1
|
Hao S, Lasaracina AP, Epps J, Ferreri NR. TNF inhibits NKCC2 phosphorylation by a calcineurin-dependent pathway. Am J Physiol Renal Physiol 2025; 328:F489-F500. [PMID: 40062390 PMCID: PMC12048884 DOI: 10.1152/ajprenal.00251.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
We previously demonstrated that tumor necrosis factor-alpha (TNF) inhibits Na+-K+-2Cl- cotransporter (NKCC2) phosphorylation in the thick ascending limb (TAL); however, the underlying mechanism remains unclear. We tested the hypothesis that the induction of calcineurin (CN) activity and the expression of CN isoforms contribute to the mechanism by which TNF inhibits phospho-NKCC2 (pNKCC2) expression. CN activity increased by approximately twofold in primary cultures of medullary (m)TAL cells challenged with mouse recombinant TNF. In contrast, silencing TNF production in mTAL cells using lentivirus U6-TNF-ex4 reduced CN activity. pNKCC2 expression decreased in mTAL cells challenged with TNF, whereas inhibition of CN activity with cyclosporine A (CsA) increased pNKCC2 expression. Although mTAL cells express both the calcineurin A subunit (CNA) α and β isoforms, only CNA β isoform mRNA increased after mTAL cells were challenged with TNF. In vivo, both TNF and CNA β expression increased in outer medulla (OM) from mice given 1% NaCl in the drinking water for 7 days and intrarenal lentivirus silencing of TNF selectively reduced expression of CNA β. Intrarenal injection of a lentivirus that specifically silenced CNA β (U6-CNAβ-ex6) increased pNKCC2 expression and attenuated the inhibitory effects of TNF on pNKCC2 expression in freshly isolated TAL tubules. Collectively, the study is the first to demonstrate that TNF increases CN activity and specifically induces β-isoform expression in the kidney. Since NKCC2 is a known target of the CNA β isoform, these findings suggest that a CN-dependent signaling pathway involving this isoform contributes to the mechanism by which TNF inhibits pNKCC2 expression.NEW & NOTEWORTHY The beneficial immunosuppressive effects of CsA are tempered by renal side effects including reduction of GFR, proximal tubule damage, reduced urinary concentration, fibrosis and hypertension. As chronic administration of CN inhibitors frequently induce hypertension and renal nephropathy in humans, understanding the molecular mechanisms by which CN isoforms regulate the activity of renal transporters may provide the framework for developing new drugs that more selectively modulate the diverse functions of CN.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| | - Anna Pia Lasaracina
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| | - Jarred Epps
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
2
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2025; 16:118-140. [PMID: 38100543 PMCID: PMC11970766 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D. Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I. Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Piao X, Zhou J, Xue L. Triptolide decreases rheumatoid arthritis fibroblast-like synoviocyte proliferation, invasion, inflammation and presents a therapeutic effect in collagen-induced arthritis rats via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling. Int Immunopharmacol 2021; 99:108010. [PMID: 34358861 DOI: 10.1016/j.intimp.2021.108010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our previous study observed that long non-coding RNA (lncRNA) RP11-83J16.1 promoted rheumatoid arthritis (RA)-fibroblast-like synoviocyte (RA-FLS) proliferation, invasion and inflammation, which was downregulated by triptolide treatment. Therefore, the present study aimed to further investigate the mechanism and interaction between triptolide and lncRNA RP11-83J16.1 in RA treatment in vitro and in vivo. METHODS RA-FLS was isolated and treated by different concentration of triptolide and lncRNA RP11-83J16.1 overexpression plasmid. Furthermore, collagen-induced arthritis (CIA) rat model was constructed followed by triptolide and lncRNA RP11-83J16.1 overexpression plasmid treatment. RESULTS Triptolide inhibited RA-FLS viability and lncRNA RP11-83J16.1 expression in a dose-dependent manner. Afterward, triptolide treatment inhibited RA-FLS proliferation, invasion, levels of inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but promoted apoptosis. However, lncRNA RP11-83J16.1 overexpression weakened the effects of triptolide on regulating RA-FLS cell behaviors, URI1 signaling and β-catenin signaling. In CIA model, triptolide decreased arthritis score, hyperproliferation of synovial cells, inflammation infiltration of synovial tissue, inflammatory markers (TNF-α, IL-1β, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and β-catenin signaling, but increased cell apoptosis rate of synovial tissue. Nevertheless, lncRNA RP11-83J16.1 curtailed the treatment effect of triptolide in CIA model. CONCLUSION Triptolide decreases RA-FLS proliferation, invasion, inflammation and presents a therapeutic effect in CIA model via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling.
Collapse
Affiliation(s)
- Xuemei Piao
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Nikopensius T, Niibo P, Haller T, Jagomägi T, Voog-Oras Ü, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Association analysis of juvenile idiopathic arthritis genetic susceptibility factors in Estonian patients. Clin Rheumatol 2021; 40:4157-4165. [PMID: 34101054 PMCID: PMC8463396 DOI: 10.1007/s10067-021-05756-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients.
Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05756-x.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Priit Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Triin Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ülle Voog-Oras
- Institute of Dentistry, University of Tartu, Tartu, Estonia.,Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Mare Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Chris Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia.,Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Eor JY, Park N, Son YJ, Kim SH. Therapeutic Effects of Gleditsia sinensis Thorn Extract Fermented by Lactobacillus casei 3260 in a Type II Collagen-Induced Rheumatoid Arthritis Mouse Model. Food Sci Anim Resour 2021; 41:497-508. [PMID: 34017957 PMCID: PMC8112306 DOI: 10.5851/kosfa.2021.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 11/06/2022] Open
Abstract
This study aimed to assess the anti-inflammatory effect of Lactobacillus casei 3260 (LC) alone and LC-fermented Gleditsia sinensis thorn (GST) extract in mouse model of type II collagen induced rheumatoid arthritis (RA). In our previous work, we confirmed the anti-inflammatory effects of LC and GST against LPS-induced inflammation in vitro. In this study, LC and GST were fermented and their effects were assessed in an animal model of RA. Both LC and fermented GST (fGST) treatment reduced mice serum nitrite and total cholesterol and triggered myeloperoxidase (MPO) activity. In addition, both LC and fGST reduced inflammation-related serum biomarkers such as tumor necrosis factor-α, interleukin (IL)-6, IL-17, and IL-1β. As per the morphological analysis, both LC and fGST protected hind paw joints against RA, and its related mRNA markers improved. Finally, arthritis scores were measured as an indicator of RA of the whole experimental period; the scores suggested that both LC and fGST protect against collagen-induced RA-related inflammation in a mouse model.
Collapse
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Life Sciences and Natural Resources, Korea University, Seoul 02841, Korea
| | - Nahyun Park
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Yoon Ji Son
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Life Sciences and Natural Resources, Korea University, Seoul 02841, Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Life Sciences and Natural Resources, Korea University, Seoul 02841, Korea
| |
Collapse
|
6
|
Gadeval A, Chaudhari S, Bollampally SP, Polaka S, Kalyane D, Sengupta P, Kalia K, Tekade RK. Integrated nanomaterials for non-invasive photothermal therapy of rheumatoid arthritis. Drug Discov Today 2021; 26:2315-2328. [PMID: 33962037 DOI: 10.1016/j.drudis.2021.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease that causes swelling, redness, and arthralgia of multiple joints. Despite significant research and development on the treatment modalities for RA, there is still no established effective treatment option for eradicating joint damage and inflammation. In recent years, photothermal therapy (PTT) has emerged as a practical approach to treat RA. In this review, we outline various factors that affect the effective treatment of RA. Moreover, we discuss various PTT-based nanomaterials that can be used to treat RA.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sayali Chaudhari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sai Pranavi Bollampally
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Suryanarayana Polaka
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
7
|
Ha YJ, Lee SM, Mun CH, Kim HJ, Bae Y, Lim JH, Park KH, Lee SK, Yoo KH, Park YB. Methotrexate-loaded multifunctional nanoparticles with near-infrared irradiation for the treatment of rheumatoid arthritis. Arthritis Res Ther 2020; 22:146. [PMID: 32552859 PMCID: PMC7302395 DOI: 10.1186/s13075-020-02230-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds Despite the advances of rheumatoid arthritis (RA) therapeutics, several patients do not receive adequate treatment due to the toxicity and/or insufficient response of drugs. The aim of this study is to design photothermally controlled drug release from multifunctional nanoparticles (MNPs) at a near-infrared (NIR) irradiated site to improve therapeutic efficacy for RA and reduce side effects. Methods Au film was deposited onto methotrexate (MTX)-loaded poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles, resulting in MTX-loaded MNPs. The synergistic effects of MTX-loaded MNPs with NIR irradiation were investigated using RA fibroblast-like synoviocytes (FLSs) and collagen-induced arthritis (CIA) mice. Results Upon NIR irradiation, NIR resonance of the Au half-shell generated heat locally, accelerating MTX release from PLGA nanoparticles. In vivo NIR images of MTX-loaded MNPs indicated effective delivery of the MNPs to the inflamed joints. Moreover, in collagen-induced arthritis mice, MTX-loaded MNPs containing 1/1400 of MTX solution (repeated-dose administration) had therapeutic effects comparable to conventional treatment with MTX solution. In vitro experiments showed higher therapeutic efficacy of MTX-loaded MNPs with NIR irradiation than that of chemotherapy alone. Conclusions A combination therapy of MTX-loaded MNP and NIR irradiation showed durable and good treatment efficacy for the suppression of arthritis in a single administration of small dose of MTX. Our results demonstrate that the treatment modality using drug-loaded MNP with NIR irradiation may be a promising therapeutic strategy for the treatment of RA and allow in vivo NIR optical imaging.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun-Mi Lee
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung Joon Kim
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea
| | - Yonghee Bae
- Department of Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hee Lim
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyu-Hyung Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo-Kon Lee
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung-Hwa Yoo
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea. .,Department of Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
9
|
Haidar O, O'Neill N, Staunton CA, Bavan S, O'Brien F, Zouggari S, Sharif U, Mobasheri A, Kumagai K, Barrett-Jolley R. Pro-inflammatory Cytokines Drive Deregulation of Potassium Channel Expression in Primary Synovial Fibroblasts. Front Physiol 2020; 11:226. [PMID: 32265733 PMCID: PMC7105747 DOI: 10.3389/fphys.2020.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023] Open
Abstract
The synovium secretes synovial fluid, but is also richly innervated with nociceptors and acts as a gateway between avascular joint tissues and the circulatory system. Resident fibroblast-like synoviocytes' (FLS) calcium-activated potassium channels (K Ca) change in activity in arthritis models and this correlates with FLS activation. Objective To investigate this activation in an in vitro model of inflammatory arthritis; 72 h treatment with cytokines TNFα and IL1β. Methods FLS cells were isolated from rat synovial membranes. We analyzed global changes in FLS mRNA by RNA-sequencing, then focused on FLS ion channel genes and the corresponding FLS electrophysiological phenotype and finally modeling data with ingenuity pathway analysis (IPA) and MATLAB. Results IPA showed significant activation of inflammatory, osteoarthritic and calcium signaling canonical pathways by cytokines, and we identified ∼200 channel gene transcripts. The large K Ca (BK) channel consists of the pore forming Kcnma1 together with β-subunits. Following cytokine treatment, a significant increase in Kcnma1 RNA abundance was detected by qPCR and changes in several ion channels were detected by RNA-sequencing, including a loss of BK channel β-subunit expression Kcnmb1/2 and an increase in Kcnmb3. In electrophysiological experiments, there was a decrease in over-all current density at 20 mV without change in chord conductance at this potential. Conclusion TNFα and IL1β treatment of FLS in vitro recapitulated several common features of inflammatory arthritis at the transcriptomic level, including increase in Kcnma1 and Kcnmb3 gene expression.
Collapse
Affiliation(s)
- Omar Haidar
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nathanael O'Neill
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Caroline A Staunton
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Selvan Bavan
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Zouggari
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Umar Sharif
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics and Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, Netherlands.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kosuke Kumagai
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
10
|
Park YJ, Yoo SA, Kim M, Kim WU. The Role of Calcium-Calcineurin-NFAT Signaling Pathway in Health and Autoimmune Diseases. Front Immunol 2020; 11:195. [PMID: 32210952 PMCID: PMC7075805 DOI: 10.3389/fimmu.2020.00195] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca2+) is an essential signaling molecule that controls a wide range of biological functions. In the immune system, calcium signals play a central role in a variety of cellular functions such as proliferation, differentiation, apoptosis, and numerous gene transcriptions. During an immune response, the engagement of T-cell and B-cell antigen receptors induces a decrease in the intracellular Ca2+ store and then activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration, which is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels. Recently, identification of the two critical regulators of the CRAC channel, stromal interaction molecule (STIM) and Orai1, has broadened our understanding of the regulatory mechanisms of Ca2+ signaling in lymphocytes. Repetitive or prolonged increase in intracellular Ca2+ is required for the calcineurin-mediated dephosphorylation of the nuclear factor of an activated T cell (NFAT). Recent data indicate that Ca2+-calcineurin-NFAT1 to 4 pathways are dysregulated in autoimmune diseases. Therefore, calcineurin inhibitors, cyclosporine and tacrolimus, have been used for the treatment of such autoimmune diseases as systemic lupus erythematosus and rheumatoid arthritis. Here, we review the role of the Ca2+-calcineurin–NFAT signaling pathway in health and diseases, focusing on the STIM and Orai1, and discuss the deregulated calcium-mediated calcineurin-NFAT pathway in autoimmune diseases.
Collapse
Affiliation(s)
- Yune-Jung Park
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, South Korea
| | - Seung-Ah Yoo
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeonsang National University Hospital, Jinju, South Korea
| | - Wan-Uk Kim
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
11
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
12
|
Li ZY, Zhou JJ, Luo CL, Zhang LM. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen II‑induced arthritis. Mol Med Rep 2019; 20:4540-4550. [PMID: 31702035 PMCID: PMC6797944 DOI: 10.3892/mmr.2019.10711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory synovitis resulting in progressive joint destruction. Persistent synovial inflammation is induced by activation of various inflammatory cells. G-protein-coupled bile acid receptor 1 (TGR5) is a G-protein-coupled receptor activated by various bile acids, which has been reported to act as a key adaptor in regulating various signaling pathways involved in inflammatory responses and a diverse array of physiological processes, including bile acid synthesis, lipid and carbohydrate metabolism, carcinogenesis, immunity and inflammation. In the present study, TGR5 expression was detected in RA peripheral blood mononuclear cells (PBMCs), and its association with clinical disease activity, histological synovitis severity and radiological joint destruction was analyzed. Subsequently, the role and potential underlying mechanisms of TGR5 in the PBMCs of patients with RA and mice with collagen II-induced arthritis (CIA) were investigated. PBMCs were obtained from 50 patients with RA and 40 healthy controls (HCs). The mRNA and protein expression levels of TGR5 were detected in PBMCs via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining, respectively. Additionally, the levels of proinflammatory cytokines were analyzed by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). The activation of nuclear factor-κB (NF-κB) and IκB kinase a was determined via western blot analysis. The anti-arthritic and anti-inflammatory effects of LCA on mice with CIA were then investigated. The arthritis score was assessed, and the protein levels of proinflammatory cytokines in the plasma of mice were detected via ELISA. TGR5 mRNA expression was significantly downregulated in the PBMCs of patients with RA compared with in those of the HCs (0.53±0.58 for patients vs. 1.49±0.83 for HCs; P<0.001); similar findings were observed at the protein level. The mRNA expression levels of TGR5 in the PBMCs of patients with RA with a high 28-Joint Disease Activity Score (DAS28) were significantly decreased compared with in patients with a low DAS28 (0.81±0.65 for low score vs. 0.35±0.46 for high score; P=0.002). Furthermore, TGR5 expression was significantly correlated with the levels of C-reactive protein (r=−0.429; P=0.002) and the DAS28 (r=−0.383; P=0.006). RT-qPCR and ELISA analyses indicated that lithocholic acid (LCA, 10 mg/kg/day) attenuated lipopolysaccharide-induced proinflammatory cytokine production via inhibition of NF-κB activity in the PBMCs of patients with RA. In addition, the arthritis score was significantly decreased in LCA-treated CIA mice compared with in non-treated CIA mice. The increased production of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8 was significantly reduced in the plasma of LCA-treated CIA mice compared with the control. In conclusion, TGR5 may contribute to the inflammation of PBMCs in patients with RA and mice with CIA.
Collapse
Affiliation(s)
- Zhe-Yong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310017, P.R. China
| | - Jing-Jing Zhou
- Department of Rheumatology, Navy General Hospital, Beijing 100048, P.R. China
| | - Chun-Lei Luo
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 3150102, P.R. China
| | - Le-Meng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
13
|
Wong VKW, Qiu C, Xu S, Law BYK, Zeng W, Wang H, Michelangeli F, Dias IRDSR, Qu YQ, Chan TW, Han Y, Zhang N, Mok SWF, Chen X, Yu L, Pan H, Hamdoun S, Efferth T, Yu WJ, Zhang W, Li Z, Xie Y, Luo R, Jiang Q, Liu L. Ca 2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol 2019; 176:2922-2944. [PMID: 31124139 PMCID: PMC6637043 DOI: 10.1111/bph.14718] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. EXPERIMENTAL APPROACH We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohistochemical and flow cytometric techniques. Anti-arthritic effects of celastrol, autophagy induction, and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes, using siRNA methods to study calmodulin, calpains, and calcineurin. KEY RESULTS Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via Ca2+ /calmodulin-dependent kinase kinase-β-AMP-activated protein kinase-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes down-regulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca2+ in celastrol-regulated gene expression. CONCLUSION AND IMPLICATIONS Celastrol triggered Ca2+ signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca2+ signalling.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Su‐Wei Xu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Basic MedicineZhuhai Health SchoolZhuhaiChina
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hui Wang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | | | | | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Tsz Wai Chan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Ni Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xi Chen
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lu Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Wen Jing Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yuesheng Xie
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Riqiang Luo
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Quan Jiang
- Department of Rheumatology, Guang‐An‐Men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
14
|
Jung ME, Mallet RT. Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity. Respir Physiol Neurobiol 2018; 256:67-78. [PMID: 28811138 PMCID: PMC5825251 DOI: 10.1016/j.resp.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Ethanol intoxication and withdrawal exact a devastating toll on the central nervous system. Abrupt ethanol withdrawal provokes massive release of the excitatory neurotransmitter glutamate, which over-activates its postsynaptic receptors, causing intense Ca2+ loading, p38 mitogen activated protein kinase activation and oxidative stress, culminating in ATP depletion, mitochondrial injury, amyloid β deposition and neuronal death. Collectively, these mechanisms produce neurocognitive and sensorimotor dysfunction that discourages continued abstinence. Although the brain is heavily dependent on blood-borne O2 to sustain its aerobic ATP production, brief, cyclic episodes of moderate hypoxia and reoxygenation, when judiciously applied over the course of days or weeks, evoke adaptations that protect the brain from ethanol withdrawal-induced glutamate excitotoxicity, mitochondrial damage, oxidative stress and amyloid β accumulation. This review summarizes evidence from ongoing preclinical research that demonstrates intermittent hypoxia training to be a potentially powerful yet non-invasive intervention capable of affording robust, sustained neuroprotection during ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | - Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
15
|
Dextromethorphan Exhibits Anti-inflammatory and Immunomodulatory Effects in a Murine Model of Collagen-Induced Arthritis and in Human Rheumatoid Arthritis. Sci Rep 2017; 7:11353. [PMID: 28900117 PMCID: PMC5595833 DOI: 10.1038/s41598-017-11378-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/23/2017] [Indexed: 01/04/2023] Open
Abstract
Dextromethorphan (d-3-methoxy-17-methylmorphinan, DXM) is a commonly used antitussive with a favorable safety profile. Previous studies have demonstrated that DXM has anti-inflammatory and immunomodulatory properties; however, the effect of DXM in rheumatoid arthritis (RA) remains unknown. Herein, we found that DXM treatment attenuated arthritis severity and proinflammatory cytokine expression levels, including TNF-α, IL-6, and IL-17A, in paw tissues of CIA mice. DXM treatment also reduced serum TNF-α, IL-6, and IL-17A levels of CIA mice and patients with RA. DXM further decreased the production of anti-CII IgG, IFN-γ, and IL-17A in collagen-reactive CD4+ T cells extracted from the lymph nodes of CIA mice. In vitro incubation of bone marrow–derived dendritic cells with DXM limited CD4+ T-cell proliferation and inflammatory cytokine secretion. In conclusion, our results showed that DXM attenuated arthritis symptoms in CIA mice and significantly reduced proinflammatory cytokines in patients with RA, suggesting that it can be used as an anti-arthritic agent.
Collapse
|
16
|
Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca 2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med 2016; 99:392-404. [PMID: 27585948 DOI: 10.1016/j.freeradbiomed.2016.08.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/24/2016] [Accepted: 08/28/2016] [Indexed: 12/30/2022]
Abstract
Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca2+ homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca2+/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca2+/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junghyung Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Unbin Chae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Autophagy and mitochondrial dysfunction in adjuvant-arthritis rats treatment with resveratrol. Sci Rep 2016; 6:32928. [PMID: 27611176 PMCID: PMC5017199 DOI: 10.1038/srep32928] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/18/2023] Open
Abstract
Resveratrol is a polyphenol derivatives which exhibits a pro-apoptotic effect in a variety of human cancers by triggering mitochondria apoptosis pathway and autophagy. However, there are scarcely reports on its apoptosis-promoting effect in abnormal proliferation fibroblast-like synoviocytes (FLSs). In this study, we investigated the underlying mechanism and apoptosis-inducing effects of resveratrol on the abnormal proliferation of FLSs in adjuvant-arthritis (AA) rats. Since using resveratrol for 12 days resulted in a significant decreasing the swelling degree of the paw, reducing malondialdehyde (MDA) content and enhancing superoxide dismutase (SOD) activity, antioxidant capacity, glutathione peroxidase and glutathione reductase ratio in AA rats. Moreover, we found that 5 μMH2O2 could increase cells viability, Beclin1, LC3A/B, MnSOD, SIRT3 protein expression in FLSs. But, resveratrol could reverse these effects by changing mitochondrial membrane potential (Δψm) to promote mitochondrial reactive oxygen species (mtROS) generation in 5 μMH2O2-treatment FLSs. These results suggest that oxidative stress existed in AA rats. Resveratrol could suppress oxidative stress in AA rats and increase mtROS production by reducing autophagy protein Beclin1, LC3A/B and oxidative stress protein MnSOD to promoted the apoptosis of FLSs. Thus, targeting of mtROS may be a crucial mechanism of resveratrol confers patients with rheumatoid arthritis.
Collapse
|
18
|
Activation of the vitamin D receptor selectively interferes with calcineurin-mediated inflammation: a clinical evaluation in the abdominal aortic aneurysm. J Transl Med 2016; 96:784-90. [PMID: 27239732 DOI: 10.1038/labinvest.2016.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 12/23/2022] Open
Abstract
In vitro and in vivo studies attribute potent immune regulatory properties to the vitamin D receptor (VDR). Yet, it is unclear to what extend these observations translate to the clinical context of (vascular) inflammation. This clinical study evaluates the potential of a VDR agonist to quench vascular inflammation. Patients scheduled for open abdominal aneurysm repair received paricalcitol 1 μg daily during 2-4 weeks before repair. Results were compared with matched controls. Evaluation in a parallel group showed that AAA patients are vitamin D insufficient (median plasma vitamin D: 43 (30-62 (IQR)) nmol/l). Aneurysm wall samples were collected during surgery, and the inflammatory footprint was studied. The brief paricalcitol intervention resulted in a selective 73% reduction in CD4+ T-helper cell content (P<0.024) and a parallel 35% reduction in T-cell (CD3+) content (P<0.032). On the mRNA level, paricalcitol reduced expression of T-cell-associated cytokines IL-2, 4, and 10 (P<0.019). No effect was found on other inflammatory mediators. On the protease level, selective effects were found for cathepsin K (P<0.036) and L (P<0.005). Collectively, these effects converge at the level of calcineurin activity. An effect of the VDR agonist on calcineurin activity was confirmed in a mixed lymphocyte reaction. In conclusion, brief course of the VDR agonist paricalcitol has profound effects on local inflammation via reduced T-cell activation. The anti-inflammatory potential of VDR activation in vitamin D insufficient patients is highly selective and appears to be mediated by an effect on calcineurin-mediated responses.
Collapse
|
19
|
Chimote AA, Hajdu P, Kottyan LC, Harley JB, Yun Y, Conforti L. Nanovesicle-targeted Kv1.3 knockdown in memory T cells suppresses CD40L expression and memory phenotype. J Autoimmun 2016; 69:86-93. [PMID: 26994905 DOI: 10.1016/j.jaut.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Ca(2+) signaling controls activation and effector functions of T lymphocytes. Ca(2+) levels also regulate NFAT activation and CD40 ligand (CD40L) expression in T cells. CD40L in activated memory T cells binds to its cognate receptor, CD40, on other cell types resulting in the production of antibodies and pro-inflammatory mediators. The CD40L/CD40 interaction is implicated in the pathogenesis of autoimmune disorders and CD40L is widely recognized as a therapeutic target. Ca(2+) signaling in T cells is regulated by Kv1.3 channels. We have developed lipid nanoparticles that deliver Kv1.3 siRNAs (Kv1.3-NPs) selectively to CD45RO(+) memory T cells and reduce the activation-induced Ca(2+) influx. Herein we report that Kv1.3-NPs reduced NFAT activation and CD40L expression exclusively in CD45RO(+) T cells. Furthermore, Kv1.3-NPs suppressed cytokine release and induced a phenotype switch of T cells from predominantly memory to naïve. These findings indicate that Kv1.3-NPs operate as targeted immune suppressive agents with promising therapeutic potentials.
Collapse
Affiliation(s)
- Ameet A Chimote
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, USA
| | - Peter Hajdu
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Yeoheung Yun
- North Carolina A & T State University, Chemical, Biological and Bioengineering Department, Greensboro, NC, USA
| | - Laura Conforti
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Park R, Ji JD. Calcium channels: the potential therapeutic targets for inflammatory bone destruction of rheumatoid arthritis. Inflamm Res 2016; 65:347-54. [PMID: 26852086 DOI: 10.1007/s00011-016-0920-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Inflammatory bone resorption causes progressive joint destruction which ultimately leads to functional disability in rheumatoid arthritis (RA). The primary cell responsible for bone resorption is the osteoclast, which means it is a potential therapeutic target against bone destruction. In fact, experimental and clinical findings suggest that blockade of osteoclast differentiation and function is highly effective in inhibiting bone destruction in RA. DISCUSSION AND CONCLUSION In this report, we show several lines of experimental evidence which suggest that a variety of Ca(2+) channels are essential in osteoclast differentiation and function, and present a hypothesis that modulation of Ca(2+) channels is a highly effective therapeutic strategy in preventing osteoclast-induced structural damage in RA.
Collapse
Affiliation(s)
- Robin Park
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea
| | - Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea.
| |
Collapse
|
21
|
Erkut A, Tumkaya L, Balik MS, Kalkan Y, Guvercin Y, Yilmaz A, Yuce S, Cure E, Sehitoglu I. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cir Bras 2016; 31:74-83. [PMID: 26959616 DOI: 10.1590/s0102-865020160020000001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigated the effects of exposure to an 1800 MHz electromagnetic field (EMF) on bone development during the prenatal period in rats. METHODS Pregnant rats in the experimental group were exposed to radiation for six, 12, and 24 hours daily for 20 days. No radiation was given to the pregnant rats in the control group. We distributed the newborn rats into four groups according to prenatal EMF exposure as follows: Group 1 was not exposed to EMF; groups 2, 3, and 4 were exposed to EMF for six, 12, and 24 hours a day, respectively. The rats were evaluated at the end of the 60th day following birth. RESULTS Increasing the duration of EMF exposure during the prenatal period resulted in a significant reduction of resting cartilage levels and a significant increase in the number of apoptotic chondrocytes and myocytes. There was also a reduction in calcineurin activities in both bone and muscle tissues. We observed that the development of the femur, tibia, and ulna were negatively affected, especially with a daily EMF exposure of 24 hours. CONCLUSION Bone and muscle tissue development was negatively affected due to prenatal exposure to 1800 MHz radiofrequency electromagnetic field.
Collapse
Affiliation(s)
- Adem Erkut
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | | | - Yildiray Kalkan
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Yilmaz Guvercin
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Suleyman Yuce
- Department of Internal Medicine, Kumru State Hospital, Ordu, Turkey
| | - Erkan Cure
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
22
|
Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem 2015; 26:1467-78. [DOI: 10.1016/j.jnutbio.2015.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/19/2015] [Accepted: 07/19/2015] [Indexed: 12/20/2022]
|
23
|
Activation of LXR attenuates collagen-induced arthritis via suppressing BLyS production. Clin Immunol 2015; 161:339-47. [PMID: 26431776 DOI: 10.1016/j.clim.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023]
Abstract
B-lymphocyte stimulator (BLyS) plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Liver X receptor (LXR), a nuclear receptor, has an important anti-inflammatory effect. However, it is unclear whether the BLyS expression is regulated by LXR. In this study, we found that treatment with LXR agonist in collagen-induced arthritis (CIA) mice significantly attenuated arthritis progression, and markedly decreased BLyS production in serum and splenocytes as well as the production of serum IFNγ and TGFβ. Activation of LXR in B lymphocytes dramatically suppressed the basal and IFNγ/TGFβ-induced BLyS expression. Moreover, LXR agonist prominently suppressed the binding of NF-κB to BLyS promoter region, and decreased the promoter's transcriptional activity. Additionally, activation of LXR obviously repressed IFNγ-induced STAT1 activation and TGFβ-induced SMAD3 activation. These results indicated that downregulation of BLyS may be a novel mechanism by which LXR ameliorates RA, and LXR/BLyS pathway may serve as a novel target for the treatment of RA.
Collapse
|
24
|
Glycyrol suppresses collagen-induced arthritis by regulating autoimmune and inflammatory responses. PLoS One 2014; 9:e98137. [PMID: 25036817 PMCID: PMC4103760 DOI: 10.1371/journal.pone.0098137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/29/2014] [Indexed: 01/19/2023] Open
Abstract
Glycyrol is a natural compound extracted from Glycyrrhiza uralensis, first reported by us to be a new immunosuppressant. Here, we demonstrate its beneficial effect in collagen-induced arthritis (CIA) in mice, a model for rheumatoid arthritis (RA) in man, and we document the underlying mechanisms. Peroral administration of glycyrol significantly reduced clinical scores, alleviated cartilage and bone erosion and reduced levels of serum inflammatory cytokines. Glycyrol also decreased delayed-type hypersensitivity, improved carbon clearance and reduced acetic acid-induced capillary permeability. Furthermore, glycyrol decreased NF-κB and NFAT transcriptional activities and inhibited IL-2 expression. The therapeutic effect of glycyrol was associated with down-regulation of both autoimmune and inflammatory reactions. In addition, we demonstrated that glycyrol has minimal acute toxicity in mice. Therefore, we propose that glycyrol may hold promise for future treatment of RA.
Collapse
|
25
|
Fu Y, Zhou H, Wang M, Cen J, Wei Q. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4127-4134. [PMID: 24738849 DOI: 10.1021/jf405790q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Beijing Normal University , Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Yoo HS, Choi Y, Ahn N, Lee S, Kim WU, Jang MS, Jang MH, Kim YS, Yoo JY. Transcriptional Regulator CTR9 Inhibits Th17 Differentiation via Repression of IL-17 Expression. THE JOURNAL OF IMMUNOLOGY 2014; 192:1440-8. [DOI: 10.4049/jimmunol.1201952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13:543-54. [PMID: 22950383 DOI: 10.2174/1566524011313040007] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 01/28/2023]
Abstract
Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer.
Collapse
Affiliation(s)
- M-G Pan
- Division of Oncology and Hematology, Kaiser Permanente Medical Center, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
28
|
Sluka KA, Rasmussen LA, Edgar MM, O'Donnell JM, Walder RY, Kolker SJ, Boyle DL, Firestein GS. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. ACTA ACUST UNITED AC 2013; 65:1194-202. [PMID: 23335302 DOI: 10.1002/art.37862] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Through its location on nociceptors, acid-sensing ion channel 3 (ASIC-3) is activated by decreases in pH and plays a significant role in musculoskeletal pain. We recently showed that decreases in pH activate ASIC-3 located on fibroblast-like synoviocytes (FLS), which are key cells in the inflammatory process. The purpose of this study was to test whether ASIC-3-deficient mice with arthritis have altered inflammation and pain relative to controls. METHODS Collagen antibody-induced arthritis (CAIA) was generated by injection of an anti-type II collagen antibody cocktail. Inflammation and pain parameters in ASIC-3(-/-) and ASIC-3(+/+) mice were assessed. Disease severity was assessed by determining clinical arthritis scores, measuring joint diameters, analyzing joint histology, and assessing synovial gene expression by quantitative polymerase chain reaction analysis. Cell death was assessed with a Live/Dead assay of FLS in response to decreases in pH. Pain behaviors in the mice were measured by examining withdrawal thresholds in the joints and paws and by measuring their physical activity levels. RESULTS Surprisingly, ASIC-3(-/-) mice with CAIA demonstrated significantly increased joint inflammation, joint destruction, and expression of interleukin-6 (IL-6), matrix metalloproteinase 3 (MMP-3), and MMP-13 in joint tissue as compared to ASIC-3(+/+) mice. ASIC-3(+/+) FLS showed enhanced cell death when exposed to pH 6.0 in the presence of IL-1β, which was abolished in ASIC-3(-/-) FLS. Despite enhanced disease severity, ASIC-3(-/-) mice did not develop mechanical hypersensitivity of the paw and showed greater levels of physical activity. CONCLUSION Our findings are consistent with the hypothesis that ASIC-3 plays a protective role in the inflammatory arthritides by limiting inflammation through enhanced synoviocyte cell death, which reduces disease severity, and through the production of pain, which reduces joint use.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa Carver College of Medicine, Iowa City 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Weix J, Förger F, Häupl T, Surbek D, Østensen M, Villiger PM. Influence of pregnancy on the adipocytokine and peroxisome proliferator-activated receptor pathways in peripheral blood mononuclear cells from healthy donors and rheumatoid arthritis patients. ACTA ACUST UNITED AC 2012; 64:2095-103. [PMID: 22231457 DOI: 10.1002/art.34375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify candidate genes that are regulated by human pregnancy and have the potential to modulate rheumatoid arthritis (RA) disease activity. METHODS Peripheral blood mononuclear cells (PBMCs) from healthy pregnant volunteers were analyzed using Affymetrix GeneChips at 4 time points (during the first, second, and third trimesters and 6 weeks postpartum). Based on the GeneChip data, target genes were further analyzed via real-time quantitative polymerase chain reaction (qPCR) using PBMCs from healthy controls and RA patients. In order to determine the cellular source of the candidate gene messenger RNA (mRNA), monocytes and lymphocytes from healthy controls and RA patients were positively selected using magnetic beads, and their mRNA was analyzed by qPCR. RESULTS One-way analysis of variance identified 1,286 mRNAs that were differentially expressed with regard to the 4 time points. The changes became more pronounced as pregnancy progressed, and they were reversed postpartum. A subsequent pathway analysis suggested a regulatory role of pregnancy on the adipocytokine pathway as well as on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Of 19 preselected candidate genes, AKT3, SOCS3, FADS2, STAT1, and CD36 proved to be differentially regulated by pregnancy. In samples from RA patients, the differences were concordant with those in healthy controls but more pronounced. Both T lymphocytes and monocytes contributed to the regulated expression of these genes. CONCLUSION Our findings indicate that normal human pregnancy leads to changes in the expression of several molecular pathways in PBMCs, which are reversed postpartum. Changes in RA patients, although concordant, exceed the levels observed in healthy controls. Genes of the adipocytokine and PPAR signaling pathways qualify as candidates for the modulation of RA disease activity during pregnancy.
Collapse
Affiliation(s)
- Janine Weix
- University Hospital and University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Yi JK, Kim HJ, Yu DH, Park SJ, Shin MJ, Yuh HS, Bae KB, Ji YR, Kim NR, Park SJ, Kim JY, Lee HS, Lee SG, Yoon DH, Hyun BH, Kim WU, Ryoo ZY. Regulation of inflammatory responses and fibroblast-like synoviocyte apoptosis by calcineurin-binding protein 1 in mice with collagen-induced arthritis. ACTA ACUST UNITED AC 2012; 64:2191-200. [PMID: 22275266 DOI: 10.1002/art.34398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Calcineurin-binding protein 1 (CABIN-1) regulates calcineurin phosphatase activity as well as the activation, apoptosis, and inflammatory responses of fibroblast-like synoviocytes (FLS), which actively participate in the chronic inflammatory responses in rheumatoid arthritis (RA). However, the mechanism of action of CABIN-1 in FLS apoptosis is not clear. This study was undertaken to define the regulatory role of CABIN-1 in FLS from mice with collagen-induced arthritis (CIA). METHODS Transgenic mice overexpressing human CABIN-1 in joint tissue under the control of a type II collagen promoter were generated. Expression of human CABIN-1 (hCABIN-1) in joints and FLS was determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of cytokines, matrix metalloproteinases (MMPs), and apoptosis-related genes in FLS was determined by enzyme-linked immunosorbent assay, gelatin zymography, and RT-PCR, respectively. Joints were stained with hematoxylin and eosin and with tartrate-resistant acid phosphatase for histologic analysis. RESULTS Human CABIN-1-transgenic mice with CIA had less severe arthritis than wild-type mice with CIA, as assessed according to hind paw thickness and histologic features. The milder arthritis was accompanied by significantly enhanced apoptosis in transgenic mice, evidenced by a significantly greater number of TUNEL-positive cells in synovial tissue. Expression of inflammatory cytokines and MMPs in the transgenic mice with CIA was reduced, and they exhibited decreased Akt activation and increased expression of p53, caspase 3, caspase 9, and Bax. CONCLUSION Our findings demonstrate that hCABIN-1 plays a critical role in promoting apoptosis of FLS and in attenuating inflammation and cartilage and bone destruction in RA. These results help elucidate the pathogenic mechanisms of RA and suggest that CABIN-1 is a potential target for treatment of this disease.
Collapse
Affiliation(s)
- Jun-Koo Yi
- Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kitahara K, Kusunoki N, Takahashi H, Tsuchiya K, Kawai S. Tacrolimus down-regulates chemokine expressions on rheumatoid synovial fibroblasts: screening by a DNA microarray. Inflamm Res 2012; 61:1385-94. [DOI: 10.1007/s00011-012-0541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/16/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022] Open
|
32
|
Park SJ, Kim KJ, Kim WU, Oh IH, Cho CS. Involvement of endoplasmic reticulum stress in homocysteine-induced apoptosis of osteoblastic cells. J Bone Miner Metab 2012; 30:474-84. [PMID: 22222420 DOI: 10.1007/s00774-011-0346-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
Hyperhomocysteinemia has been shown to increase the incidence of osteoporosis and osteoporotic fractures. Endoplasmic reticulum (ER) stress was recently shown to be associated with apoptosis in several types of cells. In this study, we determined the effect of homocysteine (Hcy) on the apoptosis of osteoblastic cells and investigated whether ER stress participates in Hcy-induced osteoblast apoptosis. Human osteoblastic cells were incubated with Hcy. Hcy dose-dependently decreased cell viability and increased apoptosis in osteoblastic cells. Osteoblastic cells are more susceptible to Hcy-mediated cell death than other cell types. Expression of cleaved caspase-3 was significantly increased by Hcy, and pretreatment with caspase-3 inhibitor rescued the cell viability by Hcy. Hcy treatment led to an increase in release of mitochondrial cytochrome c. It also triggered ER stress by increased expression of glucose-regulated protein 78, inositol-requiring transmembrane kinase and endonuclease 1α (IRE-1α), spliced X-box binding protein, activating transcription factor 4, and C/EBP homologous protein. Silencing IRE-1α expression by small interfering RNA effectively suppressed Hcy-induced apoptosis of osteoblastic cells. Our results suggest that hyperhomocysteinemia induces apoptotic cell death in osteoblasts via ER stress.
Collapse
Affiliation(s)
- Su-Jung Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea, #62 Yeouido-dong, Yeongdeungpo-ku, Seoul, South Korea
| | | | | | | | | |
Collapse
|
33
|
Lai NS, Yu CL, Yin WY, Yu HC, Huang HB, Tung CH, Lu MC. Combination of nifedipine and subtherapeutic dose of cyclosporin additively suppresses mononuclear cells activation of patients with rheumatoid arthritis and normal individuals via Ca(2+) -calcineurin-nuclear factor of activated T cells pathway. Clin Exp Immunol 2012; 168:78-86. [PMID: 22385242 DOI: 10.1111/j.1365-2249.2012.04563.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal Ca(2+) -mediated signalling contributes to the pathogenesis of rheumatoid arthritis (RA). However, the potential implication of calcium channel blocker in RA remained unknown. We hypothesized that nifedipine, an L-type calcium channel blocker, combined with a calcineurin inhibitor, could suppress T cell activation via targeting different level of the Ca(2+) signalling pathway. The percentage of activated T cells and the apoptotic rate of mononuclear cells (MNCs) was measured by flow cytometry. The MNC viability, cytokine production, cytosolic Ca(2+) level and activity of the nuclear factor of activated T cells (NFAT) were measured by enzyme-linked immunosorbent assay (ELISA). The NFAT-regulated gene expression, including interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF), was measured by real-time polymerase chain reaction (PCR). We found that the percentage of activated T cells in anti-CD3 + anti-CD28-activated MNC was higher in RA patients. High doses of nifedipine (50 µM) increased MNCs apoptosis, inhibited T cell activation and decreased T helper type 2 (Th1) (IFN-γ)/Th2 (IL-10) cytokine production in both groups. The Ca(2+) influx was lower in anti-CD3 + anti-CD28-activated MNC from RA patients than healthy volunteers and suppressed by nifedipine. When combined with a subtherapeutic dose (50 ng/ml) of cyclosporin, 1 µM nifedipine suppressed the percentage of activated T cells in both groups. Moreover, this combination suppressed more IFN-γ secretion and NFAT-regulated gene (GM-CSF and IFN-γ) expression in RA-MNCs than normal MNCs via decreasing the activity of NFATc1. In conclusion, we found that L-type Ca(2+) channel blockers and subtherapeutic doses of cyclosporin act additively to suppress the Ca(2+) -calcineurin-NFAT signalling pathway, leading to inhibition of T cell activity. We propose that this combination may become a potential treatment of RA.
Collapse
Affiliation(s)
- N-S Lai
- Division of Allergy, Immunology and Rheumatology Division of General Surgery, Buddhist Dalin Tzu Chi General Hospital, no. 2 Min-Sheng Road, Dalin Town, Chia-Yi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Yoo SA, You S, Yoon HJ, Kim DH, Kim HS, Lee K, Ahn JH, Hwang D, Lee AS, Kim KJ, Park YJ, Cho CS, Kim WU. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 209:871-86. [PMID: 22430489 PMCID: PMC3328363 DOI: 10.1084/jem.20111783] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An accumulation of misfolded proteins can trigger a cellular survival response in the endoplasmic reticulum (ER). In this study, we found that ER stress-associated gene signatures were highly expressed in rheumatoid arthritis (RA) synoviums and synovial cells. Proinflammatory cytokines, such as TNF and IL-1β, increased the expression of GRP78/BiP, a representative ER chaperone, in RA synoviocytes. RA synoviocytes expressed higher levels of GRP78 than osteoarthritis (OA) synoviocytes when stimulated by thapsigargin or proinflammatory cytokines. Down-regulation of Grp78 transcripts increased the apoptosis of RA synoviocytes while abolishing TNF- or TGF-β-induced synoviocyte proliferation and cyclin D1 up-regulation. Conversely, overexpression of the Grp78 gene prevented synoviocyte apoptosis. Moreover, Grp78 small interfering RNA inhibited VEGF(165)-induced angiogenesis in vitro and also significantly impeded synoviocyte proliferation and angiogenesis in Matrigel implants engrafted into immunodeficient mice. Additionally, repeated intraarticular injections of BiP-inducible factor X, a selective GRP78 inducer, increased synoviocyte proliferation and angiogenesis in the joints of mice with experimental OA. In contrast, mice with Grp78 haploinsufficiency exhibited the suppression of experimentally induced arthritis and developed a limited degree of synovial proliferation and angiogenesis. In summary, this study shows that the ER chaperone GRP78 is crucial for synoviocyte proliferation and angiogenesis, the pathological hallmark of RA.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu DH, Yi JK, Park SJ, Kim MO, Kim HJ, Yuh HS, Bae KB, Ji YR, Lee HS, Lee SG, Choo YS, Kim JY, Yoon DH, Hyun BH, Ryoo ZY. Tissue-specific expression of human calcineurin-binding protein 1 in mouse synovial tissue can suppress inflammatory arthritis. J Interferon Cytokine Res 2011; 32:6-11. [PMID: 22175542 DOI: 10.1089/jir.2010.0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calcineurin (CN) is a calcium- and calmodulin-dependent serine/threonine phosphatase. In immune cells, CN controls the activity of a wide range of transcription factors, including nuclear factor of activated T, nuclear factor-kappa B, c-fos, and Elk-1. CN plays an important role in synoviocyte activation and arthritis progression in vivo and this function is tightly linked to dysregulated intracellular Ca(2+) store and Ca(2+) response triggered by proinflammatory cytokines. In the present study, transgenic mice expressing human calcineurin-binding protein 1 (hCabin1) were generated, driven by type II collagen promoter, and the efficiency of these mice was investigated by experimental arthritis. These transgenic mice successfully expressed hCabin1 in joint tissue as well as other organs such as liver, heart, and brain. The overexpression of hCabin1 reduced the disease severity during collagen-induced arthritis. In fibroblast-like synoviocytes (FLSs) from hCabin1 transgenic mice, the productions of these cytokines, including interleukin (IL)-2, IL-4, and IFN-γ, were decreased and matrix metalloproteinases were also depressed in transgenic mice FLS. In addition, these effects were only found in the joint tissue, which is a major inflammation site. These findings will provide a better knowledge of the pathogenic mechanisms of rheumatoid arthritis and a potential animal model of the chronic inflammatory conditions, including atherosclerosis and transplantation.
Collapse
Affiliation(s)
- Dong Hoon Yu
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The use of cyclosporine-A in dogs with chronic osteoarthritis: a pilot study. Vet Comp Orthop Traumatol 2011; 24:285-8. [PMID: 21597647 DOI: 10.3415/vcot-10-07-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 04/10/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the efficacy of cyclosporine-A in dogs with radiographic and physical evidence of chronic stifle osteoarthritis. MATERIALS AND METHODS Ten hound-type dogs with osteoarthritis induced by surgical transection of a cranial cruciate ligament followed by immediate stabilization of the stifle four years prior to study start were randomized to two groups. Cyclosporine-A was administered orally once daily at 5 mg/kg to one group for one month while the other group served as control. After a two week wash-out period during which the animals were not treated, and the degree of lameness was allowed to return to baseline, the treatments were switched so that the second group received treatment with cyclosporine-A and the first group served as control. Ground reaction forces were measured using a force platform in all animals at day zero and then every two weeks until the end of the study. RESULTS Cyclosporine-A did not alter the degree of lameness based on assessment of ground reaction forces. CONCLUSIONS At a dose of 5 mg/kg/day for 28 days, cyclosporine-A was not effective in decreasing lameness of dogs with chronic osteoarthritis induced by surgical transection of the cranial cruciate ligament.
Collapse
|
37
|
Higuchi T, Nakanishi T, Takada K, Matsumoto M, Okada M, Horikoshi H, Suzuki K. A case of multicentric Castleman's disease having lung lesion successfully treated with humanized anti-interleukin-6 receptor antibody, tocilizumab. J Korean Med Sci 2010; 25:1364-7. [PMID: 20808682 PMCID: PMC2923787 DOI: 10.3346/jkms.2010.25.9.1364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/02/2009] [Indexed: 12/04/2022] Open
Abstract
This report presents the case of a patient demonstrating multicentric Castleman's disease (MCD) with a lung lesion that was successfully treated with an anti-interleukin-6 receptor antibody, tocilizumab in combination with corticosteroid and tacrolimus. A 43-yr-old female with abnormal shadows on a chest X-ray was referred to the hospital for further examination. She was diagnosed as having MCD based on the characteristic pathology of inguinal lymph node, lung lesions, laboratory data, and undifferentiated arthritis. Corticosteroid and rituximab therapy did not fully ameliorate the symptoms; thus, the therapeutic regimen was changed to include tocilizumab, oral corticosteroid and tacrolimus. This regimen resulted in clinical remission and the dose of tocilizumab and corticosteroid could be tapered. Tocilizumab in combination with corticosteroid and tacrolimus may therefore be a beneficial treatment regimen for lung lesions associated with MCD.
Collapse
Affiliation(s)
- Tomoaki Higuchi
- Department of Internal Medicine, Division of Rheumatology, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kaminska B, Swiatek-Machado K. Targeting signaling pathways with small molecules to treat autoimmune disorders. Expert Rev Clin Immunol 2010; 4:93-112. [PMID: 20477590 DOI: 10.1586/1744666x.4.1.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic activation of immune responses, mediated by inflammatory mediators and involving different effector cells of the innate and acquired immune system characterizes autoimmune disorders, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis and septic shock syndrome. MAPKs are crucial intracellular mediators of inflammation. MAPK inhibitors are attractive anti-inflammatory drugs, because they are capable of reducing the synthesis of inflammation mediators at multiple levels and are effective in blocking proinflammatory cytokine signaling. Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway converts cytokine signals into genomic responses regulating proliferation and differentiation of the immune cells. JAK inhibitors are a new class of immunomodulatory agents with immunosuppressive, anti-inflammatory and antiallergic properties. This review discusses the rationale behind current strategies of targeting MAPK and JAK/STAT signaling pathways, and the overall effects of signal transduction inhibitors in animal models of inflammatory disorders. Signal transduction inhibitors are small molecules that can be administered orally, and initial results of clinical trials have shown clinical benefits in patients with chronic inflammatory disorders.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Transcription Regulation, Deptartment of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
39
|
Kong JS, Yoo SA, Kim JW, Yang SP, Chae CB, Tarallo V, De Falco S, Ryu SH, Cho CS, Kim WU. Anti-neuropilin-1 peptide inhibition of synoviocyte survival, angiogenesis, and experimental arthritis. ACTA ACUST UNITED AC 2010; 62:179-90. [PMID: 20039409 DOI: 10.1002/art.27243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To delineate the role of neuropilin-1 (NP-1), a vascular endothelial growth factor receptor (VEGFR), in rheumatoid inflammation and to determine whether blockade of NP-1 could suppress synoviocyte survival and angiogenesis. METHODS VEGF(111-165) peptide, which encompasses the NP-1 binding domain of VEGF(165), was generated by cleaving VEGF(165) with plasmin. The effect of this peptide on the interaction between VEGF(165) and its receptor was determined by (125)I-VEGFR binding assay. Assays to determine synoviocyte apoptosis, adhesion, and migration were performed in the presence of VEGF(165) and/or the peptide. VEGF(165)-induced angiogenesis was assessed by measuring the proliferation, tube formation, and wounding migration of endothelial cells (ECs). Mice were immunized with type II collagen to induce experimental arthritis. RESULTS VEGF(111-165) peptide specifically inhibited the binding of (125)I-VEGF(165) to NP-1 on rheumatoid synoviocytes and ECs. The peptide eliminated the VEGF(165)-mediated increase in synoviocyte survival and activation of p-ERK and Bcl-2. The peptide also completely inhibited a VEGF(165)-induced increase in synoviocyte adhesion and migration. In addition, the anti-NP-1 peptide blocked VEGF(165)-stimulated proliferation, capillary tube formation, and wounding migration of ECs in vitro. VEGF(165)-induced neovascularization in a Matrigel plug in mice was also blocked by treatment with the peptide. Finally, subcutaneous injection of anti-NP-1 peptide suppressed arthritis severity and autoantibody formation in mice with experimental arthritis and inhibited synoviocyte hyperplasia and angiogenesis in arthritic joints. CONCLUSION Anti-NP-1 peptide suppressed VEGF(165)-induced increases in synoviocyte survival and angiogenesis, and thereby blocked experimental arthritis. Our findings suggest that anti-NP-1 peptide could be useful in alleviating chronic arthritis.
Collapse
Affiliation(s)
- Jin-Sun Kong
- The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kong JS, Yoo SA, Kim HS, Kim HA, Yea K, Ryu SH, Chung YJ, Cho CS, Kim WU. Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate. ACTA ACUST UNITED AC 2010; 62:159-70. [PMID: 20039434 DOI: 10.1002/art.25017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables such as broccoli, regulates synoviocyte hyperplasia and T cell activation in rheumatoid arthritis (RA). METHODS Synoviocyte survival was assessed by MTT assay. The levels of Bcl-2, Bax, p53, and pAkt were determined by Western blot analysis. Cytokine concentrations in culture supernatants from mononuclear cells were analyzed by enzyme-linked immunosorbent assay. The in vivo effects of SFN were examined in mice with experimentally induced arthritis. RESULTS SFN induced synoviocyte apoptosis by modulating the expression of Bcl-2/Bax, p53, and pAkt. In addition, nonapoptotic doses of SFN inhibited T cell proliferation and the production of interleukin-17 (IL-17) and tumor necrosis factor alpha (TNFalpha) by RA CD4+ T cells stimulated with anti-CD3 antibody. Anti-CD3 antibody-induced increases in the expression of retinoic acid-related orphan receptor gammat and T-bet were also repressed by SFN. Moreover, the intraperitoneal administration of SFN to mice suppressed the clinical severity of arthritis induced by injection of type II collagen (CII), the anti-CII antibody levels, and the T cell responses to CII. The production of IL-17, TNFalpha, IL-6, and interferon-gamma by lymph node cells and spleen cells from these mice was markedly reduced by treatment with SFN. Anti-CII antibody-induced arthritis in mice was also alleviated by SFN injection. CONCLUSION SFN was found to inhibit synovial hyperplasia, activated T cell proliferation, and the production of IL-17 and TNFalpha by rheumatoid T cells in vitro. The antiarthritic and immune regulatory effects of SFN, which were confirmed in vivo, suggest that SFN may offer a possible treatment option for RA.
Collapse
Affiliation(s)
- Jin-Sun Kong
- Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li C, Hu Y, Liang J, Kong Y, Huang J, Feng Q, Li S, Zhang G, Xie L, Zhang R. Calcineurin plays an important role in the shell formation of pearl oyster (Pinctada fucata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:100-110. [PMID: 19593604 DOI: 10.1007/s10126-009-9204-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/31/2009] [Indexed: 05/28/2023]
Abstract
Calcineurin (CN) is a multifunctional protein involved in many important physiological processes in mammalians, but the function of CN in mollusks is still largely unknown. In the present study, through the shell regeneration system, the changes of enzymatic activity of CN were determined in the process of shell regeneration in pearl oyster Pinctada fucata. CN was activated immediately and continuously in the shell regeneration process. The speed of shell regeneration was measured and the ultrastructure of inner shell surface was observed by scanning electron microscopy after inhibiting CN by intramuscular injection of immunosuppresant cyclosporine A (CsA). The results showed that the speed of shell regeneration was delayed and the morphology of calcite and aragonite in the inner shell surface became abnormal when CN was inhibited by CsA. Meanwhile, RT-PCR analysis revealed that the expression of P. fucata BMP-2 in mantle tissue decreased with CsA injection. In vitro secretion level of proteoglycans (PGs) in primary cultures of mantle cells was also decreased when mantle cells were exposed to CsA. Taken together, our results, for the first time, show that CN is involved in the shell formation through regulating the expression of Pf-BMP-2 in mantle tissue, which controls the secretion of PGs/GAGs of the mantle epithelial cells.
Collapse
Affiliation(s)
- Changzhong Li
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shin YJ, Han SH, Kim DS, Lee GH, Yoo WH, Kang YM, Choi JY, Lee YC, Park SJ, Jeong SK, Kim HT, Chae SW, Jeong HJ, Kim HR, Chae HJ. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther 2010; 12:R19. [PMID: 20122151 PMCID: PMC2875648 DOI: 10.1186/ar2921] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 12/07/2009] [Accepted: 02/01/2010] [Indexed: 12/21/2022] Open
Abstract
Introduction Synovial fibroblasts from rheumatoid arthritis show resistance to apoptotic stimuli, indicating they may be difficult to treat. To clearly understand these mechanisms of resistance, rheumatoid and osteoarthritis synovial fibroblasts (RASF and OASF) were exposed to endoplasmic reticulum (ER) stress such as thapsigargin, Ca2+-ATPase inhibitor. Methods Fibroblasts were assessed microscopically for cell viability by trypan blue exclusion and for autophagic cells by LC-3II formation. Caspase-3 activity was measured as aminomethyl-coumarin (AMC) liberated from AC-DEVD-AMC. Immunoblotting was performed to compare protein expression in OASF and RASF. Results ER stress caused cell death in OASF but not in RASF. Thapsigargin, a Ca2+-ATPase inhibitor, did not change the expression of GRP78, an ER chaperone in OASF and RASF, but induced another ER stress protein, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) differently, showing high levels in OASF and low levels in RASF. Thapsigargin increased the autophagy response in RASF, with autophagosome formation, beclin expression, and LC3-II conversion. Transfection with beclin siRNA inhibited autophagy and increased the susceptibility to ER stress-induced cell death. On the other hand, CHOP siRNA increased autophagy and improved cell survival, especially in RASF, indicating that CHOP is involved in regulation of autophagy and cell death, but that low expression of CHOP protects RASF from apoptosis. Conclusions Autophagy induction and CHOP under-expression increases cell resistance against ER stress-induced cell death in fibroblasts from rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Yong-Joo Shin
- Department of Rheumatology, Medical School, the Catholic University of Korea, Seoul, Republic of Korea, 150-713.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors.
Collapse
Affiliation(s)
- Despina Sitara
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Wang A, Chi Z, Wang S, Wang S, Sun Q. Calcineurin-mediated GABA(A) receptor dephosphorylation in rats after kainic acid-induced status epilepticus. Seizure 2009; 18:519-23. [PMID: 19497770 DOI: 10.1016/j.seizure.2009.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/15/2009] [Accepted: 05/07/2009] [Indexed: 11/17/2022] Open
Abstract
Calcineurin (CaN) is a neuronally enriched, calcium-dependent phosphatase, which plays an important role in a number of neuronal processes including development of learning and memory, and modulation of receptor's function and neuronal excitability as well as induction of apoptosis. It has been established in kindling model that the status epilepticus (SE)-induced increase in CaN activity is involved in the development of seizures through down-regulation of gamma-aminobutyric acid A receptor (GABA(A)R) activation. However, the mechanism by which CaN mediates GABA(A) receptor dephosphorylation in SE is not fully understood. Here, using a model of kainic acid (KA)-induced SE and CaN inhibitor FK506, we observed the behaviors induced by KA and levels of CaN activity and CaN expression in hippocampus by immunobloting. The results showed that the SE-induced CaN activity was time-dependent, with a peak at 2h and a return to basal level at 24h, whereas a significant increase in CaN expression was seen at 24h after SE. It is proposed that the rapid elevation in CaN activity after KA-induced SE is not likely due to an increase in CaN expression but rather an increase in CaN activation state or kinetics. In addition, we also demonstrated that pre-treatment with FK506 remarkably suppressed the SE-induced CaN activity and its expression, and reversed the SE-induced dephosphorylation of GABA(A)R 2/3 subunits. Taken together, our data suggest that down-regulation in inhibition of GABA(A)R 2/3 by CaN activity contributes to an elevation in neuronal excitability of hippocampus, which may be involved in development of chronic processes of seizures.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Neurology, Qianfoshan Hospital, Medical School of Shandong University, No. 66, Jingshi Road, Jinan, Shandong 250014, PR China.
| | | | | | | | | |
Collapse
|
45
|
Yoo SA, Yoon HJ, Kim HS, Chae CB, De Falco S, Cho CS, Kim WU. Role of placenta growth factor and its receptor flt-1 in rheumatoid inflammation: A link between angiogenesis and inflammation. ACTA ACUST UNITED AC 2009; 60:345-54. [DOI: 10.1002/art.24289] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Lu MC, Lai NS, Yu HC, Hsieh SC, Tung CH, Yu CL. Nifedipine suppresses Th1/Th2 cytokine production and increased apoptosis of anti-CD3 + anti-CD28-activated mononuclear cells from patients with systemic lupus erythematosus via calcineurin pathway. Clin Immunol 2008; 129:462-70. [DOI: 10.1016/j.clim.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/26/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
47
|
Kim WU, Kwok SK, Hong KH, Yoo SA, Kong JS, Choe J, Cho CS. Soluble Fas ligand inhibits angiogenesis in rheumatoid arthritis. Arthritis Res Ther 2007; 9:R42. [PMID: 17459170 PMCID: PMC1906820 DOI: 10.1186/ar2181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/12/2007] [Accepted: 04/26/2007] [Indexed: 02/08/2023] Open
Abstract
The characteristics of rheumatoid arthritis (RA) pathology include the infiltration of inflammatory leukocytes, the proliferation of synovial cells, and the presence of extensive angiogenesis, referred to as rheumatoid pannus. Fas ligand is critical to the homeostatic regulation of the immune response, but its role in the angiogenic process of RA remains to be defined. In this study, we investigated whether soluble Fas ligand (sFasL) induces synoviocyte apoptosis and regulates angiogenesis of endothelial cells in RA. The levels of sFasL were elevated in the synovial fluids of RA patients when compared to those of osteoarthritis (OA) patients, and they correlated inversely with vascular endothelial growth factor165 (VEGF165) concentrations. sFasL, ranging from 10 to 100 ng/ml, induced the apoptosis of RA fibroblast-like synoviocytes (FLS) in vitro, and thereby decreased VEGF165 production. In addition, sFasL inhibited VEGF165-induced migration and chemotaxis of endothelial cells to basal levels in a manner independent of the Fas-mediated cell death. sFasL dose-dependently suppressed the VEGF165-stimulated increase in pAkt expression in endothelial cells, which might be associated with its anti-migratory effect on endothelial cells. Moreover, sFasL strongly inhibited neovascularization in the Matrigel plug in vivo. Our data suggest that sFasL shows anti-angiogenic activity within RA joints not only by inducing apoptosis of VEGF165-producing cells but also by blocking VEGF165-induced migration of endothelial cells, independent of Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Kyung-Hee Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Seung-Ah Yoo
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Jin-Sun Kong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University College of Medicine, Chunchon, Kangwon 200-701, Korea
| | - Chul-Soo Cho
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
48
|
Yoo SA, Park BH, Yoon HJ, Lee JY, Song JH, Kim HA, Cho CS, Kim WU. Calcineurin modulates the catabolic and anabolic activity of chondrocytes and participates in the progression of experimental osteoarthritis. ACTA ACUST UNITED AC 2007; 56:2299-311. [PMID: 17599750 DOI: 10.1002/art.22731] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To determine whether intracellular calcineurin (Cn), a calcium-activated phosphatase, regulates the anabolic and catabolic activities of chondrocytes, and is a potential target in the treatment of osteoarthritis (OA). METHODS CnA expression was examined in cartilage tissue samples and cultured chondrocytes from OA patients, using immunohistochemistry and Western blot analysis, respectively. Concentrations of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases 1 (TIMP-1) in the culture supernatants were determined using enzyme-linked immunosorbent assay. Levels of nitric oxide (NO) and type II collagen (CII) were measured using the Griess reaction and Western blot analysis, respectively. In addition, the pathologic role of Cn was examined in an in vivo model in which experimental OA was induced in mice by injecting type VII collagenase into the knee joints. RESULTS CnA was highly expressed in the chondrocytes of lesional OA cartilage. Cyclosporin A (CSA), a Cn inhibitor, inhibited spontaneous and interleukin-1beta-stimulated production of NO, MMP-1, and MMP-3 in chondrocytes. However, CSA increased the levels of production of CII, TIMP-1, and transforming growth factor beta. Similar changes in MMP-1, NO, and CII expression levels in chondrocytes were observed after the targeted inhibition of Cn by overexpression of calcineurin binding protein 1, a natural Cn antagonist. Moreover, in the mouse model, animals treated with CSA showed a significant decrease in both the extent and the severity of cartilage damage, which were assessed macroscopically and microscopically, compared with vehicle-treated animals. CONCLUSION These results suggest that CnA is critically involved in the catabolic and anabolic activities of chondrocytes as well as in the progression of experimental OA. Targeted inhibition of CnA may be an effective treatment strategy for OA.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim HA, Kim S, Chang SH, Hwang HJ, Choi YN. Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int Immunopharmacol 2007; 7:1286-91. [PMID: 17673143 DOI: 10.1016/j.intimp.2007.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/12/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The development of orally bioavailable, inexpensive inhibitors of tumor necrosis factor (TNF)-alpha is desirable for the treatment of rheumatoid arthritis (RA). OBJECTIVE To show the efficacy of ginsenoside Rb1 (G-Rb1), a ginseng extract, on the inhibition of TNF-alpha upregulation and on the inhibition of collagen induced arthritis (CIA). METHODS Peripheral blood mononuclear cells (PBMC), chondrocytes and fibroblast-like synoviocytes (FLS) were stimulated with interferon(IFN)-gamma, lipopolysaccharide (LPS) or interleukin-1 in the presence or absence of G-Rb1. The concentrations of (TNF)-alpha in the culture supernatants were determined by ELISA. CIA was induced in DBA/1J mice and G-Rb1 was prophylactically administered from day 20 until day 39 following immunization. Histopathologic changes were scored, and the expression of TNF-alpha was evaluated by immunohistochemistry. RESULT G-Rb1 significantly inhibited TNF-alpha upregulation in PBMCs, FLS and chondrocytes induced by IFN-gamma, LPS or IL-1. Administration of G-Rb1 resulted in a significant amelioration of the clinical arthritis score in the CIA mice. Histology revealed that G-Rb1 reduced cell infiltration and cartilage destruction in the arthritic joint, which was accompanied by a significant decrease in TNF-alpha expression. CONCLUSION The utilization of G-Rb1 is a feasible approach to the treatment of RA or other diseases characterized by upregulation of TNF-alpha.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea.
| | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The calcineurin inhibitors cyclosporine and tacrolimus are important treatments for patients with active rheumatoid arthritis, especially in cases of resistance or intolerance to methotrexate or other disease-modifying antirheumatic drugs. Here, we discuss the mechanism, efficacy and safety of cyclosporine and tacrolimus in the treatment of rheumatoid arthritis. RECENT FINDINGS Recent clinical trials of cyclosporine have shown the advantages of its combination with methotrexate, glucocorticoids and leflunomide in the treatment of active rheumatoid arthritis. In Japan, tacrolimus monotherapy was found to be quite effective and combination therapy with methotrexate had positive results in an American study. The inhibitory effects of both drugs not only on T lymphocytes, but also on human osteoclast formation, have been demonstrated in basic studies. SUMMARY Cyclosporine and tacrolimus are clinically available disease-modifying antirheumatic drugs. Numerous clinical studies have shown the usefulness of these calcineurin inhibitors in monotherapy and also when combined with methotrexate. Although these drugs have similar effects, there are some differences in adverse reactions.
Collapse
Affiliation(s)
- Kanako Kitahara
- Department of Immunology, Toho University School of Medicine, Japan
| | | |
Collapse
|