptome analysis revealed important roles for the TLR4-FOS/JUN signaling pathway in thymic injury. Thus, the major process of thymic atrophy in this study first involved activation of transcriptional factors FOS/JUN upon LPS binding to TLR4 that caused release of inflammatory factors, thereby inducing inflammatory responses and DNA damage and ultimately cell cycle arrest and thymic injury. CONCLUSIONS STm and Salmonella LPS could induce acute chick thymic injury. LPS treatment acted faster than STm. TLR4-FOS/JUN pathway may play an important role in LPS induced chick thymic injury.
Collapse
Affiliation(s)
- Haibo Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Liu
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Wu
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixiang Wang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiyao Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kemei Peng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juming Zhong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol 2016; 12:77-89. [PMID: 26437623 DOI: 10.1038/nrendo.2015.168] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Mireille Dardenne
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
27
|
Zhou YJ, Peng H, Chen Y, Liu YL. Alterations of Thymic Epithelial Cells in Lipopolysaccharide-induced Neonatal Thymus Involution. Chin Med J (Engl) 2016; 129:59-65. [PMID: 26712434 PMCID: PMC4797544 DOI: 10.4103/0366-6999.172577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) in the thymus was mainly produced by the thymic epithelial cells (TECs), the predominant component of the thymic microenvironment. The progression of TECs and the roles of VEGF in the neonatal thymus during sepsis have not been reported. This study aimed to explore the alterations of TECs and VEGF level in the neonatal thymus involution and to explore the possible mechanisms at the cellular level. METHODS By establishing a model of clinical sepsis, the changes of TECs were measured by hematoxylin-eosin staining, confocal microscopy, and flow cytometry. Moreover, the levels of VEGF in serum and thymus were assessed based on enzyme-linked immunosorbent assay and Western blotting. RESULTS The number of thymocytes and TECs was significantly decreased 24 h after lipopolysaccharide (LPS) challenge, (2.40 ± 0.46)×10 7 vs. (3.93 ± 0.66)×10 7 and (1.16 ± 0.14)×10 5 vs. (2.20 ± 0.19)×10 5 , P < 0.05, respectively. Cortical TECs and medullary TECs in the LPS-treated mice were decreased 1.5-fold and 3.9-fold, P < 0.05, respectively, lower than those in the controls. The number of thymic epithelial progenitors was also decreased. VEGF expression in TECs was down-regulated in a time-dependent manner. CONCLUSION VEGF in thymic cells subsets might contribute to the development of TECs in neonatal sepsis.
Collapse
Affiliation(s)
- Yong-Jie Zhou
- Affiliated Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yan Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ya-Lan Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
28
|
Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A. The thymoprotective function of leptin is indirectly mediated via suppression of obesity. Immunology 2015; 146:122-9. [PMID: 26059465 DOI: 10.1111/imm.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.
Collapse
Affiliation(s)
- Jayasree Sreenivasan
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan Schlenner
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Dean Franckaert
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - James Dooley
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Gao BT, Lee RP, Jiang Y, Steinle JJ, Morales-Tirado VM. Pioglitazone alters monocyte populations and stimulates recent thymic emigrants in the BBDZR/Wor type 2 diabetes rat model. Diabetol Metab Syndr 2015; 7:72. [PMID: 26336514 PMCID: PMC4557231 DOI: 10.1186/s13098-015-0068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/19/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Type 2 diabetes is commonly characterized by insulin deficiency and decreased sensitivity of insulin receptors, leading to a chronic state of hyperglycemia in individuals. Disease progression induces changes in the immune profile that engenders a chronic inflammatory condition. Thiazolidinedione (TDZ) drugs, such as Pioglitazone (Pio), aid in controlling disease symptoms. While the mechanisms by which Pio controls hyperglycemia are beginning to be understood, relatively little is known about the effects of Pio on suppression of the systemic immune phenotype, attributed to visceral adipose tissue and macrophages. METHODS Here, we utilize the recently developed BBDZR/Wor type 2 diabetes rat model to test our hypothesis that a selective in vivo growth of CD3(+)T cells in the spleen contributes to the increase in T lymphocytes, including Tregs, independent of visceral adipose tissue. We investigated the systemic effects of Pio on multifactorial aspects of the disease-induced immune phenotype both in vivo and in vitro in normal, non-diabetic animals and in disease. RESULTS Our work revealed that Pio reversed the lymphopenic status of diabetic rats, in part by an increase in CD3(+) T lymphocytes and related subsets. Moreover, we found evidence that Pio caused a selective growth of newly differentiated T lymphocytes, based on the presence of recent thymic emigrants in vivo. To investigate effects of Pio on the inflammatory milieu, we examined the production of the signature cytokines TNF-α and IL-1β and found they were reduced by Pio-treatment, while the levels of IL-4, an anti-inflammatory mediator, were significantly increased in a Pio-dependent manner. The increase in IL-4 production, although historically attributed to macrophages from visceral adipose tissue under other conditions, came also from CD3(+) T lymphocytes from the spleen, suggesting splenocytes contribute to the Pio-induced shift towards an anti-inflammatory phenotype. CONCLUSIONS We show for the first time that Pio treatment significantly suppresses the systemic inflammatory status in the BBDZR/Wor type 2 diabetes rat model by the selective growth of newly differentiated CD3(+) T cells and by increasing CD3(+)IL-4 production in immigrant spleen lymphocytes.
Collapse
Affiliation(s)
- Bradley T. Gao
- />Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Ryan P. Lee
- />Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Youde Jiang
- />Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Jena J. Steinle
- />Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- />Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- />Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI USA
| | - Vanessa M. Morales-Tirado
- />Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- />Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
30
|
Effect of melatonin on cellular composition of the spleen and parameters of lipid metabolism in rats with alimentary obesity. Bull Exp Biol Med 2014; 158:42-5. [PMID: 25403394 DOI: 10.1007/s10517-014-2687-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 10/24/2022]
Abstract
We studied the effects of melatonin on the status of immune organs and parameters of lipid metabolism in rats with alimentary obesity and parameters of lipid metabolism and immune status in Wistar rats kept on high-fat diet and receiving melatonin solution per os. Melatonin leveled the changes in blood and liver parameters of lipid metabolism, which was paralleled by normalization of cellular composition of immune organs. We conclude that melatonin can be a promising agent for the treatment of lipid metabolism and immune status disorders in alimentary obesity.
Collapse
|
31
|
Gonadotropin-releasing hormone agonist selectively augments thymopoiesis and prevents cell apoptosis in LPS induced thymic atrophy model independent of gonadal steroids. Int Immunopharmacol 2014; 23:46-53. [DOI: 10.1016/j.intimp.2014.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022]
|
32
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
33
|
MAŁGORZEWICZ SYLWIA, DARDZIŃSKA JOLANTAANNA, GNACIŃSKA MARIA, JANKUN JERZY, BRYL EWA, SWORCZAK KRZYSZTOF. Complex interaction between the immune system and adipose tissue (Review). Int J Mol Med 2013; 33:3-7. [DOI: 10.3892/ijmm.2013.1537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|
34
|
Manarin R, Villar SR, Fernández Bussy R, González FB, Deschutter EV, Bonantini AP, Roggero E, Pérez AR, Bottasso O. Reciprocal influences between leptin and glucocorticoids during acute Trypanosoma cruzi infection. Med Microbiol Immunol 2013; 202:339-52. [DOI: 10.1007/s00430-013-0294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/09/2013] [Indexed: 02/06/2023]
|
35
|
Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 2013; 24:109-19. [PMID: 23312823 PMCID: PMC3667973 DOI: 10.1016/j.tem.2012.11.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are essential for maintaining homeostasis and regulate a wide variety of physiological processes. Therapeutically, synthetic glucocorticoids are widely prescribed for the treatment of inflammation, autoimmune disorders, and malignancies of lymphoid origin. In this review we examine emerging evidence highlighting both proinflammatory and anti-inflammatory actions of glucocorticoids on both the innate and adaptive immune systems. We incorporate these findings into the more traditional anti-inflammatory role attributed to glucocorticoids, and propose how the two seemingly disparate processes seamlessly work together to resolve cellular responses to inflammatory stimuli. These ideas provide a framework by which glucocorticoids ready and reinforce the innate immune system, and repress the adaptive immune system, to help to resolve inflammation and restore homeostasis.
Collapse
Affiliation(s)
- John M Busillo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
36
|
Leptin attenuates lipopolysaccharide-induced apoptosis of thymocytes partially via down-regulation of cPLA2 and p38 MAPK activation. Int Immunopharmacol 2013; 15:620-7. [PMID: 23376443 DOI: 10.1016/j.intimp.2013.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/11/2023]
Abstract
Leptin, a 16-kDa protein that is mainly secreted by adipocytes, plays a protective role in many cell types. It has been shown that leptin acts in the central and peripheral immune system to protect thymocytes. Cytosolic phospholipase A(2) (cPLA(2)) is an enzyme that can specifically initiate the release of arachidonic acid (AA) to produce eicosanoids, which regulate inflammation and immune responses. Our previous work has shown that leptin is important to prevent apoptosis of thymocytes. However, the role of cPLA(2) is still unclear, and the precise mechanism also remains to be elucidated. In this work, we demonstrated that leptin inhibited the LPS-induced toxicity and apoptosis of thymocytes. Western blot and RT-PCR showed that leptin led to a reduction of cPLA(2) activity and mRNA level, as well as caspase-3 cleavage. Moreover, we found that leptin could decrease the activation of p38 MAPK. Accordingly, we pre-treated apoptotic thymocytes with the p38 MAPK inhibitor, SB203580 and observed an effect similar to the leptin alone treated group. SB203580 also suppressed expression of cPLA(2) and cleavage of caspase-3. Based on these results, we suggest that leptin could attenuate LPS-induced apoptotic injury in mouse thymocyte cells, mainly through the p38/cPLA(2) signalling pathway. The study of the regulatory role of leptin in LPS-induced thymocyte apoptosis can help to explain the role of leptin in the immune system and may provide a novel treatment option in cases of severe trauma, infection, shock, organ failure and autoimmune disease caused by thymic atrophy.
Collapse
|
37
|
Odiere MR, Scott ME, Leroux LP, Dzierszinski FS, Koski KG. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J Nutr 2013; 143:100-7. [PMID: 23190758 DOI: 10.3945/jn.112.160457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neonatal immune development begins in pregnancy and continues into lactation and may be affected by maternal diet. We investigated the possibility that maternal protein deficiency (PD) during a chronic gastrointestinal (GI) nematode infection could impair neonatal immune development. Beginning on d 14 of pregnancy, mice were fed protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isoenergetic diets and were infected weekly with either 0 (sham) or 100 Heligmosomoides bakeri larvae. Pups were killed on d 2, 7, 14, and d 21 and dams on d 20 of lactation. Lymphoid organs were weighed. Cytokine concentration in maternal and pup serum and in milk from pup stomachs and lymphoid cell populations in pup spleen and thymus were determined using luminex and flow cytometry, respectively. GI nematode infection increased Th2 cytokines (IL-4, IL-5, IL-13), IL-2, IL-10, and eotaxin in serum of dams whereas PD reduced IL-4 and IL-13. The lower IL-13 in PD dams was associated with increased fecal egg output and worm burdens. Maternal PD increased vascular endothelial growth factor in pup milk and eotaxin in pup serum. Maternal infection increased eotaxin in pup serum. Evidence of impaired neonatal immune development included reduced lymphoid organ mass in pups associated with both maternal infection and PD and increased percentage of T cells and T:B cell ratio in the spleen associated with maternal PD. Findings suggest that increases in specific proinflammatory cytokines as a result of the combination of infection and dietary PD in dams can impair splenic immune development in offspring.
Collapse
Affiliation(s)
- Maurice R Odiere
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence. Semin Immunol 2012; 24:321-30. [DOI: 10.1016/j.smim.2012.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 01/13/2023]
|
39
|
Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. ACTA ACUST UNITED AC 2012; 79:83-9. [PMID: 22220718 DOI: 10.1111/j.1399-0039.2011.01820.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessment of the host immune status is becoming a key issue in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the long-term follow-up of these patients, severe post-transplant infections, relapse or secondary malignancies may be directly related to persistent immune defects. In allo-HSCT, T-cell differentiation of donor progenitors within the recipient thymus is required to generate naive recent T-cell emigrants (RTE). These cells account for a durable T-cell reconstitution, generating a diverse T-cell receptor (TCR) repertoire and robust response to infections. It is now possible to quantify the production of RTE by measuring thymic T-cell receptor excision circles or 'TREC' which are small circular DNA produced during the recombination of the genomic segments encoding the TCR alpha chain. Here we discuss the role of thymic function in allo-HSCT. The pre-transplant recipient thymic function correlates with clinical outcome in terms of survival and occurrence of severe infections. Post-transplant, TREC analysis showed that the thymus is a sensitive target to the allogeneic acute graft-versus-host disease (GvHD) reaction but is also prone to recovery in young adult patients. In all, thymus is a key player for the quality of immune reconstitution and clinical outcome after allo-HSCT. Thymic tissue is plastic and it is a future challenge to halt or reverse thymic GVHD therapeutically by acting at the level of T-cell progenitors generation, thymic homing and/or epithelial thymic tissue preservation.
Collapse
Affiliation(s)
- A Toubert
- Sorbonne Paris Cité, INSERM UMR940, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
40
|
Basu S, Dewangan S, Shukla RC, Anupurva S, Kumar A. Thymic involution as a predictor of early-onset neonatal sepsis. Paediatr Int Child Health 2012; 32:147-51. [PMID: 22824662 DOI: 10.1179/2046905512y.0000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Diagnosis of early-onset neonatal sepsis (EONS) is often difficult because of vague clinical signs and non-specific laboratory parameters. OBJECTIVE To assess the statistical validity of thymic size estimation as a diagnostic marker of EONS compared with cord blood interleukin-6 (IL-6) concentrations. SUBJECTS AND METHODS Thirty-two neonates delivered in hospital and admitted to the neonatal unit with EONS comprised the study group. EONS was diagnosed on the basis of development of clinical signs and symptoms of sepsis within 72 hours of birth in the presence of antenatal risk factors for chorio-amnionitis and a positive blood culture. Thirty-two gestational age- and gender-matched healthy neonates served as controls. Cord blood IL-6 concentrations were estimated by ELISA. Thymic size was assessed by sonological measurement of thymic dimensions (longitudinal and transverse diameters, thymic volume and thymic index) within 24 hours of birth in the study infants and the controls. Data were analyzed by SPSS 16.0. RESULTS Thymic size was significantly smaller whereas cord blood IL-6 concentrations were significantly higher (P<0.001) in the sepsis group than in the controls. Sensitivity and specificity of thymic dimensions were comparable to IL-6 concentrations for diagnosing EONS. Significant correlation was noted between reduction in thymic size and a rise in IL-6 concentrations. CONCLUSION Thymic involution can be used as a reliable diagnostic marker for EONS.
Collapse
Affiliation(s)
- Sriparna Basu
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | | | | | | | | |
Collapse
|
41
|
Liu P, Hu Y, Grossmann R, Zhao R. In ovo leptin administration accelerates post-hatch muscle growth and changes myofibre characteristics, gene expression and enzymes activity in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2012; 97:887-95. [PMID: 22853698 DOI: 10.1111/j.1439-0396.2012.01334.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the effect of maternal leptin on muscle growth, we injected 0 μg (control, CON), 0.5 μg (low leptin dose, LL) or 5.0 μg (high leptin dose, HL) of recombinant murine leptin dissolved in 100 μl of PBS into the albumen of broiler eggs prior to incubation. The newly hatched chicks were all raised under the same conditions until 21 days of age (D21), when body weight was measured and samples of gastrocnemius muscle were collected and weighed. Myosin ATPase staining was applied to identify myofibre types and measure the cross-sectional area (CSA) of myofibres. Real-time PCR was performed to quantify leptin receptor (LEPR), insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), growth hormone receptor (GHR) and myostatin (MSTN) mRNA expression in the gastrocnemius muscle. The activity of calpains (CAPNs) in the gastrocnemius muscle was measured using a quantitative fluorescence detection kit. Male chickens treated with both high and low doses of leptin had significantly higher (p < 0.05) body weight on D21. The high leptin significantly increased the CSA (p < 0.05) of gastrocnemius muscle in male chickens, which coincided with a 93% increase (p < 0.05) in IGF-1 mRNA expression. Likewise, the LL dose increased the weight of gastrocnemius muscle in male chickens (p < 0.05), which was accompanied by a 41% down-regulation (p < 0.05) of MSTN mRNA expression and a decreased activity of CAPNs. However, all these changes were not observed in female chickens. The proportion of myofibre types did not altered. No significant change was detected for LEPR and GHR mRNA expression. These results indicate that in ovo leptin treatment affects skeletal muscle growth in chickens in a dose-dependent and sex-specific manner. The altered expression of IGF-1, MSTN mRNA and activity of CAPNs in skeletal muscle may be responsible for such effects.
Collapse
Affiliation(s)
- P Liu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - Y Hu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - R Grossmann
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - R Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| |
Collapse
|
42
|
Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc Natl Acad Sci U S A 2012; 109:7622-9. [PMID: 22538809 DOI: 10.1073/pnas.1205129109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rodent model of diet-induced obesity revealed that obesity significantly altered hematopoietic and lymphopoietic functions in the bone marrow and thymus. C57BL/6 mice were fed a mixed high-fat diet (HFD) of 45% fat or 10% fat diet (lean controls) for 180 d. A sustained increase in the numbers of cells found in bone marrow and thymus of HFD mice occurred from day 90 to day 180. However, with the exception of a 10-18% increase in the proportion of lymphocytes, the composition of monocytes, granulocytes, erythrocytes, and mixed progenitor lineages remained normal in the marrow. Likewise, thymuses of HFD mice increased 30-50% in size compared with controls, with analogous increases in thymocyte numbers. The overall thymus cellular composition remained normal. Although increased blood and lymphatic volume in obese mice would play a role in increased hematopoiesis, there were large and disproportionate increases in blood leukocytes of HFD mice, indicating that homeostasis was not maintained. Leptin, which promotes lymphopoiesis and myelopoiesis, reached 100 ng/mL in sera from HFD mice. Moreover, a three- to sixfold increase in adipocytes in marrow resulted in spiked leptin mRNA expression in bones of HFD mice compared with lean controls. Other cytokines and growth factors did not show any increases in obese marrow. The substantial increase in lymphopoietic and hematopoietic processes in HFD mice indicates that the primary tissues are another facet of the immune system dysregulated by obesity, which was perhaps fostered by higher amounts of leptin in marrow and serum.
Collapse
|
43
|
Belkaya S, Silge RL, Hoover AR, Medeiros JJ, Eitson JL, Becker AM, de la Morena MT, Bassel-Duby RS, van Oers NSC. Dynamic modulation of thymic microRNAs in response to stress. PLoS One 2011; 6:e27580. [PMID: 22110677 PMCID: PMC3217971 DOI: 10.1371/journal.pone.0027580] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/19/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Physiological stress evokes rapid changes in both the innate and adaptive immune response. Immature αβ T cells developing in the thymus are particularly sensitive to stress, with infections and/or exposure to lipopolysaccharide or glucocorticoids eliciting a rapid apoptotic program. MicroRNAs are a class of small, non-coding RNAs that regulate global gene expression by targeting diverse mRNAs for degradation. We hypothesized that a subset of thymically encoded microRNAs would be stress responsive and modulate thymopoiesis. We performed microRNA profiling of thymic microRNAs isolated from control or stressed thymic tissue obtained from mice. We identified 18 microRNAs that are dysregulated >1.5-fold in response to lipopolysaccharide or the synthetic corticosteroid dexamethasone. These included the miR-17-90 cluster, which have anti-apoptotic functions, and the miR-181 family, which contribute to T cell tolerance. The stress-induced changes in the thymic microRNAs are dynamically and distinctly regulated in the CD4(-)CD8(-), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) thymocyte subsets. Several of the differentially regulated murine thymic miRs are also stress responsive in the heart, kidney, liver, brain, and/or spleen. The most dramatic thymic microRNA down modulated is miR-181d, exhibiting a 15-fold reduction following stress. This miR has both similar and distinct gene targets as miR-181a, another member of miR-181 family. Many of the differentially regulated microRNAs have known functions in thymopoiesis, indicating that their dysregulation will alter T cell repertoire selection and the formation of naïve T cells. This data has implications for clinical treatments involving anti-inflammatory steroids, ablation therapies, and provides mechanistic insights into the consequences of infections.
Collapse
Affiliation(s)
- Serkan Belkaya
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert L. Silge
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashley R. Hoover
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer J. Medeiros
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer L. Eitson
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Amy M. Becker
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - M. Teresa de la Morena
- The Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rhonda S. Bassel-Duby
- The Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicolai S. C. van Oers
- The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
44
|
Gayathri V, Asha VV, John JA, Subramoniam A. Protection of immunocompromised mice from fungal infection with a thymus growth-stimulatory component from Selaginella involvens, a fern. Immunopharmacol Immunotoxicol 2011; 33:351-359. [PMID: 21554105 DOI: 10.3109/08923973.2010.518617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Recent studies have shown that the water extract of Selaginella involvens (Sw.) Spring, a wild fern, exhibits thymus growth-stimulatory activity in adult mice (reversal of involution of thymus) and remarkable anti-lipid peroxidation activity. Follow-up studies were carried out in the present study. MATERIALS AND METHODS Activity-guided isolation of the active component (AC) was carried out. The effect of AC on immune function was studied using fungal (Aspergillus fumigatus) challenge in cortisone-treated mice. The in vitro antifungal activity of AC was assayed using disc diffusion assay. In vitro and in vivo effect of AC on DNA synthesis in thymus was studied using (3)H-thymidine incorporation. In in vitro anti-lipid peroxidation, hydroxyl radical scavenging and inhibition of superoxide production were assayed. RESULTS The active principle/component (AC) was isolated in a chromatographically pure form from the water extract of S. involvens. AC showed positive reaction to glycosides. AC possessed both thymus growth-stimulatory and antioxidant properties. It protected cortisone-treated mice from A. fumigatus challenge. It did not exhibit in vitro antifungal activity. Increased (3)H-thymidine incorporation was observed in the reticuloepithelium of thymus obtained from AC-treated mice. However, in vitro AC treatment to thymus for 5 h did not result in an increase in (3)H-thymidine incorporation. DISCUSSION AND CONCLUSION AC (named as Selagin), from S. involvens, could reverse involution of thymus to a large extent, exhibit remarkable antioxidant activity, and protect immunocompromised mice from fungal infection. Therefore, it is very promising for the development of a drug to ameliorate old age-related health problems and prolong lifespan.
Collapse
Affiliation(s)
- V Gayathri
- Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562, Kerala State, India
| | | | | | | |
Collapse
|
45
|
Billard MJ, Gruver AL, Sempowski GD. Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One 2011; 6:e17940. [PMID: 21437240 PMCID: PMC3060875 DOI: 10.1371/journal.pone.0017940] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/18/2011] [Indexed: 11/28/2022] Open
Abstract
Background Productive thymopoiesis is essential for a robust and healthy immune system.
Thymus unfortunately is acutely sensitive to stress resulting in involution
and decreased T cell production. Thymic involution is a complication of many
clinical settings, including infection, malnutrition, starvation, and
irradiation or immunosuppressive therapies. Systemic rises in
glucocorticoids and inflammatory cytokines are known to contribute to thymic
atrophy. Little is known, however, about intrathymic mechanisms that may
actively contribute to thymus atrophy or initiate thymic recovery following
stress events. Methodology/Principal Findings Phenotypic, histologic and transcriptome/pathway analysis of murine thymic
tissue during the early stages of endotoxemia-induced thymic involution was
performed to identify putative mechanisms that drive thymic involution
during stress. Thymus atrophy in this murine model was confirmed by
down-regulation of genes involved in T cell development, cell activation,
and cell cycle progression, correlating with observed phenotypic and
histologic thymus involution. Significant gene changes support the
hypothesis that multiple key intrathymic pathways are differentially
activated during stress-induced thymic involution. These included direct
activation of thymus tissue by LPS through TLR signaling, local expression
of inflammatory cytokines, inhibition of T cell signaling, and induction of
wound healing/tissue remodeling. Conclusions/Significance Taken together, these observations demonstrated that in addition to the
classic systemic response, a direct intrathymic response to endotoxin
challenge concurrently contributes to thymic involution during endotoxemia.
These findings are a substantial advancement over current understanding of
thymus response to stress and may lead to the development of novel
therapeutic approaches to ameliorate immune deficiency associated with
stress events.
Collapse
Affiliation(s)
- Matthew J. Billard
- Department of Biostatistics & Bioinformatics, Duke University Medical
Center, Durham, North Carolina, United States of America
| | - Amanda L. Gruver
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
| | - Gregory D. Sempowski
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
- * E-mail:
| |
Collapse
|
46
|
Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing 2010; 7:7. [PMID: 20546588 PMCID: PMC2895578 DOI: 10.1186/1742-4933-7-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/14/2010] [Indexed: 12/12/2022]
Abstract
The increasing ratio of ageing population poses new challenges to healthcare systems. The elderly frequently suffer from severe infections. Vaccination could protect them against several infectious diseases, but it can be effective only if cells that are capable of responding are still present in the repertoire. Recent vaccination strategies in the elderly might achieve low effectiveness due to age-related immune impairment. Immunosenescence affects both the innate and adaptive immunity.Beside individual variations of genetic predisposition, epigenetic changes over the full course of human life exert immunomodulating effects. Disturbances in macrophage-derived cytokine release and reduction of the natural killer cell mediated cytotoxicity lead to increased frequency of infections. Ageing dampens the ability of B cells to produce antibodies against novel antigens. Exhausted memory B lymphocyte subsets replace naïve cells. Decline of cell-mediated immunity is the consequence of multiple changes, including thymic atrophy, reduced output of new T lymphocytes, accumulation of anergic memory cells, and deficiencies in cytokines production. Persistent viral and parasitic infections contribute to the loss of immunosurveillance and premature exhaustion of T cells. Reduced telomerase activity and Toll-like receptor expression can be improved by chemotherapy. Reversion of thymic atrophy could be achieved by thymus transplantation, depletion of accumulated dysfunctional naive T cells and herpesvirus-specific exhausted memory cells. Administration of interleukin (IL)-2, IL-7, IL-10, keratinocyte growth factor, thymic stromal lymphopoietin, as well as leptin and growth hormone boost thymopoiesis. In animals, several strategies have been explored to produce superior vaccines. Among them, virosomal vaccines containing polypeptide antigens or DNA plasmids as well as new adjuvanted vaccine formulations elicit higher dendritic cell activity and more effective serologic than conventional vaccines responses in the elderly. Hopefully, at least some of these approaches can be translated to human medicine in a not too far future.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| | - Valéria Kövesdi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 2010; 10:408-24. [PMID: 20595009 DOI: 10.1016/j.coph.2010.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022]
Abstract
One of the major fundamental causes for the aging of the immune system is the structural and functional involution of the thymus, and the associated decline in de novo naïve T-lymphocyte output. This loss of naïve T-cell production weakens the ability of the adaptive immune system to respond to new antigenic stimuli and eventually leads to a peripheral T-cell bias to the memory phenotype. While the precise mechanisms responsible for age-associated thymic involution remain unknown, a variety of theories have been forwarded including the loss of expression of various growth factors and hormones that influence the lymphoid compartment and promote thymic function. Extensive studies examining two hormones, namely growth hormone (GH) and ghrelin (GRL), have demonstrated their contributions to thymus biology. In the current review, we discuss the literature supporting a role for these hormones in thymic physiology and age-associated thymic involution and their potential use in the restoration of thymic function in aged and immunocompromised individuals.
Collapse
|
48
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
49
|
Moulin CM, Marguti I, Peron JPS, Rizzo LV, Halpern A. Impact of adiposity on immunological parameters. ACTA ACUST UNITED AC 2010; 53:183-9. [PMID: 19466211 DOI: 10.1590/s0004-27302009000200010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/18/2009] [Indexed: 01/03/2023]
Abstract
Studies evaluating immune function in obese humans and experimental animals indicate that the excess adiposity is associated with impaired in immune responses. Obesity is related to a higher rate of infections and to some types of cancer. Nutritional, metabolic and endocrine factors are implicated in the immunological changes. The adipose tissue directly produces substances with various functions related to immune system. Furthermore, some investigations suggest that certain types of weight reduction strategies can alter the immune function. Nevertheless, long-term studies should be carried out to address whether these changes positively affects the ability of these obese individuals to control infections and tumor development.
Collapse
Affiliation(s)
- Cristiane Martins Moulin
- Departamento de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar 255, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
50
|
Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun 2010; 394:562-8. [PMID: 20227394 DOI: 10.1016/j.bbrc.2010.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022]
Abstract
Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.
Collapse
|