1
|
Frank FM, Wagner DH, Postan M, Petray PB. Importance of CD40/CD40 dyad in the course of infection with Trypanosoma cruzi: Impact of its inhibition. Microb Pathog 2023; 183:106327. [PMID: 37640275 DOI: 10.1016/j.micpath.2023.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Chagas heart disease (CHD), caused by the protozoan parasite Trypanosoma cruzi, consists of a progressive myocarditis which may lead to congestive heart failure or sudden death. Previous work from our laboratory has demonstrated that the experimental infection of mice with T. cruzi positively modulates the expression of CD40 by myocardial cells, whose ligation potentiates IFN-γ-induced IL-6 production. Herein, we investigate the role of the CD40/CD40L interaction during T. cruzi infection using a CD40-targeted peptide and evaluating parasitological, histopathological and serological parameters. To reproduce acute and chronic phases of theT. cruzi infection, we used two experimental models: Balb/c mice infected with RA strain of T. cruzi (Balb/c-RA) and C3H/HeN mice infected with Sylvio X-10/4 parasites (C3H/HeN-Sylvio), respectively. Balb/c-RA treated with CD40-tageted peptide since day 0 post infection (pi), were unable to control the acute infection dying within 23-26 days pi with marked tissue damage. In contrast, treatment of C3H/HeN-Sylvio treated with CD40-targeted peptide starting on day 30 pi resulted in amelioration of myocardial and skeletal muscle damage. Altogether, our results indicate a dual role of CD40/CD40L dyad in the control of T.cruzi infection as well as the associated pathology, depending on the timing of treatment initiation.
Collapse
Affiliation(s)
- Fernanda M Frank
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - David H Wagner
- Webb-Waring Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS/Malbran, Buenos Aires, Argentina
| | - Patricia B Petray
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Somoza M, Bertelli A, Pratto CA, Verdun RE, Campetella O, Mucci J. Trypanosoma cruzi Induces B Cells That Regulate the CD4 + T Cell Response. Front Cell Infect Microbiol 2022; 11:789373. [PMID: 35071041 PMCID: PMC8766854 DOI: 10.3389/fcimb.2021.789373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi infection induces a polyclonal B cell proliferative response characterized by maturation to plasma cells, excessive generation of germinal centers, and secretion of parasite-unrelated antibodies. Although traditionally reduced to the humoral response, several infectious and non-infectious models revealed that B lymphocytes could regulate and play crucial roles in cellular responses. Here, we analyze the trypomastigote-induced effect on B cells, their effects on CD4+ T cells, and their correlation with in vivo findings. The trypomastigotes were able to induce the proliferation and the production of IL-10 or IL-6 of naïve B cells in co-culture experiments. Also, we found that IL-10-producing B220lo cells were elicited in vivo. We also found up-regulated expression of FasL and PD-L1, proteins involved in apoptosis induction and inhibition of TCR signaling, and of BAFF and APRIL mRNAs, two B-cell growth factors. Interestingly, it was observed that IL-21, which plays a critical role in regulatory B cell differentiation, was significantly increased in B220+/IL-21+ in in vivo infections. This is striking since the secretion of IL-21 is associated with T helper follicular cells. Furthermore, trypomastigote-stimulated B-cell conditioned medium dramatically reduced the proliferation and increased the apoptotic rate on CD3/CD28 activated CD4+ T cells, suggesting the development of effective regulatory B cells. In this condition, CD4+ T cells showed a marked decrease in proliferation and viability with marginal IL-2 or IFNγ secretion, which is counterproductive with an efficient immune response against T. cruzi. Altogether, our results show that B lymphocytes stimulated with trypomastigotes adopt a particular phenotype that exerts a strong regulation of this T cell compartment by inducing apoptosis, arresting cell division, and affecting the developing of a proinflammatory response.
Collapse
Affiliation(s)
- Martín Somoza
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Adriano Bertelli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Cecilia A. Pratto
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center and Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Koch PD, Pittet MJ, Weissleder R. The chemical biology of IL-12 production via the non-canonical NFkB pathway. RSC Chem Biol 2020; 1:166-176. [PMID: 34458756 PMCID: PMC8341911 DOI: 10.1039/d0cb00022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Interleukin-12 (IL-12) has emerged as an attractive cytokine for cancer therapy because it has direct anti-cancer effects and additionally plays a critical role in enhancing checkpoint inhibitors. Given these multiple modes of actions, identifying means to pharmacologically induce IL-12 production in the tumor microenvironment has become important. In this review, we highlight therapeutics that promote IL-12 induction in tumor-associated myeloid cells through the non-canonical NFkB pathway. We discuss existing clinical trials and briefly examine the additional pathway targets that warrant further exploration for drug discovery.
Collapse
Affiliation(s)
- Peter D Koch
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital 185 Cambridge St Boston MA 02114 USA
- Department of Systems Biology, Harvard Medical School 200 Longwood Ave Boston MA 02115 USA
| |
Collapse
|
4
|
Ayala MAM, Casasco A, González M, Postan M, Corral RS, Petray PB. Trypanosoma cruzi infection induces the expression of CD40 in murine cardiomyocytes favoring CD40 ligation-dependent production of cardiopathogenic IL-6. Parasitol Res 2015; 115:779-85. [PMID: 26526953 DOI: 10.1007/s00436-015-4805-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/22/2015] [Indexed: 11/26/2022]
Abstract
The inflammatory response in the myocardium is an important aspect of the pathogenesis of Chagas' heart disease raised by Trypanosoma cruzi. CD40, a transmembrane type I receptor belonging to the tumor necrosis factor receptor (TNFR) family, is expressed in a broad spectrum of cell types and is crucial in several inflammatory and autoimmune diseases. Activation of CD40 through ligation to CD40L (CD154) induces multiple effects, including the secretion of proinflammatory molecules. In the present study, we examined the ability of T. cruzi to trigger the expression of CD40 in cardiac myocytes in vitro and in a murine model of chagasic cardiomyopathy. Our results indicate, for the first time, that T. cruzi is able to induce the expression of CD40 in HL-1 murine cardiomyocytes. Moreover, ligation of CD40 receptor upregulated interleukin-6 (IL-6), associated with inflammation. Furthermore, the induction of this costimulatory molecule was demonstrated in vivo in myocardium of mice infected with T. cruzi. This suggests that CD40-bearing cardiac muscle cells could interact with CD40L-expressing lymphocytes infiltrating the heart, thus contributing to inflammatory injury in chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Mariela Alejandra Moreno Ayala
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, Argentina
| | - Agustina Casasco
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Buenos Aires, Argentina
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, Buenos Aires, Argentina
| | - Mariela González
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén/ANLIS/Malbrán, Av. Paseo Colón 568, Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén/ANLIS/Malbrán, Av. Paseo Colón 568, Buenos Aires, Argentina
| | - Ricardo Santiago Corral
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Buenos Aires, Argentina
| | - Patricia Beatriz Petray
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Buenos Aires, Argentina.
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Pinazo MJ, Thomas MC, Bustamante J, Almeida ICD, Lopez MC, Gascon J. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz 2015; 110:422-32. [PMID: 25946151 PMCID: PMC4489480 DOI: 10.1590/0074-02760140435] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/25/2015] [Indexed: 01/10/2023] Open
Abstract
The definition of a biomarker provided by the World Health Organization is any
substance, structure, or process that can be measured in the body, or its products
and influence, or predict the incidence or outcome of disease. Currently, the lack of
prognosis and progression markers for chronic Chagas disease has posed limitations
for testing new drugs to treat this neglected disease. Several molecules and
techniques to detect biomarkers in Trypanosoma cruzi-infected
patients have been proposed to assess whether specific treatment with benznidazole or
nifurtimox is effective. Isolated proteins or protein groups from different
T. cruzi stages and parasite-derived glycoproteins and synthetic
neoglycoconjugates have been demonstrated to be useful for this purpose, as have
nucleic acid amplification techniques. The amplification of T. cruzi
DNA using the real-time polymerase chain reaction method is the leading test
for assessing responses to treatment in a short period of time. Biochemical
biomarkers have been tested early after specific treatment. Cytokines and surface
markers represent promising molecules for the characterisation of host cellular
responses, but need to be further assessed.
Collapse
Affiliation(s)
- Maria-Jesus Pinazo
- Barcelona Institute for Global Health, Barcelona Centre for International Health Research, Barcelona, Spain
| | - Maria-Carmen Thomas
- Institute of Parasitology and Biomedicine López Neyra, National Research Council Institute, Granada, Spain
| | - Juan Bustamante
- Barcelona Institute for Global Health, Barcelona Centre for International Health Research, Barcelona, Spain
| | - Igor Correia de Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Manuel-Carlos Lopez
- Institute of Parasitology and Biomedicine López Neyra, National Research Council Institute, Granada, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health, Barcelona Centre for International Health Research, Barcelona, Spain
| |
Collapse
|
6
|
de Oliveira FA, Vanessa Oliveira Silva C, Damascena NP, Passos RO, Duthie MS, Guderian JA, Bhatia A, de Moura TR, Reed SG, de Almeida RP, de Jesus AR. High levels of soluble CD40 ligand and matrix metalloproteinase-9 in serum are associated with favorable clinical evolution in human visceral leishmaniasis. BMC Infect Dis 2013; 13:331. [PMID: 23870715 PMCID: PMC3733913 DOI: 10.1186/1471-2334-13-331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 07/10/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Soluble CD40 ligand (sCD40L) and matrix metalloproteinase 9 (MMP-9) are inflammation markers and have been poorly described in infectious disease. In this prospective study, we describe the sera kinetics of these two molecules in the course of treatment follow up in human visceral leishmaniasis (VL). METHODS Sera from VL patients were collected before and during follow up of regular Antimony treatment. sCD40L and MMP-9 were measured by Luminex assay. Paired analysis by Wilcoxon signed test was used for comparison of values of the same subjects before and after initiation of treatment. Correlations between clinical data and parasite load with the serum levels of sCD40L and MMP-9 were performed by Spearman test. Tests were considered statistically significant if the probability of a type I error was less than 5% (p-value < 0.05). RESULTS While sCD40L and MMP-9 were not observed in sera from non endemic controls which are at low risk of Leishmania chagasi infection, elevated levels were observed in sera from VL patients, and an increase in sCD40L and MMP-9 levels were detectable during the follow-up of VL patients undergoing antimony treatment. sCD40L levels were also high in individuals living in endemic settings at high risk of infection (endemic controls). Additionally, negative correlations were found between spleen sizes and MMP-9 before treatment and sCD40L at day 15 of treatment. Negative correlations were also found between parasite load with both sCD40L and MMP-9. CONCLUSION Serum sCD40L and MMP-9 are identified as new and simple biomarkers in two situations: (i) monitoring the success of therapy and (ii) predicting favorable clinical outcome of human VL.
Collapse
Affiliation(s)
- Fabrícia Alvisi de Oliveira
- Molecular Biology Laboratory, Hospital Universitário - Universidade Federal de Sergipe, Rua Claudio Batista s/n, Bairro Sanatório, Aracaju, Sergipe 49060-10, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 2013; 4:82. [PMID: 23565116 PMCID: PMC3615188 DOI: 10.3389/fimmu.2013.00082] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are sentinels of immunity, essential for homeostasis of T cell-dependent immune responses. Both functions of DC, initiation of antigen-specific T cell immunity and maintenance of tissue-specific tolerance originate from distinct stages of differentiation, immunogenic versus tolerogenic. Dependent on local micro milieu and inflammatory stimuli, tissue resident immature DC with functional plasticity differentiate into tolerogenic or immunogenic DC with stable phenotypes. They efficiently link innate and adaptive immunity and are ideally positioned to modify T cell-mediated immune responses. Since the T cell stimulatory properties of DC are significantly influenced by their expression of signal II ligands, it is critical to understand the impact of distinct costimulatory pathways on DC function. This review gives an overview of functional different human DC subsets with unique profiles of costimulatory molecules and outlines how different costimulatory pathways together with the immunosuppressive cytokine IL-10 bias immunogenic versus tolerogenic DC functions. Furthermore, we exemplarily describe protocols for the generation of two well-defined monocyte-derived DC subsets for their clinical use, immunogenic versus tolerogenic.
Collapse
Affiliation(s)
- Mario Hubo
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Yoshinari T, Gessier F, Noti C, Beck AK, Seebach D. Stereoselective Preparation of 3-Amino-2-fluoro Carboxylic Acid Derivatives, and Their Incorporation in Tetrahydropyrimidin-4(1H)-ones, and in Open-Chain and Cyclic β-Peptides. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201100340] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Xu J, Treem WR, Roman C, Anderson V, Rubenstein R, Schwarz SM. Ileal immune dysregulation in necrotizing enterocolitis: role of CD40/CD40L in the pathogenesis of disease. J Pediatr Gastroenterol Nutr 2011; 52:140-146. [PMID: 21240009 DOI: 10.1097/mpg.0b013e3182039bad] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES CD40, a co-stimulatory molecule, plays a critical role in coordinating enteric inflammatory immune responses. In necrotizing enterocolitis (NEC), upregulation of IL-10, a CD40-modulated cytokine, has been described, but the role of the IL-10 receptor (IL-10Rβ), CD40, and its ligand CD40L in disease pathogenesis is unknown. The study herein investigates ileal expression of CD40, CD40L, and IL-10R in a rat model of NEC. SUBJECTS AND METHODS NEC was induced in newborn rats using established methods of formula feeding, asphyxia, and cold stress. Expression of CD40, CD40L, IL-10Rβ, and other proinflammatory molecules, including Toll-like receptor-4 (TLR-4) and IL-18, was assessed by immunoblotting. Tissue infiltration by macrophages, monocytes, and T cells was examined by confocal immunohistochemistry. RESULTS Ileum from rat pups with NEC showed increased expression of TLR-4, IL-18, and IL-10Rβ. Sections from both NEC and control pups demonstrated preservation of ileal cells expressing CD40/CD40L. The distal ileum of controls expressed both CD40 and CD40L; conversely, neither molecule was detected in ileal tissue from NEC pups. Additional studies showed that treatment with epidermal growth factor (EGF), previously shown to ameliorate the severity of NEC in an animal model, did not restore CD40 expression. CONCLUSIONS Ileal cytokine dysregulation, manifested by decreased CD40/CD40L and increased IL-10Rβ expression, may be involved in the pathogenesis of NEC. Dampened CD40 signaling may be related to enhanced IL-10 expression and a suppressed T-cell response to injury. We speculate that augmenting CD40-CD40L interactions may achieve a protective effect in this NEC model.
Collapse
Affiliation(s)
- Jiliu Xu
- Division of Pediatric Gastroenterology, USA
| | | | | | | | | | | |
Collapse
|
10
|
Tuettenberg A, Fondel S, Steinbrink K, Enk AH, Jonuleit H. CD40 signalling induces IL-10-producing, tolerogenic dendritic cells. Exp Dermatol 2010; 19:44-53. [DOI: 10.1111/j.1600-0625.2009.00975.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Abstract
The interaction between CD40 and CD154 regulates many aspects of cellular and humoral immunity. The CD40-CD154 pathway is important for resistance against a variety of parasites. Studies done with these pathogens have provided important insight into the various mechanisms by which this pathway enhances host protection, mechanisms by which pathogens subvert CD40 signaling, conditions in which the CD40-CD154 pathway promotes disease and on modulation of this pathway for immunotherapy.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Suttles J, Stout RD. Macrophage CD40 signaling: A pivotal regulator of disease protection and pathogenesis. Semin Immunol 2009; 21:257-64. [DOI: 10.1016/j.smim.2009.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
13
|
Orzáez M, Gortat A, Mondragón L, Pérez-Payá E. Peptides and peptide mimics as modulators of apoptotic pathways. ChemMedChem 2009; 4:146-60. [PMID: 19021159 DOI: 10.1002/cmdc.200800246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Programmed cell death is an important and stringently controlled process. Aberrancies in its control mechanisms can lead to disease; overactive apoptosis can cause neurodegenerative disorders, whereas deficient apoptotic activity can lead to cancer. Therefore, controlling apoptotic pathways with peptides is showing increasing promise as a strategy in drug development.Programmed cell death or apoptosis is a noninvasive and strictly regulated cellular process required for organism development and tissue homeostasis. Deficiencies in apoptotic pathways are the source of many diseases such as cancer, neurodegenerative and autoimmune diseases, and disorders related to an inappropriate loss of cells such as heart failure, stroke, and liver injury. Validation of the various points of intervention as targets for drug development has been the subject of a vast number of studies. Peptides are essential tools for drug discovery, as well as preclinical and pharmaceutical drug development.
Collapse
Affiliation(s)
- Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
14
|
The race between infection and immunity: how do pathogens set the pace? Trends Immunol 2009; 30:61-6. [PMID: 19138564 DOI: 10.1016/j.it.2008.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/24/2022]
Abstract
Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body of evidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens seems to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T-cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules of the race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.
Collapse
|
15
|
Rationally-designed Multivalent Architectures for Mimicking Homotrimers of CD40L, a Member of the TNF Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:355-7. [DOI: 10.1007/978-0-387-73657-0_157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Abstract
For more than a decade now, a search for answers to the following two questions has taken us on a new and exciting journey into the world of beta- and gamma-peptides: What happens if the oxygen atoms in a 3i-helix of a polymeric chain composed of (R)-3-hydroxybutanoic acid are replaced by NH units? What happens if one or two CH2 groups are introduced into each amino acid building block in the chain of a peptide or protein, thereby providing homologues of the proteinogenic alpha-amino acids? Our journey has repeatedly thrown up surprises, continually expanding the potential of these classes of compound and deepening our understanding of the structures, properties, and multifaceted functions of the natural "models" to which they are related. Beta-peptides differ from their natural counterparts, the alpha-peptides, by having CH2 groups inserted into every amino acid residue, either between the C=O groups and the alpha-carbon atoms (beta(3)) or between the alpha-carbon and nitrogen atoms (beta(2)). The synthesis of these homologated proteinogenic amino acids and their assembly into beta-peptides can be performed using known methods. Despite the increased number of possible conformers, the beta-peptides form secondary structures (helices, turns, sheets) even when the chain lengths are as short as four residues. Furthermore, they are stable toward degrading and metabolizing enzymes in living organisms. Linear, helical, and hairpin-type structures of beta-peptides can now be designed in such a way that they resemble the characteristic and activity-related structural features ("epitopes") of corresponding natural peptides or protein sections. This Account presents examples of beta-peptidic compounds binding, as agonists or antagonists (inhibitors), to (i) major histocompatibility complex (MHC) proteins (immune response), (ii) the lipid-transport protein SR-B1 (cholesterol uptake from the small intestine), (iii) the core (1-60) of interleukin-8 (inflammation), (iv) the oncoprotein RDM2, (v) the HIVgp41 fusion protein, (vi) G-protein-coupled somatostatin hsst receptors, (vii) the TNF immune response receptor CD40 (apoptosis), and (viii) DNA. Short-chain beta-peptides may be orally bioavailable and excreted from the body of mammals; long-chain beta-peptides may require intravenous administration but will have longer half-lives of clearance. It has been said that an interesting field of research distinguishes itself in that the results always throw up new questions; in this sense, the structural and biological investigation of beta-peptides has been a gold mine. We expect that these peptidic peptidomimetics will play an increasing role in biomedical research and drug development in the near future.
Collapse
Affiliation(s)
- Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - James Gardiner
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
17
|
Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun 2008; 76:5100-9. [PMID: 18794295 DOI: 10.1128/iai.00438-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well-documented; however, limited information on DC-NK cell interaction during parasitic infections is available. Given that some Leishmania parasites are known to prevent or suppress DC activation, we developed a DC-NK cell coculture system to examine the role of NK cells in modulating the functions of Leishmania-infected DCs. We found that the addition of freshly isolated, resting NK cells significantly promoted the activation of DCs that were preinfected with Leishmania amazonensis promastigotes and that these activated DCs, in turn, stimulated NK cell activation mostly via cell contact-dependent mechanisms. Notably, L. amazonensis amastigote infection failed to activate DCs, and this lack of DC activation could be partially reversed by the addition of preactivated NK (ANK) cells but not resting NK cells. Moreover, the adoptive transfer of ANK cells into L. amazonensis-infected mice markedly increased DC and T-cell activation and reduced tissue parasite loads at 1 and 3 weeks postinfection. These results suggest differential roles of DC-NK cell cross talk at different stages of Leishmania infection and provide new insight into the interplay of components of the innate immune system during parasitic infection.
Collapse
|
18
|
Seebach D, Dubost E, Mathad R, Jaun B, Limbach M, Löweneck M, Flögel O, Gardiner J, Capone S, Beck A, Widmer H, Langenegger D, Monna D, Hoyer D. New Open-Chain and Cyclic Tetrapeptides, Consisting ofα-,β2-, andβ3-Amino-Acid Residues, as Somatostatin Mimics - A Survey. Helv Chim Acta 2008. [DOI: 10.1002/hlca.200890190] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Abstract
CD40 signaling is critical for innate and adaptive immunity against pathogens, and the cytoplasmic domain of CD40 is highly conserved both within and between species. A novel missense single nucleotide polymorphism (SNP) in the cytoplasmic domain of CD40 at position 227 (P227A) was identified, which resides on a conserved ancestral haplotype highly enriched in persons of Mexican and South American descent. Functional studies indicated that signaling via human (h) CD40-P227A stably expressed in several B-cell lines led to increased phosphorylation of c-Jun, increased secretion of the pro-inflammatory cytokines interleukin (IL)-6 and TNF-alpha, and increased Ig production, compared with wild-type hCD40. Cooperation between hCD40-P227A signaling and B-cell receptor (BCR)- or Toll-like receptor 9 (TLR9)-mediated signaling was also enhanced, resulting in elevated and synergistic production of IL-6 and Ig. We have thus identified a novel genetic variant of hCD40 with a gain-of-function immune phenotype.
Collapse
|
20
|
Trouche N, Wieckowski S, Sun W, Chaloin O, Hoebeke J, Fournel S, Guichard G. Small Multivalent Architectures Mimicking Homotrimers of the TNF Superfamily Member CD40L: Delineating the Relationship between Structure and Effector Function. J Am Chem Soc 2007; 129:13480-92. [DOI: 10.1021/ja073169m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nathalie Trouche
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Wieckowski
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Weimin Sun
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Olivier Chaloin
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Johan Hoebeke
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sylvie Fournel
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Gilles Guichard
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
21
|
Chamekh M. CD40-CD40L interaction in immunity against protozoan infections. J Biomed Biotechnol 2007; 2007:59430. [PMID: 17541468 PMCID: PMC1874672 DOI: 10.1155/2007/59430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/02/2007] [Indexed: 01/19/2023] Open
Abstract
Activation of the immune system against protozoan infections relies
particularly on two specific signals provided by cognate interaction of T
cells with antigen presenting cells (APCs). The first signal is attributed
to binding of the T-cell receptor (TCR) to peptide/MHC complexes on the
surface of APCs, whereas the second signal is triggered through binding of
several costimulatory molecules on the surface of APCs with their
corresponding receptors on T cells. Among these costimulatory signallings,
CD40/CD40L interactions have been particularly investigated in protozoan
infection models with regard to their potential to amplify cell-mediated
immunity against intracellular parasites. This article reviews current
studies of the potential role of CD40/CD40L interaction in the modulation of
immune responses against some protozoan parasites and highlights recent
developments regarding manipulation of this interaction for promoting
control of parasite infections.
Collapse
Affiliation(s)
- Mustapha Chamekh
- Laboratoire de Bactériologie Moléculaire, Département de Microbiologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B), 808 Route de Lennik, 1070 Bruxelles, Belgium
- *Mustapha Chamekh:
| |
Collapse
|