1
|
Kilroy JM, Leal AA, Henderson AJ. Chronic HIV Transcription, Translation, and Persistent Inflammation. Viruses 2024; 16:751. [PMID: 38793632 PMCID: PMC11125830 DOI: 10.3390/v16050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
People with HIV exhibit persistent inflammation that correlates with HIV-associated comorbidities including accelerated aging, increased risk of cardiovascular disease, and neuroinflammation. Mechanisms that perpetuate chronic inflammation in people with HIV undergoing antiretroviral treatments are poorly understood. One hypothesis is that the persistent low-level expression of HIV proviruses, including RNAs generated from defective proviral genomes, drives the immune dysfunction that is responsible for chronic HIV pathogenesis. We explore factors during HIV infection that contribute to the generation of a pool of defective proviruses as well as how HIV-1 mRNA and proteins alter immune function in people living with HIV.
Collapse
Affiliation(s)
- Jonathan M. Kilroy
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew A. Leal
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
| | - Andrew J. Henderson
- Department of Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; (J.M.K.); (A.A.L.)
- Department of Medicine and Virology, Immunology, Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
5
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
6
|
Setz C, Friedrich M, Rauch P, Fraedrich K, Matthaei A, Traxdorf M, Schubert U. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes. Viruses 2017; 9:v9080222. [PMID: 28805676 PMCID: PMC5580479 DOI: 10.3390/v9080222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Alina Matthaei
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
7
|
Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR, Thomas AS, Capoferri AA, Beg SA, Huang SH, Karandish S, Hao H, Halper-Stromberg E, Yong PC, Kovacs C, Benko E, Siliciano RF, Ho YC. Defective HIV-1 Proviruses Are Expressed and Can Be Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. Cell Host Microbe 2017; 21:494-506.e4. [PMID: 28407485 DOI: 10.1016/j.chom.2017.03.008] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022]
Abstract
Despite antiretroviral therapy, HIV-1 persists in memory CD4+ T cells, creating a barrier to cure. The majority of HIV-1 proviruses are defective and considered clinically irrelevant. Using cells from HIV-1-infected individuals and reconstructed patient-derived defective proviruses, we show that defective proviruses can be transcribed into RNAs that are spliced and translated. Proviruses with defective major splice donors (MSDs) can activate novel splice sites to produce HIV-1 transcripts, and cells with these proviruses can be recognized by HIV-1-specific cytotoxic T lymphocytes (CTLs). Further, cells with proviruses containing lethal mutations upstream of CTL epitopes can also be recognized by CTLs, potentially through aberrant translation. Thus, CTLs may change the landscape of HIV-1 proviruses by preferentially targeting cells with specific types of defective proviruses. Additionally, the expression of defective proviruses will need to be considered in the measurement of HIV-1 latency reversal.
Collapse
Affiliation(s)
- Ross A Pollack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Mihaela Pertea
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa R Martin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Allison S Thomas
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Adam A Capoferri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Szu-Han Huang
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sara Karandish
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Haiping Hao
- Deep Sequencing & Microarray Core, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Patrick C Yong
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Colin Kovacs
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Maple Leaf Medical Clinic, Toronto, ON M5G 1K2, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, ON M5G 1K2, Canada
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Hahn F, Schmalen A, Setz C, Friedrich M, Schlößer S, Kölle J, Spranger R, Rauch P, Fraedrich K, Reif T, Karius-Fischer J, Balasubramanyam A, Henklein P, Fossen T, Schubert U. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner. PLoS One 2017; 12:e0174254. [PMID: 28388673 PMCID: PMC5384750 DOI: 10.1371/journal.pone.0174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Schmalen
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schlößer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kölle
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Spranger
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Reif
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Karius-Fischer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - Petra Henklein
- Institute of Biochemistry, Charité Universitätsmedizin-Berlin, Berlin, Germany
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
9
|
Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag. Viruses 2016; 8:117. [PMID: 27120610 PMCID: PMC4848609 DOI: 10.3390/v8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.
Collapse
|
10
|
Stone BC, Kas A, Billman ZP, Fuller DH, Fuller JT, Shendure J, Murphy SC. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens. PLoS One 2016; 11:e0153449. [PMID: 27070430 PMCID: PMC4829254 DOI: 10.1371/journal.pone.0153449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/30/2016] [Indexed: 01/15/2023] Open
Abstract
Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.
Collapse
Affiliation(s)
- Brad C. Stone
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BCS); (SCM)
| | - Arnold Kas
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Zachary P. Billman
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - James T. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sean C. Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Challenge Center, Center for Infectious Disease Research, Seattle, Washington, United States of America
- * E-mail: (BCS); (SCM)
| |
Collapse
|
11
|
Mutation of the highly conserved Ser-40 of the HIV-1 p6 gag protein to Phe causes the formation of a hydrophobic patch, enhances membrane association, and polyubiquitination of Gag. Viruses 2014; 6:3738-65. [PMID: 25279819 PMCID: PMC4213559 DOI: 10.3390/v6103738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag.
Collapse
|
12
|
Fusion of ubiquitin to HIV gag impairs human monocyte-derived dendritic cell maturation and reduces ability to induce gag T cell responses. PLoS One 2014; 9:e88327. [PMID: 24505475 PMCID: PMC3914991 DOI: 10.1371/journal.pone.0088327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/12/2014] [Indexed: 12/25/2022] Open
Abstract
The efficient induction of CD8 T cell immunity is dependent on the processing and presentation of antigen on MHC class I molecules by professional antigen presenting cells (APC). To develop an improved T cell vaccine for HIV we investigated whether fusing the ubiquitin gene to the N terminus of the HIV gag gene enhanced targeting to the proteasome resulting in better CD8 T cell responses. Human monocyte derived dendritic cells (moDC), transduced with adenovirus vectors carrying either ubiquitinated or non-ubiquitinated gag transgene constructs, were co-cultured with autologous naïve T cells and T cell responses were measured after several weekly cycles of stimulation. Despite targeting of the ubiquitin gag transgene protein to the proteasome, ubiquitination did not increase CD8 T cell immune responses and in some cases diminished responses to gag peptides. There were no marked differences in cytokines produced from ubiquitinated and non-ubiquitinated gag stimulated cultures or in the expression of inhibitory molecules on expanded T cells. However, the ability of moDC transduced with ubiquitinated gag gene to upregulate co-stimulatory molecules was reduced, whilst no difference in moDC maturation was observed with a control ubiquitinated and non-ubiquitinated MART gene. Furthermore moDC transduced with ubiquitinated gag produced more IL-10 than transduction with unmodified gag. Thus failure of gag ubiquitination to enhance CD8 responses may be caused by suppression of moDC maturation. These results indicate that when designing a successful vaccine strategy to target a particular cell population, attention must also be given to the effect of the vaccine on APCs.
Collapse
|
13
|
Wang R, Xie Y, Zhao T, Tan X, Xu J, Xiang J. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, Kurts C, Steinkasserer A, Gessner A. Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 2013; 24:906-16. [PMID: 23539760 DOI: 10.1681/asn.2012020133] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC-antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection.
Collapse
Affiliation(s)
- Andreas Goldwich
- Department of Immunemodulation at the Dermatology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Setz C, Friedrich M, Hahn S, Dörrie J, Schaft N, Schuler G, Schubert U. Just one position-independent lysine residue can direct MelanA into proteasomal degradation following N-terminal fusion of ubiquitin. PLoS One 2013; 8:e55567. [PMID: 23393593 PMCID: PMC3564756 DOI: 10.1371/journal.pone.0055567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/27/2012] [Indexed: 12/01/2022] Open
Abstract
N-terminal stable in frame fusion of ubiquitin (Ub) has been shown to target the fusion protein for proteasomal degradation. This pathway, called the Ub fusion degradation (UFD), might also elevate MHC class I (MHC-I) antigen presentation of specific antigens. The UFD, mainly studied on cytosolic proteins, has been described to be mediated by polyubiquitination of specific lysine residues within the fused Ub moiety. Using the well characterized melanoma-specific antigen MelanA as a model protein, we analyzed the requirements of the UFD for ubiquitination and proteasomal degradation of a transmembrane protein. Here we show that fusion of the non-cleavable UbG76V variant to the N-terminus of MelanA results in rapid proteasomal degradation via the endoplasmic reticulum-associated degradation (ERAD) pathway and, consequently, leads to an increased MHC-I antigen presentation. While lysine residues within Ub are dispensable for these effects, the presence of one single lysine residue, irrespectively of its location along the fusion protein, is sufficient to induce degradation of MelanA. These results show that the ubiquitination, ER to cytosol relocation and proteasomal degradation of a transmembrane protein can be increased by N-terminal fusion of Ub at the presence of at least one, position independent lysine residue. These findings are in contrast to the conventional wisdom concerning the UFD and indicate a new concept to target a protein into the ubiquitin-proteasome system (UPS) and thus for enhanced MHC-I antigen presentation, and might open up new possibilities in the development of tumor vaccines.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melanie Friedrich
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Hahn
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrich Schubert
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
16
|
Benlahrech A, Meiser A, Herath S, Papagatsias T, Athanasopoulos T, Li F, Self S, Bachy V, Hervouet C, Logan K, Klavinskis L, Dickson G, Patterson S. Fragmentation of SIV-gag vaccine induces broader T cell responses. PLoS One 2012; 7:e48038. [PMID: 23118924 PMCID: PMC3485275 DOI: 10.1371/journal.pone.0048038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/20/2012] [Indexed: 12/28/2022] Open
Abstract
Background High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition. Methodology/Principal Findings Three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector. Conclusion/Significance Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses.
Collapse
Affiliation(s)
- Adel Benlahrech
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Andrea Meiser
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Shanthi Herath
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Timos Papagatsias
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Takis Athanasopoulos
- School of Biological Science, Royal Holloway University of London, Egham, United Kingdom
| | - Fucheng Li
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steve Self
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Veronique Bachy
- Peter Gorer Department of Immunobiology, Guys Hospital, Kings College London, London, United Kingdom
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Guys Hospital, Kings College London, London, United Kingdom
| | - Karen Logan
- Department of Immunology, Imperial College London, London, United Kingdom
| | - Linda Klavinskis
- Peter Gorer Department of Immunobiology, Guys Hospital, Kings College London, London, United Kingdom
| | - George Dickson
- School of Biological Science, Royal Holloway University of London, Egham, United Kingdom
| | - Steven Patterson
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Michaeli Y, Sinik K, Haus-Cohen M, Reiter Y. Melanoma cells present high levels of HLA-A2-tyrosinase in association with instability and aberrant intracellular processing of tyrosinase. Eur J Immunol 2012; 42:842-50. [PMID: 22531911 DOI: 10.1002/eji.201141511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation.
Collapse
Affiliation(s)
- Yael Michaeli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
18
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
19
|
Hahn S, Setz C, Wild J, Schubert U. The PTAP sequence within the p6 domain of human immunodeficiency virus type 1 Gag regulates its ubiquitination and MHC class I antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 186:5706-18. [PMID: 21482733 DOI: 10.4049/jimmunol.1003764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous peptides presented by MHC class I (MHC-I) molecules are mostly derived from de novo synthesized, erroneous proteins, so-called defective ribosomal products (DRiPs), which are rapidly degraded via the ubiquitin-proteasome pathway. We have previously shown that the HIV-1 Gag protein represents a bona fide substrate for the DRiP pathway and that the amount of Gag-DRiPs can be enhanced by the introduction of an N-end rule degradation signal, leading to increased MHC-I presentation and immunogenicity of Gag. Based on these findings, we sought to identify a naturally occurring sequence motif within Gag that regulates its entry into the DRiP pathway. As the PTAP late assembly domain motif in the C-terminal p6 domain of Gag has been shown to negatively regulate the ubiquitination of Gag, we analyzed the correlation between ubiquitination and MHC-I presentation of PTAP-deficient Gag. Intriguingly, mutation of PTAP not only reduces the release of virus-like particles, but also increases ubiquitination of Gag and, consistently, enhances MHC-I presentation of a Gag-derived epitope. Although the half-life of the PTAP mutant was only mildly reduced, the entry into the DRiP pathway was significantly increased, as demonstrated by short-term pulse-chase analyses under proteasome inhibition. Collectively, these results indicate that, besides driving virus release, the PTAP motif regulates the entry of Gag into the DRiP pathway and, thus, into the MHC-I pathway. Although there are no naturally occurring PTAP mutants of HIV-1, mutations of PTAP might enhance the immunogenicity of Gag and, thus, be considered for the improvement of vaccine development.
Collapse
Affiliation(s)
- Sabine Hahn
- Institute of Clinical and Molecular Virology, Friedrich Alexander University, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
20
|
Khadra A, Santamaria P, Edelstein-Keshet L. The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol 2010; 22:571-82. [PMID: 20497954 PMCID: PMC2892361 DOI: 10.1093/intimm/dxq041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/07/2010] [Indexed: 11/14/2022] Open
Abstract
Recent experimental evidence suggests that antigenic stability facilitates antigen shuttling from target tissue to dendritic cells (DCs), enabling cross-priming of naive T cells. On the other hand, antigenic stability affects the efficiency of peptide-MHC (p-MHC) complex formation, altering a target cell's susceptibility to killing by the resulting CTLs. Using a mathematical model, we show how antigenic stability and p-MHC production efficiency interplay in autoantigenicity and pathogenic potential of target cell proteins in autoimmune disease. We consider protein allocated to both rapidly degraded versus stable functional pools [fractions f, 1 - f], contributing, with relative efficiency eta, to p-MHC presentation on a target cell, as well as to cross-presentation on a DC; we analyze the combined effect of these parameters. Our results suggest that autoantigenicity and pathogenicity (ability to elicit T cell activation versus target cell lysis) are not equivalent and that pathogenicity peaks at low to moderate levels of autoantigenicity.
Collapse
Affiliation(s)
- Anmar Khadra
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 12A, Room 4007, 12 South Drive MSC 5621, Bethesda, MD 20892-5621, USA.
| | | | | |
Collapse
|
21
|
Casartelli N, Guivel-Benhassine F, Bouziat R, Brandler S, Schwartz O, Moris A. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. ACTA ACUST UNITED AC 2009; 207:39-49. [PMID: 20038599 PMCID: PMC2812543 DOI: 10.1084/jem.20091933] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic anti–human immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1–specific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system.
Collapse
|
22
|
Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med 2009; 15:263-74. [DOI: 10.1016/j.molmed.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|