1
|
Guelfi G, Pasquariello R, Dall’Aglio C, Mercati F, Suvieri C, Conte C, Capaccia C, Ratto M, Maranesi M. The Autocrine Impact of Nerve Growth Factor on Sheep Uterine Epithelial Cells. Cells 2025; 14:208. [PMID: 39936999 PMCID: PMC11817128 DOI: 10.3390/cells14030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Nerve growth factor (NGF) plays a critical role in reproduction through paracrine and endocrine mechanisms. However, its autocrine effects on uterine receptivity and inflammatory pathways remain unknown. This study is the first to demonstrate NGF's direct autocrine action on sheep endometrial luminal epithelial cells (SELECs), primary cultures treated with NGF for 12, 24, and 48 h, with or without the NTRK1 antagonist. NGF significantly increased PGE2 (p < 0.0001) and PGF2α (p < 0.0001) levels only at 12 h, with no significant changes at 24 and 48 h. NGF also upregulated the expression of NGF, COX2, and NTRK1 (p < 0.0001), and p75NTR and STAR (p < 0.001), at 12 h, with the effects reversed by NTRK1 inhibition, while no significant changes were observed for TLR4 (p > 0.05). Western blot (WB) analysis was performed exclusively to confirm the presence of NGF protein, revealing no significant differences (p > 0.05) across experimental conditions. These findings highlight NGF's role in directly regulating SELEC activity through autocrine mechanisms, emphasizing its importance in uterine receptivity and reproductive readiness. This study provides novel insights into NGF's role in sheep reproduction and its potential applications in fertility treatments.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.D.); (F.M.); (C.C.); (M.M.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.D.); (F.M.); (C.C.); (M.M.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.D.); (F.M.); (C.C.); (M.M.)
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, Piazzale Settimio Gambuli 1, 06129 Perugia, Italy;
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy;
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.D.); (F.M.); (C.C.); (M.M.)
| | - Marcelo Ratto
- Faculty of Veterinary Sciences, Austral University of Chile, Campus Isla Teja, Calle Las Encinas 220, Valdivia P.O. Box 567, Chile;
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.D.); (F.M.); (C.C.); (M.M.)
| |
Collapse
|
2
|
Liu L, Zhang R, Chen C, Xia C, Yao G, He X, Xia B. The effect of Banxia-houpo decoction on CUMS-induced depression by promoting M2 microglia polarization via TrkA/Akt signalling. J Cell Mol Med 2023; 27:3339-3353. [PMID: 37581474 PMCID: PMC10623515 DOI: 10.1111/jcmm.17906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
It has been reported that Banxia-houpo decoction (BXHPD) serves as the anti-depressant treatment for a mild and severe depressive disease with limited side effects. The present study was performed to evaluate the protective effect of BXHPD on chronic unpredicted mild stress (CUMS)-induced depression and explore its effect on TrkA/Akt-mediated microglia polarization. The CUMS procedure was carried out, and the mice were intragastrically treated with BXHPD once daily. The selective TrkA inhibitor GW441756 was applied to further investigate the role of TrkA in BXHPD-mediated microglia polarization. The behaviour test including open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), tail suspension test (TST) and forced swim test (FST) was performed. The concentrations of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, IL-12 and anti-inflammatory cytokines IL-4, IL-10 were determined using Enzyme-linked immunosorbent assay. The population of Iba1+ cells and the length of microglia processes were observed under the fluorescence microscope. The mRNA expressions of Arg1, Ym1 and Fizzl1 were measured by PCR. The protein expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3 were detected by western blot. Our results showed that BXHPD attenuated CUMS-induced depressive-like behaviour, promoted anti-inflammatory cytokines, inhibited pro-inflammatory cytokines, suppressed microglia activation, promoted M2 phenotype-specific indices and upregulated the expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3. The above beneficial effect of BXHPD can be blocked by TrkA inhibitor GW441756. This work demonstrated that BXHPD exerted an anti-depressant effect by promoting M2 phenotype microglia polarization via TrkA/Akt pathway.
Collapse
Affiliation(s)
- Li Liu
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Rong Zhang
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Chang Chen
- School of Elderly Care Services and ManagementNanjing University of Chinese MedicineNanjingChina
| | - Changbo Xia
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiaogang He
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Baomei Xia
- School of PharmacyGuangdong Medical UniversityDongguanChina
- Faculty of Rehabilitation ScienceNanjing Normal University of Special EducationNanjingChina
| |
Collapse
|
3
|
Dorschner BW, Wiedemuth R, Funke AC, Gentzel M, Rogers ML, Brenner S, Thieme S. Listening to the Whispers in Neuroimmune Crosstalk: A Comprehensive Workflow to Investigate Neurotrophin Receptor p75NTR Under Endogenous, Low Abundance Conditions. Front Immunol 2021; 12:648283. [PMID: 33936068 PMCID: PMC8085361 DOI: 10.3389/fimmu.2021.648283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Inflammatory conditions are critically influenced by neuroimmune crosstalk. Cytokines and neurotrophic factors shape the responses of both nervous and immune systems. Although much progress has been made, most findings to date are based on expression of recombinant (tagged) proteins. The examination of receptor interactions by immunoprecipitation (IP) at endogenous levels provides further insight into the more subtle regulations of immune responses. Here, we present a comprehensive workflow and an optimized IP protocol that provide step-by-step instructions to investigate neurotrophin receptor p75NTR at endogenous, low abundance levels: from lysate preparation and confirmation of receptor expression to antibody validation and successful detection of protein-protein interactions. We employ human melanoma cell line A375 to validate specific antibodies and IP conditions, and apply these methods to explore p75NTR interactions in human leukemic plasmacytoid dendritic cell line PMDC05 detecting 14-3-3ϵ:p75NTR interaction in this cell type. With p75NTR as an exemplary protein, our approach provides a strategy to detect specific interaction partners even under endogenous, low abundance expression conditions.
Collapse
Affiliation(s)
- Benjamin W. Dorschner
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Ralf Wiedemuth
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Ann-Christin Funke
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Marc Gentzel
- Molecular Analysis - Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet Dresden, Dresden, Germany
| | - Mary-Louise Rogers
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sebastian Brenner
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Sebastian Thieme
- Experimental Hematology, Department of Pediatrics, University Clinic Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
4
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
5
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
6
|
Minnone G, Soligo M, Caiello I, Prencipe G, Manni L, Marafon DP, Magni-Manzoni S, Manzo A, De Benedetti F, Bracci-Laudiero L. ProNGF-p75NTR axis plays a proinflammatory role in inflamed joints: a novel pathogenic mechanism in chronic arthritis. RMD Open 2017; 3:e000441. [PMID: 28955492 PMCID: PMC5604749 DOI: 10.1136/rmdopen-2017-000441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022] Open
Abstract
Objective To identify the role of mature nerve growth factor (mNGF), its immature form proNGF and their receptors in arthritis inflammation. Methods Real-time PCR, western blot and ELISA were performed to evaluate NGF, proNGF, their receptor and cytokine expression in synovial tissue and cells of patients with juvenile idiopathic arthritis (JIA) and rheumatoid arthritis (RA), and controls. Results proNGF and not mNGF is the prevalent form measured in synovial fluids of patients with JIA and RA with synovial fibroblasts as a major source of proNGF in the inflamed synoviae. p75NTR, the specific receptor for proNGF, is the NGF receptor most expressed in mononuclear cells of patients with JIA, while TrkA is the prevalent receptor in healthy donors. In ex vivo experiments the effects of proNGF differ from those of mNGF, suggesting that the balance of p75NTR and TrkA expression represents a critical factor in regulating mNGF/proNGF functions, determining which intracellular pathways and biological activities are triggered. Contrary to NGF, proNGF administration increased inflammatory cytokines but not interleukin (IL)-10 expression, inducing a stronger activation of p38 and JNK pathways. proNGF effects depend on its binding to p75NTR, as inhibition of p75NTR with neutralising antibodies or LM11A-31 abolished proNGF-induced production of IL-6 in patients’ mononuclear cells, while inhibition of TrkA did not. There is a correlation in patients with arthritis between high p75NTR levels and severity of clinical symptoms. Conclusions Our data suggest that an active proNGF-p75NTR axis promotes proinflammatory mechanisms contributing to chronic tissue inflammation, and that the use of p75NTR inhibitors may represent a new therapeutic approach in chronic arthritis.
Collapse
Affiliation(s)
- Gaetana Minnone
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giusi Prencipe
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Denise Pires Marafon
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Magni-Manzoni
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Manzo
- Division of Rheumatology and Translational Immunology Research Laboratories (LaRIT), IRCCS Policlinico S Matteo Foundation/University of Pavia, Pavia, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luisa Bracci-Laudiero
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy.,Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
7
|
Bandoła J, Richter C, Ryser M, Jamal A, Ashton MP, von Bonin M, Kuhn M, Dorschner B, Alexopoulou D, Navratiel K, Roeder I, Dahl A, Hedrich CM, Bonifacio E, Brenner S, Thieme S. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:981. [PMID: 28861085 PMCID: PMC5562693 DOI: 10.3389/fimmu.2017.00981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.
Collapse
Affiliation(s)
- Joanna Bandoła
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Cornelia Richter
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Martin Ryser
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Arshad Jamal
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Michelle P Ashton
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic I, University Clinic Dresden, Dresden, Germany.,DKTK-German Cancer Consortium, Partner Site Dresden, University Clinic Dresden, Dresden, Germany.,DKFZ-German Cancer Research Center, Heidelberg, Germany
| | - Matthias Kuhn
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | | | - Dimitra Alexopoulou
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Katrin Navratiel
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| | - Ingo Roeder
- Faculty of Medicine, Institute for Medical Informatics and Biometry, Technische Universitaet Dresden, Dresden, Germany
| | - Andreas Dahl
- BIOTEChnology Center/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | | | - Ezio Bonifacio
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Brenner
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universitaet Dresden, Dresden, Germany
| | - Sebastian Thieme
- Department of Pediatrics, University Clinic Dresden, Dresden, Germany
| |
Collapse
|
8
|
Lane NE, Corr M. Anti-NGF treatments for pain — two steps forward, one step back? Nat Rev Rheumatol 2017; 13:76-78. [DOI: 10.1038/nrrheum.2016.224] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Tan H, Pan P, Zhang L, Cao Z, Liu B, Li H, Su X. Nerve growth factor promotes expression of costimulatory molecules and release of cytokines in dendritic cells involved in Th2 response through LPS-induced p75NTR. J Asthma 2016; 53:989-98. [PMID: 27437725 DOI: 10.1080/02770903.2016.1185440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve growth factor (NGF) plays an important role in asthmatic inflammatory responses. However, the effects of NGF on dendritic cells (DCs) in asthmatic inflammation remain unknown. Therefore, we examined the effects of NGF on co-stimulatory molecules and the release of cytokines after ovalbumin (OVA) and a low dose of LPS (low LPS) stimulation of dendritic cells. METHODS Bone-marrow-derived dendritic cells (BMDCs) were collected from 6- to 8-week-old wide or TLR4(-/-) mice. BMDCs were treated with OVA and/or low LPS for 12h, and then stimulated with NGF for 24h. ELISA and flow cytometry were performed to measure TSLP, IL-6, IL-10, and IL-12 production and MHCII and CD86 expression on BMDCs. BMDCs were exposed to p75 neurotrophin receptor (p75NTR) inhibitor (TAT-Pep5) or NF-kB inhibitor (QNZ) 30 min prior to NGF 1 h after NGF intervention, the levels of RelA and RelB in cytoplasmic and nuclear were detected by west blot. Co-cultured BMDCs with naïve CD4(+) T cells, and ELISA was used to detect IL-4 and INF-γ levels. RESULTS NGF was found to markedly promote OVA and low LPS-induced expression of MHCII, CD86, secretion of TSLP and IL-6, and Th2-response-stimulating capacity of BMDCs. NGF affected BMDCs through LPS-induced p75NTR expression. TAT-Pep5 or QNZ could attenuate the promotive effect of NGF. CONCLUSIONS NGF facilitates OVA with lowLPS-induced maturation of mouse BMDCs through LPS-up-regulated p75 NTR via activation of NF-κB pathways, providing another mechanism for the involvement of NGF in the Th2 response.
Collapse
Affiliation(s)
- Hongyi Tan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Pinhua Pan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Lemeng Zhang
- b Department of Thoracic Medicine , Hunan Cancer Hospital and the Affiliated Cancer Hospital to Xiangya Medical School, Central South University , Changsha, Hunan , China
| | - Zu Cao
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Liu
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Haitao Li
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xiaoli Su
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
10
|
Kunda PE, Cavicchia JC, Acosta CG. Lipopolysaccharides and trophic factors regulate the LPS receptor complex in nodose and trigeminal neurons. Neuroscience 2014; 280:60-72. [PMID: 25218806 DOI: 10.1016/j.neuroscience.2014.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/12/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022]
Abstract
Binding of bacterial lipopolysaccharides (LPS) to toll-like receptor 4 (TLR4) triggers an innate immunoresponse associated with pain and inflammation. The expression, and to a greater extent the regulation of TLR4 and its auxiliary proteins (myeloid differentiation protein 1 (MD1), myeloid differentiation protein 2 (MD2) and cluster of differentiation 14 (CD14)), are both poorly understood in trigeminal and nodose neurons. We used a combination of Western blotting, semi-quantitative polymerase chain reaction (PCR), pharmacological manipulation and immunohistochemistry. The expression pattern and regulation by LPS and trophic factors of TLR4/MD2/CD14 and radioprotective protein of 105kDa (RP105)/MD1 were determined in neonatal trigeminal and nodose mice neurons. We found that all these proteins were expressed in both trigeminal and nodose neurons. The trophic factors Artemin and nerve growth factor (NGF) up-regulated MD2 and RP105 mRNA levels in trigeminal neurons. In nodose neurons the trophic factors brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) up-regulated MD1 and RP105 mRNA levels. Also we observed that in both neuronal types LPS acutely (within 20 min) down-regulated CD14 and MD2 mRNAs. In addition, LPS increased significantly the proportion of trigeminal and nodose neurons expressing nociceptin/orphanin FQ in culture probably acting via TLR4/MD2. Although the exact mechanisms underlying the regulation by trophic factors and LPS require further elucidation, the findings of this study indicate that LPS acts through its archetypical receptor in trigeminal and nodose neurons.
Collapse
Affiliation(s)
- P E Kunda
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - J C Cavicchia
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Medicina, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - C G Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Medicina, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| |
Collapse
|
11
|
Chang RS, Wang YC, Kao ST. Soluble toll-like receptor 4 reversed attenuating effect of Chinese herbal Xiao-Qing-Long-Tang on allergen induced nerve growth factor and thymic stromal lymphopoietin. Exp Ther Med 2013; 6:1199-1207. [PMID: 24223644 PMCID: PMC3820713 DOI: 10.3892/etm.2013.1294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
Xiao-Qing-Long-Tang (XQLT) is known to regulate allergic immune reactions. The aim of this study was to investigate the effects of XQLT on allergen-induced cytokines and associated signaling pathways. An acute allergic mouse model was used to investigate the effects of XQLT on nerve growth factor (NGF) during an allergic reaction, while human pulmonary alveolar epithelial cells (HPAEpiCs) were used to investigate the effects of XQLT on Dermatophagoides pteronyssinus group 2 (Der p 2)-induced NGF, p75 neurotrophin receptor (p75NTR) and thymic stromal lymphopoietin (TSLP) expression. XQLT was demonstrated to inhibit NGF- and p75NTR-related allergic reactions in the mouse model. XQLT also reduced the expression of Toll-like receptor 4 (TLR4) in the lungs of the model mice. XQLT inhibited Der p 2-induced NGF, TSLP and p75NTR expression in the HPAEpiC cell line. The use of recombinant soluble TLR4 (sTLR4) in a competitive assay partially attenuated the inhibitory effect of XQLT on NGF, TSLP and p75NTR expression in HPAEpiC cells. The inhibitory effect of XQLT on the Ser536 phosphorylation of p65 (nuclear factor-κB; NF-κB), a TLR4-induced factor, was also attenuated by sTLR4. In conclusion, XQLT inhibited Der p allergen-induced NGF, p75NTR and TSLP expression. This inhibition was attenuated by sTLR4. The mechanism of action of XQLT may be correlated with TLR4, a primary receptor in the innate immune system. The findings of this study may focus the search for pharmacological targets of XQLT onto TLR4, which is important in the allergen presentation pathway.
Collapse
Affiliation(s)
- Ren-Shiu Chang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402; ; Department of Chinese Medicine, Tainan Sin-Lau Hospital, Tainan 70142
| | | | | |
Collapse
|
12
|
Zhang Y, Li YK. MicroRNAs in the regulation of immune response against infections. J Zhejiang Univ Sci B 2013; 14:1-7. [PMID: 23303626 DOI: 10.1631/jzus.b1200292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate immunity is considered to provide the initial defense against infections by viruses, bacteria, fungi, and protozoa. Detection of the signature molecules of invading pathogens by front-line defense cells via various germline-encoded pattern recognition receptors (PRRs) is needed to activate intracellular signaling cascades that lead to transcriptional expression of inflammatory mediators to coordinate the elimination of pathogens and infected cells. To maintain a fine balance between protective immunity and inflammatory pathology upon infection, the innate signaling pathways in the host need to be tightly regulated. MicroRNAs (miRNAs), a new class of small non-coding RNAs, have been recently shown to be potent modulators that function at post-transcriptional levels. Accumulating evidence demonstrates that the involvement of microorganism-encoded and host miRNAs might play instructive roles in the immune response upon infection. Here, we discuss the current knowledge of miRNAs in the regulation of immune response against infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | |
Collapse
|
13
|
Chang RS, Wang SD, Wang YC, Lin LJ, Kao ST, Wang JY. Xiao-Qing-Long-Tang shows preventive effect of asthma in an allergic asthma mouse model through neurotrophin regulation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:220. [PMID: 24010817 PMCID: PMC3847146 DOI: 10.1186/1472-6882-13-220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study investigates the effect of Xiao-Qing-Long-Tang (XQLT) on neurotrophin in an established mouse model of Dermatophagoides pteronyssinus (Der p)-induced acute allergic asthma and in a LA4 cell line model of lung adenoma. The effects of XQLT on the regulation of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), airway hyper-responsiveness (AHR) and immunoglobulin E were measured. METHODS LA4 cells were stimulated with 100 μg/ml Der p 24 h and the supernatant was collected for ELISA analysis. Der p-stimulated LA4 cells with either XQLT pre-treatment or XQLT co-treatment were used to evaluate the XQLT effect on neurotrophin.Balb/c mice were sensitized on days 0 and 7 with a base-tail injection of 50 μg Dermatophagoides pteronyssinus (Der p) that was emulsified in 50 μl incomplete Freund's adjuvant (IFA). On day 14, mice received an intra-tracheal challenge of 50 μl Der p (2 mg/ml). XQLT (1g/Kg) was administered orally to mice either on days 2, 4, 6, 8, 10 and 12 as a preventive strategy or on day 15 as a therapeutic strategy. RESULTS XQLT inhibited expression of those NGF, BDNF and thymus-and activation-regulated cytokine (TARC) in LA4 cells that were subjected to a Der p allergen. Both preventive and therapeutic treatments with XQLT in mice reduced AHR. Preventive treatment with XQLT markedly decreased NGF in broncho-alveolar lavage fluids (BALF) and BDNF in serum, whereas therapeutic treatment reduced only serum BDNF level. The reduced NGF levels corresponded to a decrease in AHR by XQLT treatment. Reduced BALF NGF and TARC and serum BDNF levels may have been responsible for decreased eosinophil infiltration into lung tissue. Immunohistochemistry showed that p75NTR and TrkA levels were reduced in the lungs of mice under both XQLT treatment protocols, and this reduction may have been correlated with the prevention of the asthmatic reaction by XQLT. CONCLUSION XQLT alleviated allergic inflammation including AHR, IgE elevation and eosinophil infiltration in Der p stimulated mice by regulating neurotrophin and reducing TARC. These results revealed the potential pharmacological targets on which the XQLT decotion exerts preventive and therapeutic effects in an allergic asthma mouse model.
Collapse
Affiliation(s)
- Ren-Shiu Chang
- Graduate Institute of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, No. 57, Sec. 1, Dongmen Rd, Tainan 70142, Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Yu-Chin Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan 70428, Taiwan
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, No. 2 Yude Road, Taichung, 40447, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan 70428, Taiwan
| |
Collapse
|
14
|
Min Y, Xu W, Liu D, Shen H, Xu Y, Zhang S, Zhang L, Wang H. Earle's balanced salts solution and rapamycin differentially regulate the Bacillus Calmette-Guerin-induced maturation of human dendritic cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:162-9. [PMID: 23302514 DOI: 10.1093/abbs/gms117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autophagy has been shown to enhance the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine by increasing the peptide presentation of dendritic cells (DCs). Earle's balanced salts solution (EBSS) is a saline solution with physiological pH which is often used to induce autophagy, while rapamycin is a pharmacological reagent used for autophagy induction. In the present study, we studied the effect of EBSS and rapamycin on the maturation of DCs infected with BCG. The phenotype and function of the DCs were assessed by measuring the expression of CD86 and HLA-DR and the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-12p40. Autophagy was evaluated by the level of LC3-II, a molecular marker for autophagy. Following the stimulation of autophagy by EBSS, the DCs that matured in the presence of BCG showed enhanced CD86 and HLA-DR expression and increased IL-12p40 and TNF-α production. In contrast, following the stimulation of autophagy by rapamycin, the DCs that matured in the presence of BCG showed decreased expression of CD86 and reduced production of IL-12p40 and TNF-α. These results demonstrated that EBSS and rapamycin differentially regulate the BCG-induced maturation of human DCs. This suggests that EBSS could contribute to an enhanced adaptive immune response against Mycobacterium tuberculosis, whereas rapamycin, as an immune depressor, may decrease the adaptive immune response against M. tuberculosis.
Collapse
Affiliation(s)
- Yan Min
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Y, Li Y. Regulation of innate receptor pathways by microRNAs. SCIENCE CHINA. LIFE SCIENCES 2013; 56:13-8. [PMID: 23269554 DOI: 10.1007/s11427-012-4428-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/26/2012] [Indexed: 01/03/2023]
Abstract
The innate immune response provides the initial defense against infection. This is accomplished by families of pattern recognition receptors (PRRs) that bind to conserved molecules in bacteria, fungi and viruses. PRRs are finely regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that are emerging as important regulators in immune responses at the post-transcriptional level, through the inhibition of translation, or by inducing mRNA degradation. It has been shown that miRNAs have unique expression profiles in cells of the innate immune systems and play pivotal roles in regulating the signal pathways of innate receptors, including Toll-like receptors, RIG-I-like receptors and Nod-like receptors. We have summarized the recent literature providing new insights into the regulation of innate receptor pathways by miRNAs.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General Surgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | | |
Collapse
|
16
|
Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 2013; 10:65-71. [PMID: 23262976 PMCID: PMC4003181 DOI: 10.1038/cmi.2012.55] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022] Open
Abstract
The innate immune system recognizes invading pathogens through germline-encoded pattern recognition receptors (PRRs), which elicit innate antimicrobial and inflammatory responses and initiate adaptive immunity to control or eliminate infection. Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I) are the key innate immune PRRs and are tightly regulated by elaborate mechanisms to ensure a beneficial outcome in response to foreign invaders. Although much of the focus in the literature has been on the study of protein regulators of inflammation, microRNAs (miRNAs) have emerged as important controllers of certain features of the inflammatory process. Several miRNAs are induced by TLR and RIG-I activation in myeloid cells and act as feedback regulators of TLR and RIG-I signaling. In this review, we comprehensively discuss the recent understanding of how miRNA networks respond to TLR and RIG-I signaling and their role in the initiation and termination of inflammatory responses. Increasing evidence also indicates that both virus-encoded miRNAs and cellular miRNAs have important functions in viral replication and host anti-viral immunity.
Collapse
Affiliation(s)
- Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
17
|
Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38MAPK-dependent E2F4 phosphorylation. Mol Cell Biol 2012; 32:2722-37. [PMID: 22586272 DOI: 10.1128/mcb.00239-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cumulative evidence indicates that activation of cyclin D-dependent kinase 4/6 (cdk4/6) represents a major trigger of cell cycle reentry and apoptosis in vertebrate neurons. We show here the existence of another mechanism triggering cell cycle reentry in differentiating chick retinal neurons (DCRNs), based on phosphorylation of E2F4 by p38(MAPK). We demonstrate that the activation of p75(NTR) by nerve growth factor (NGF) induces nuclear p38(MAPK) kinase activity, which leads to Thr phosphorylation and subsequent recruitment of E2F4 to the E2F-responsive cdc2 promoter. Inhibition of p38(MAPK), but not of cdk4/6, specifically prevents NGF-dependent cell cycle reentry and apoptosis in DCRNs. Moreover, a constitutively active form of chick E2F4 (Thr261Glu/Thr263Glu) stimulates G(1)/S transition and apoptosis, even after inhibition of p38(MAPK) activity. In contrast, a dominant-negative E2F4 form (Thr261Ala/Thr263Ala) prevents NGF-induced cell cycle reactivation and cell death in DCRNs. These results indicate that NGF-induced cell cycle reentry in neurons depends on the activation of a novel, cdk4/6-independent pathway that may participate in neurodegeneration.
Collapse
|
18
|
Kerschensteiner M, Meinl E, Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Results Probl Cell Differ 2010; 51:197-216. [PMID: 19343310 DOI: 10.1007/400_2009_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Immune cells infiltrate the central nervous system (CNS) in many neurological diseases, with a primary or secondary inflammatory component. In the CNS, immune cells employ shared mediators to promote crosstalk with neuronal cells. The net effect of this neuro-immune crosstalk critically depends on the context of the interaction. It has long been established that inflammatory reactions in the CNS can cause or augment tissue injury in many experimental paradigms. However, emerging evidence suggests that in other paradigms inflammatory cells can contribute to neuroprotection and repair. This dual role of CNS inflammation is also reflected on the molecular level as it is becoming increasingly clear that immune cells can release both neurodestructive and neuroprotective molecules into CNS lesions. It is thus the balance between destructive and protective factors that ultimately determines the net result of the neuro-immune interaction.
Collapse
Affiliation(s)
- Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Marchioninistr, 17, 81377 Munich, Germany.
| | | | | |
Collapse
|
19
|
Elevated Nerve Growth Factor in Dry Eye Associated With Established Contact Lens Wear. Eye Contact Lens 2009; 35:232-7. [DOI: 10.1097/icl.0b013e3181b3e87f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Li L, Kong L, Fang X, Jiang C, Wang Y, Zhong Z, Sun Q, Gu G, Zheng D, Meng R, Kang J. SH2-B beta expression in alveolar macrophages in BAL fluid of asthmatic guinea pigs and its role in NGF-TrkA-mediated asthma. Respirology 2009; 14:60-8. [PMID: 19144050 DOI: 10.1111/j.1440-1843.2008.01417.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Nerve growth factor (NGF)/tyrosine kinase receptor A (TrkA) signalling may play an important role in the pathogenesis of asthma, and SH2-B beta, a TrkA-binding protein, modulates the NGF signalling pathway. In this study, SH2-B beta expression in alveolar macrophages (AM) in guinea pig BAL fluid and its role in asthma pathogenesis through the NGF-TrkA signalling pathway were investigated. METHODS Guinea pigs were randomized into five groups: control, a model of asthma, anti-SH2-B beta antibody treatment, anti-NGF antibody treatment and anti-TrkA antibody treatment. The asthmatic model was established in guinea pigs by inhalation of ovalbumin. Specific anti-SH2-B beta, anti-NGF and anti-TrkA antibodies were administered and AM were isolated from BAL fluid to assess SH2-B beta expression using an immunofluorescence assay. SH2-B beta and TrkA protein expression were determined by western blotting, IL-1 beta and IL-4 levels in the BAL fluid supernatants were determined by ELISA, and pathological changes in the bronchi and lung tissues were examined by HE staining. RESULTS Lymphocyte, eosinophil and total inflammatory cell numbers in BAL fluid were significantly higher in the asthma model group than in the other groups (P < 0.01). NGF expression in the asthma model group was significantly higher than that in the PBS control group (P < 0.01). SH2-B beta was expressed in AM of control animals and expression was significantly higher in the asthma model than in the other groups (P < 0.01). TrkA protein expression was significantly higher in the asthma model group than in the PBS group (P < 0.01), and treatment with anti-NGF antibody resulted in significant reduction of TrkA expression (P < 0.01). CONCLUSIONS SH2-B beta is expressed in AM of normal guinea pigs, and SH2-B beta may participate in asthma pathogenesis through the NGF-TrkA signalling pathway.
Collapse
Affiliation(s)
- Li Li
- Institute of Respiratory Diseases, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Steele KE, Anderson AO, Mohamadzadeh M. Fibroblastic reticular cell infection by hemorrhagic fever viruses. Immunotherapy 2009; 1:187-97. [DOI: 10.2217/1750743x.1.2.187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viral hemorrhagic fevers (VHFs) often cause high mortality with high infectivity, multiorgan failure, shock and hemorrhagic diathesis. Fibroblastic reticular cells (FRCs) within secondary lymphoid organs provide a supporting scaffold to T-lymphocyte areas. These cells regulate the movement of various immune cells and soluble molecules that promote T-lymphocyte homeostasis. We previously reported Ebola virus infection of FRCs, but ascribed little significance to this finding. Here, we studied infection of FRCs by Ebola, Marburg and Lassa viruses. We demonstrate that FRCs, or the extracellular ‘conduit’ of the fibroblastic reticulum of nonhuman primates, are targets of Ebola, Marburg and Lassa viruses. Furthermore, we observed that FRC damage correlates temporally and spatially with lymphocyte damage and that FRCs serve as nidi of fibrin deposition. In addition, we show that nonhuman primate FRCs express p75 NGF receptor and tissue transglutaminase. Our data suggest that viral infection of FRCs may be crucial to the immunological dysfunction and coagulopathy characteristic of VHFs. We further propose that p75 NGF receptor and tissue transglutaminase may be involved in FRC-associated dysfunction during the course of infection.
Collapse
Affiliation(s)
- Keith E Steele
- Division of Pathology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Arthur O Anderson
- Division of Pathology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | | |
Collapse
|
22
|
Neuro-immune crosstalk in CNS diseases. Neuroscience 2008; 158:1122-32. [PMID: 18848864 DOI: 10.1016/j.neuroscience.2008.09.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/23/2022]
Abstract
Immune cells infiltrate the CNS in many neurological diseases with a primary or secondary inflammatory component. In the CNS, immune cells employ shared mediators to promote crosstalk with neuronal cells. The net effect of this neuro-immune crosstalk critically depends on the context of the interaction. It has long been established that inflammatory reactions in the CNS can cause or augment tissue injury in many experimental paradigms. However emerging evidence suggests that in other paradigms inflammatory cells can contribute to neuroprotection and repair. This dual role of CNS inflammation is also reflected on the molecular level as it is becoming increasingly clear that immune cells can release both neurodestructive and neuroprotective molecules in CNS lesions. It is thus the balance between destructive and protective factors that ultimately determines the net result of the neuro-immune interaction.
Collapse
|