1
|
Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL, Mannon PJ, Elson CO. CD4 + T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol 2020; 5:5/54/eabc6373. [PMID: 33310866 DOI: 10.1126/sciimmunol.abc6373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Microbiota-reactive CD4+ T memory (TM) cells are generated during intestinal infections and inflammation, and can revert to pathogenic CD4+ T effector (TE) cells, resulting in chronicity of inflammatory bowel disease (IBD). Unlike TE cells, TM cells have a low rate of metabolism unless they are activated by reencountering cognate antigen. Here, we show that the combination of cell activation and metabolic checkpoint inhibition (CAMCI), by targeting key metabolic regulators mTORC and AMPK, resulted in cell death and anergy, but enhanced the induction of the regulatory subset. Parenteral application of this treatment with a synthetic peptide containing multiple flagellin T cell epitopes (MEP1) and metabolic inhibition successfully prevented the development of CD4+ T cell-driven colitis. Microbiota-specific CD4+ T cells, especially the pathogenic TE subsets, were decreased 10-fold in the intestinal lamina propria. Furthermore, using the CAMCI strategy, we were able to prevent antigen-specific TM cell formation upon initial antigen encounter, and ablate existing TM cells upon reactivation in mice, leading to an altered transcriptome in the remaining CD4+ T cells after ablation. Microbiota flagellin-specific CD4+ T cells from patients with Crohn's disease were ablated in a similar manner after CAMCI in vitro, with half of the antigen-specific T cells undergoing cell death. These results indicate that parenteral activation of microbiota-specific CD4+ T cells with concomitant metabolic inhibition is an effective way to ablate pathogenic CD4+ TM cells and to induce T regulatory (Treg) cells that provide antigen-specific and bystander suppression, supporting a potential immunotherapy to prevent or ameliorate IBD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennard W Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengyuan Huang
- Department of Genetics, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter J Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Mateos B, Sáez-González E, Moret I, Hervás D, Iborra M, Cerrillo E, Tortosa L, Nos P, Beltrán B. Plasma Oncostatin M, TNF-α, IL-7, and IL-13 Network Predicts Crohn's Disease Response to Infliximab, as Assessed by Calprotectin Log Drop. Dig Dis 2020; 39:1-9. [PMID: 32325460 DOI: 10.1159/000508069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/22/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cytokines emerge as possible biomarkers of response in Crohn's disease (CD). We aimed to determine the plasmatic cytokine profiles of active CD patients who started infliximab (IFX) treatment and their capacity to predict the response to IFX. METHODS A total of 30 active CD patients receiving an induction therapy of IFX were enrolled in the study. Peripheral blood samples pretreatment were collected. Concentrations of 15 cytokines were measured by Luminex technology. Responses to IFX were evaluated by the drop in fecal calprotectin based on its logarithm-transformed values. A random forest (RF) predictive model was used for data analyses. RESULTS Samples of 22 patients were analyzed. The RF model ranked the following cytokines as the top predictors of the response: tumor necrosis factor alpha (TNFα), interleukin (IL)-13, oncostatin M (OSM), and IL-7 (p < 0.005). Partial dependency plots showed that high levels of IL-13 pretreatment, low TNFα levels, and low IL-7 levels were associated with a favorable IFX response. Increased levels of OSM and TNFα predicted unfavorable responses to IFX. CONCLUSIONS We here show that a log drop in calprotectin strongly correlates with clinical parameters and it can be proposed as a useful objective clinical response predictor. Plasma TNFα, IL-13, Il-7, and OSM network could predict CD response to IFX before induction therapy, as assessed by calprotectin log drop.
Collapse
Affiliation(s)
- Beatriz Mateos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Inés Moret
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - David Hervás
- Biostatictics Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain, .,Inflammatory Bowel Disease Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain, .,Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD), Madrid, Spain,
| |
Collapse
|
3
|
Belarif L, Danger R, Kermarrec L, Nerrière-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, Thepenier V, Martin JC, Chang C, Rahman A, Guen NSL, Braudeau C, Abidi A, David G, Malard F, Takoudju C, Martinet B, Gérard N, Neveu I, Neunlist M, Coron E, MacDonald TT, Desreumaux P, Mai HL, Le Bas-Bernardet S, Mosnier JF, Merad M, Josien R, Brouard S, Soulillou JP, Blancho G, Bourreille A, Naveilhan P, Vanhove B, Poirier N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 2019; 129:1910-1925. [PMID: 30939120 DOI: 10.1172/jci121668] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4β7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.
Collapse
Affiliation(s)
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Laetitia Kermarrec
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Véronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | | | - Tony Durand
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | | | | | | | - Aneta Kucik
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | | | - Jerome C Martin
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Christie Chang
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Adeeb Rahman
- Precision Immunology Institute.,Charles Bronfman Institute for Personalized Medicine, and.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Salabert-Le Guen
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Cécile Braudeau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France
| | - Ahmed Abidi
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Laboratoire de génétique, immunologie et pathologies humaines, Faculté des sciences de Tunis, Tunis, Tunisia
| | - Grégoire David
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Florent Malard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Celine Takoudju
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Nathalie Gérard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Isabelle Neveu
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Michel Neunlist
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Thomas T MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Pierre Desreumaux
- Hepato-Gastroenterology Department, Claude Huriez Hospital, University of Lille 2, Lille, France
| | - Hoa-Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Stephanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-François Mosnier
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Miriam Merad
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Arnaud Bourreille
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Philippe Naveilhan
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | | | | |
Collapse
|
4
|
Sung J, Sodhi CP, Voltaggio L, Hou X, Jia H, Zhou Q, Čiháková D, Hackam DJ. The recruitment of extra-intestinal cells to the injured mucosa promotes healing in radiation enteritis and chemical colitis in a mouse parabiosis model. Mucosal Immunol 2019; 12:503-517. [PMID: 30617302 PMCID: PMC6445662 DOI: 10.1038/s41385-018-0123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Mucosal healing occurs through migration and proliferation of cells within injured epithelium, yet these processes may be inadequate for mucosal healing after significant injury where the mucosa is denuded. We hypothesize that extra-intestinal cells can contribute to mucosal healing after injury to the small and large intestine. We generated parabiotic pairs between wild-type and tdTomato mice, which were then subjected to radiation-induced enteritis and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. We now show that as compared with singleton mice, mice with a parabiotic partner were protected against intestinal damage as revealed by significantly reduced weight loss, reduced expression of pro-inflammatory cytokines, reduced enterocyte apoptosis, and improved crypt proliferation. Donor cells expressed CD45-, Sca-1+, c-kit+, and CXCR4+ and accumulated around the injured crypts but did not transdifferentiate into epithelia, suggesting that extra-intestinal cells play a paracrine role in the healing response, while parabiotic pairings with Rag1-/- mice showed improved healing, indicating that adaptive immune cells were dispensable for mucosal healing. Strikingly, ablation of the bone marrow of the donor parabionts removed the protective effects. These findings reveal that the recruitment of extra-intestinal, bone marrow-derived cells into the injured intestinal mucosa can promote mucosal healing, suggesting novel therapeutic approaches for severe intestinal disease.
Collapse
Affiliation(s)
- J Sung
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - C P Sodhi
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - L Voltaggio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - X Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - H Jia
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - Q Zhou
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - D Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D J Hackam
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA.
| |
Collapse
|
5
|
Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog 2017; 13:e1006373. [PMID: 28505204 PMCID: PMC5444854 DOI: 10.1371/journal.ppat.1006373] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/25/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Innate lymphocyte cells (ILCs), a novel family of innate immune cells are considered to function as key orchestrators of immune defences at mucosal surfaces and to be crucial for maintaining an intact intestinal barrier. Accordingly, first data suggest depletion of ILCs to be involved in human immunodeficiency virus (HIV)-associated damage of the intestinal mucosa and subsequent microbial translocation. However, although ILCs are preferentially localized at mucosal surfaces, only little is known regarding distribution and function of ILCs in the human gastrointestinal tract. Here, we show that in HIV(-) individuals composition and functional capacity of intestinal ILCs is compartment-specific with group 1 ILCs representing the major fraction in the upper gastrointestinal (GI) tract, whereas ILC3 are the predominant population in ileum and colon, respectively. In addition, we present first data indicating that local cytokine concentrations, especially that of IL-7, might modulate composition of gut ILCs. Distribution of intestinal ILCs was significantly altered in HIV patients, who displayed decreased frequency of total ILCs in ileum and colon owing to reduced numbers of both CD127(+)ILC1 and ILC3. Of note, frequency of colonic ILC3 was inversely correlated with serum levels of I-FABP and sCD14, surrogate markers for loss of gut barrier integrity and microbial translocation, respectively. Both expression of the IL-7 receptor CD127 on ILCs as well as mucosal IL-7 mRNA levels were decreased in HIV(+) patients, especially in those parts of the GI tract with reduced ILC frequencies, suggesting that impaired IL-7 responses of ILCs might contribute to incomplete reconstitution of ILCs under effective anti-retroviral therapy. This is the first report comparing distribution and function of ILCs along the intestinal mucosa of the entire human gastrointestinal tract in HIV(+) and HIV(-) individuals.
Collapse
|
6
|
Mizoguchi A, Takeuchi T, Himuro H, Okada T, Mizoguchi E. Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol 2015; 238:205-19. [PMID: 26387641 DOI: 10.1002/path.4640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/05/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takahito Takeuchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidetomo Himuro
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Toshiyuki Okada
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Emiko Mizoguchi
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R, Tsuchiya K, Watanabe M. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 2013; 62:1142-52. [PMID: 23144054 PMCID: PMC3711361 DOI: 10.1136/gutjnl-2012-302029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. DESIGN To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. RESULTS IL-7-/-×RAG-1-/- mice injected with BM cells from IL-7+/+×RAG-1-/- mice, but not from IL-7-/-×RAG-1-/- mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7-/-×RAG-1-/- mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. CONCLUSIONS We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM.
Collapse
Affiliation(s)
- Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Hisamatsu T, Kanai T, Mikami Y, Yoneno K, Matsuoka K, Hibi T. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol Ther 2013; 137:283-97. [PMID: 23103332 DOI: 10.1016/j.pharmthera.2012.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Although the precise etiologies of inflammatory bowel disease (IBD) (ulcerative colitis and Crohn's disease) remain obscure, several reports have indicated that dysfunction of the mucosal immune system plays an important role in its pathogenesis. Recent progress with genome-wide association studies has identified many IBD susceptibility genes. In individuals with genetic risk, abnormal interactions between the host immune system and gut flora, and dysregulation of cellular responses such as autophagy and ER stress, induce an abnormal host immune response in the gut resulting in intestinal inflammation. Research progress animal models in IBD, and in human IBD, has identified several key molecules in IBD pathogenesis such as TNFα and adhesion molecules, and molecular targeting therapies based on these molecules have been developed. Here, we review immunological aspects in IBD pathogenesis and the development of immunoregulatory therapy.
Collapse
Affiliation(s)
- Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Le Campion A, Pommier A, Delpoux A, Stouvenel L, Auffray C, Martin B, Lucas B. IL-2 and IL-7 Determine the Homeostatic Balance between the Regulatory and Conventional CD4+ T Cell Compartments during Peripheral T Cell Reconstitution. THE JOURNAL OF IMMUNOLOGY 2012; 189:3339-46. [DOI: 10.4049/jimmunol.1103152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Hara T, Shitara S, Imai K, Miyachi H, Kitano S, Yao H, Tani-ichi S, Ikuta K. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1577-84. [PMID: 22786774 DOI: 10.4049/jimmunol.1200586] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IL-7 is a cytokine crucial for development and maintenance of lymphocytes and other hematopoietic cells. However, how IL-7-expressing cells are distributed in lymphoid organs is not well known. To address this question, we established and analyzed IL-7-GFP knock-in mice. Thymic epithelial cells (TECs) expressed high GFP levels in the cortex and medulla, as detected with an anti-GFP Ab. Thymic mesenchymal cells also expressed GFP. Flow cytometry analysis suggested that cortical TECs expressed higher GFP levels than did medullary TECs. In bone marrow, immunohistochemistry indicated high levels of GFP in many VCAM-1(+) mesenchymal stromal cells and in some VCAM-1(-) cells. Additionally, half of the VCAM-1(+)CD31(-) stromal cells and some platelet-derived growth factor receptor α(+) stromal cells were GFP(+), as detected by flow cytometry. Moreover, we detected GFP expression in fibroblastic reticular cells in the T cell zone and cortical ridge of lymph nodes. Remarkably, lymphatic endothelial cells (LECs) expressed GFP at high levels within the lymph node medulla, skin epidermis, and intestinal tissues. Additionally, we detected abundant IL-7 transcripts in isolated LECs, suggesting that LECs produce IL-7, a heretofore unknown finding. Furthermore, GFP is expressed in a subpopulation of intestinal epithelial cells, and that expression was markedly upregulated in a dextran sulfate sodium-induced acute colitis model. Overall, IL-7-GFP knock-in mice serve as a unique and powerful tool to examine the identity and distribution of IL-7-expressing cells in vivo.
Collapse
Affiliation(s)
- Takahiro Hara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Saeki K, Kanai T, Nakano M, Nakamura Y, Miyata N, Sujino T, Yamagishi Y, Ebinuma H, Takaishi H, Ono Y, Takeda K, Hozawa S, Yoshimura A, Hibi T. CCL2-induced migration and SOCS3-mediated activation of macrophages are involved in cerulein-induced pancreatitis in mice. Gastroenterology 2012; 142:1010-1020.e9. [PMID: 22248664 DOI: 10.1053/j.gastro.2011.12.054] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis is a common inflammatory disease mediated by damage to acinar cells and subsequent pancreatic inflammation with recruitment of leukocytes. We investigated the pathologic roles of innate immune cells, especially macrophages, in cerulein- and L-arginine-induced acute pancreatitis in mice. METHODS Acute pancreatitis was induced by sequential peritoneal administration of cerulein to mice. We determined serum concentrations of amylase and lipase, pancreatic pathology, and features of infiltrating mononuclear cells. We performed parabiosis surgery to assess the hemodynamics of pancreatic macrophages. RESULTS Almost all types of immune cells, except for CD11b(high)CD11c(-) cells, were detected in the pancreas of healthy mice. However, activated CD11b(high)CD11c(-) cells, including Gr-1(low) macrophages and Gr-1(high) cells (granulocytes and myeloid-derived suppressor cells), were detected in damaged pancreas after cerulein administration. CCL2(-/-) mice given cerulein injections developed significantly less severe pancreatitis, with less infiltration of CD11b(high)CD11c(-)Gr-1(low) macrophages, but comparable infiltration of myeloid-derived suppressor cells, compared with cerulein-injected wild-type mice. Parabiosis and bone marrow analyses of these mice revealed that the CD11b(high)CD11c(-)Gr-1(low) macrophages had moved out of the bone marrow. Furthermore, mice with macrophage-specific deletion of suppressor of cytokine signaling 3 given injections of cerulein developed less severe pancreatitis and Gr-1(low) macrophage produced less tumor necrosis factor-α than wild-type mice given cerulein, although the absolute number of CD11b(high)CD11c(-)Gr-1(low) macrophages was comparable between strains. Induction of acute pancreatitis by L-arginine required induction of macrophage migration by CCL2, via the receptor CCR2. CONCLUSIONS Cerulein induction of pancreatitis in mice involves migration of CD11b(high)CD11c(-)Gr-1(low) macrophage from the bone marrow (mediated by CCL2 via CCR2) and suppressor of cytokine signaling 3-dependent activation of macrophage. These findings might lead to new therapeutic strategies for acute pancreatitis.
Collapse
Affiliation(s)
- Keita Saeki
- Department of Gastroenterology and Hepatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mazzucchelli RI, Riva A, Durum SK. The human IL-7 receptor gene: deletions, polymorphisms and mutations. Semin Immunol 2012; 24:225-30. [PMID: 22425228 DOI: 10.1016/j.smim.2012.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/01/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023]
Abstract
Most T cell subsets depend on IL-7 for survival. IL-7 binds to IL-7Rα and γc, initiating the signaling cascade. Deletion of IL-7Ra in humans has, for some time, been known to cause severe combined immunodeficiency. More recently, polymorphisms in IL-7R have been shown be a risk factor for a number of diseases that are autoimmune or involve excess immune and inflammatory responses including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, primary biliary cirrhosis, inflammatory bowel disease, atopic dermatitis, inhalation allergy, sarcoidosis and graft-versus host disease. The polymorphism that affects risk to most of these immunopathologies is T244I at the border of the extracellular domain and the transmembrane region. The same region has recently been shown to harbor gain-of-function mutations in acute lymphoblastic leukemia. These studies have suggested new therapies that target the IL-7 pathway.
Collapse
Affiliation(s)
- Renata I Mazzucchelli
- Laboratory of Gene Therapy and Primary Immunodeficiency, San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|
13
|
Shalapour S, Deiser K, Kühl AA, Glauben R, Krug SM, Fischer A, Sercan Ö, Chappaz S, Bereswill S, Heimesaat MM, Loddenkemper C, Fromm M, Finke D, Hämmerling GJ, Arnold B, Siegmund B, Schüler T. Interleukin-7 links T lymphocyte and intestinal epithelial cell homeostasis. PLoS One 2012; 7:e31939. [PMID: 22384106 PMCID: PMC3288069 DOI: 10.1371/journal.pone.0031939] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023] Open
Abstract
Interleukin-7 (IL-7) is a major survival factor for mature T cells. Therefore, the degree of IL-7 availability determines the size of the peripheral T cell pool and regulates T cell homeostasis. Here we provide evidence that IL-7 also regulates the homeostasis of intestinal epithelial cells (IEC), colon function and the composition of the commensal microflora. In the colon of T cell-deficient, lymphopenic mice, IL-7-producing IEC accumulate. IEC hyperplasia can be blocked by IL-7-consuming T cells or the inactivation of the IL-7/IL-7R signaling pathway. However, the blockade of the IL-7/IL-7R signaling pathway renders T cell-deficient mice more sensitive to chemically-induced IEC damage and subsequent colitis. In summary, our data demonstrate that IL-7 promotes IEC hyperplasia under lymphopenic conditions. Under non-lymphopenic conditions, however, T cells consume IL-7 thereby limiting IEC expansion and survival. Hence, the degree of IL-7 availability regulates both, T cell and IEC homeostasis.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Katrin Deiser
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Anja A. Kühl
- Institute of Pathology/Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne M. Krug
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - André Fischer
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Özen Sercan
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Stephane Chappaz
- Department of Biomedicine, Division of Developmental Immunology, University of Basel, Basel, Switzerland
| | - Stefan Bereswill
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Loddenkemper
- Institute of Pathology/Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine, Division of Developmental Immunology, University of Basel, Basel, Switzerland
| | - Günter J. Hämmerling
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Bernd Arnold
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schüler
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
14
|
Yamaji O, Nagaishi T, Totsuka T, Onizawa M, Suzuki M, Tsuge N, Hasegawa A, Okamoto R, Tsuchiya K, Nakamura T, Arase H, Kanai T, Watanabe M. The development of colitogenic CD4(+) T cells is regulated by IL-7 in collaboration with NK cell function in a murine model of colitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:2524-36. [PMID: 22331065 DOI: 10.4049/jimmunol.1100371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.
Collapse
Affiliation(s)
- Osamu Yamaji
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mizoguchi A. Animal models of inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:263-320. [PMID: 22137435 DOI: 10.1016/b978-0-12-394596-9.00009-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is medicated by genetic, immune, and environmental factors. At least 66 different kinds of animal models have been established to study IBD, which are classified primarily into chemically induced, cell-transfer, congenial mutant, and genetically engineered models. These IBD models have provided significant contributions to not only dissect the mechanism but also develop novel therapeutic strategies for IBD. In addition, recent advances on genetically engineered techniques such as cell-specific and inducible knockout as well as knockin mouse systems have brought novel concepts on IBD pathogenesis to the fore. Further, mouse models, which lack some IBD susceptibility genes, have suggested more complicated mechanism of IBD than previously predicted. This chapter summarizes the distinct feature of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Actis GC, Rosina F, Mackay IR. Inflammatory bowel disease: beyond the boundaries of the bowel. Expert Rev Gastroenterol Hepatol 2011; 5:401-10. [PMID: 21651357 DOI: 10.1586/egh.11.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysregulated inflammation in the gut, designated clinically as inflammatory bowel disease (IBD), is manifested by the prototypic phenotypes of an Arthus-like reaction restricted to the mucosa of the colon, as in ulcerative colitis, or a transmural granulomatous reaction, as in Crohn's disease, or an indeterminate form of the two polar types. That the inflammation of IBD can trespass the boundaries of the bowel has long been known, with articular, ophthalmologic, cutaneous, hepatobiliary or other complications/associations - some autoimmune and others not - affecting significant numbers of patients with IBD. Also notable is the frequency of diagnosis of IBD-type diseases on a background of systemic, (mostly myelo-hematological) disorders, associated with alterations of either (or both) innate or adaptive arms of the immune response. Finally, cases of IBD are reported to occur as an adverse effect of TNF inhibitors. Bone marrow transplant has been proven to be the only curative measure for some of the above cases. Thus, in effect, the IBDs should now be regarded as a systemic, rather than bowel-localized, disease. Genome-wide association studies have been informative in consolidating the view of three phenotypes of IBD (ulcerative colitis, Crohn's disease and mixed) and, notably, are revealing that the onset of IBD can be linked to polymorphisms in regulatory miRNAs, or to nucleotide sequences coding for regulatory lymphokines and/or their receptors. At the effector level, we emphasize the major role of the Th17/IL-23 axis in dictating the perpetuation of intestinal inflammation, augmented by a failure of physiological control by regulatory T-cells. In conclusion, there is a central genesis of the defects underlying IBD, which therefore, in our opinion, is best accommodated by the concept of IBD as more of a syndrome than an autonomous disease. This altered mindset should upgrade our knowledge of IBD, influence its medical care and provide a platform for further advances.
Collapse
Affiliation(s)
- Giovanni C Actis
- Department of Gastro-Hepatology, Ospedale Gradenigo, Corso Regina Margherita 10, Torino 10153, Italy.
| | | | | |
Collapse
|
17
|
Tomita T, Kanai T, Totsuka T, Nemoto Y, Okamoto R, Tsuchiya K, Sakamoto N, Ohteki T, Hibi T, Watanabe M. IL-7 is essential for lymphopenia-driven turnover of colitogenic CD4+memory T cells in chronic colitis. Eur J Immunol 2009; 39:2737-47. [DOI: 10.1002/eji.200838905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Nemoto Y, Kanai T, Kameyama K, Shinohara T, Sakamoto N, Totsuka T, Okamoto R, Tsuchiya K, Nakamura T, Sudo T, Matsumoto S, Watanabe M. Long-Lived Colitogenic CD4+ Memory T Cells Residing Outside the Intestine Participate in the Perpetuation of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5059-68. [DOI: 10.4049/jimmunol.0803684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Abstract
Interleukin-7 (IL-7) is required for the development and survival of T cells and plays a critical role in modulating T-cell homeostasis. This review will address current understanding of IL-7 biology, review recent clinical experiences and discuss potential future clinical applications of IL-7, or IL-7 blockade, in the setting of disease.
Collapse
Affiliation(s)
- C M Capitini
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
20
|
Finke D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 2009; 31:151-69. [PMID: 19506873 DOI: 10.1007/s00281-009-0163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Since the discovery of inducer cells as a separate lineage for organogenesis of Peyer's patches in the small intestine of fetal mice, a lot of progress has been made in understanding the molecular pathways involved in the generation of lymphoid tissue and the maintenance of the lymphoid architecture. The findings that inducer cells also exist in adult mice and in humans, have a lineage relationship to natural killer cells, and can be stimulated during infections highlight their possible role in establishing innate and adaptive immune responses. Novel concepts in the development of intestinal lymphoid tissues have been made in the past few years suggesting that lymphoid organs are more plastic as previously thought and depend on antigenic stimulation. In addition, the generation of novel lymphoid organs in the gut under inflammatory conditions indicates a function in chronic diseases. The present review summarizes current knowledge on the basic framework of signals required for developing lymphoid tissue under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Daniela Finke
- Department of Biomedicine, Developmental Immunology, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Kanai T, Nemoto Y, Tomita T, Totsuka T, Watanabe M, Hibi T. Persistent retention of colitogenic CD4+ memory T cells causes inflammatory bowel diseases to become intractable. Inflamm Bowel Dis 2009; 15:926-34. [PMID: 19009635 DOI: 10.1002/ibd.20738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the advent of an age when "malignant" leukemia is cured by bone marrow transplantation, "benign" inflammatory bowel diseases (IBDs) are still intractable lifelong diseases. Why is it that once an IBD develops it lasts a long time? We propose that, the same as in the response to vaccination, immune memory T cells that remember the disease are formed in IBDs and, perceiving them as "benign T-cell leukemia"-like lifelong pathology that hematogenously spreads throughout the body, we here propose that the bone marrow itself, which produces large amounts of the survival factor IL-7, is the reservoir for colitogenic CD4(+) memory T cells responsible for the intractability of IBDs.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Systemically Circulating Colitogenic Memory CD4+T Cells May Be an Ideal Target for the Treatment of Inflammatory Bowel Diseases. Keio J Med 2009; 58:203-9. [DOI: 10.2302/kjm.58.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Tomita T, Kanai T, Nemoto Y, Fujii T, Nozaki K, Okamoto R, Tsuchiya K, Nakamura T, Sakamoto N, Totsuka T, Watanabe M. Colitogenic CD4+ effector-memory T cells actively recirculate in chronic colitic mice. Inflamm Bowel Dis 2008; 14:1630-40. [PMID: 18668663 DOI: 10.1002/ibd.20636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Although the clinical usefulness of leukocytapheresis for patients with inflammatory bowel disease (IBD) has been reported as a selective removal therapy targeting pathogenic immune cells in blood circulation, it remains unclear whether colitogenic CD4(+) T cells continuously recirculate in peripheral blood during the chronic phase of colitis. METHODS To resolve this question we conducted a series of in vivo experiments using a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) cells into SCID mice in combination with a parabiosis system. RESULTS In colitic SCID recipients, first, almost all CD4(+) CD45RB(high) donor cells were converted to CD4(+)CD44(high)CD62L(-) IL-7Ralpha(high) effector-memory T (T(EM)) cells at 8 weeks after transfer and were distributed throughout the whole body, including colonic lamina propria, mesenteric lymph nodes, thoracic duct, peripheral blood, spleen, and bone marrow. Second, SCID mice retransferred with the colitic peripheral blood CD4(+) T cells developed colitis that is identical to the original colitis. Third, CD4(+) cells in parabionts between established colitic RAG-2(-/-) mice induced by adoptive transfer of Ly5.1(+) or Ly5.2(+) CD4(+)CD45RB(high) T cells were well mixed in almost equal proportions at various sites 2 weeks after parabiosis surgery, and the redistribution of Ly5.1(+) and Ly5.2(+) CD4(+) T cells was significantly suppressed in FTY720-treated parabionts. CONCLUSIONS Together, these findings indicate that colitogenic CD4(+) T(EM) cells continuously recirculate in established colitic mice, suggesting that therapeutic approaches targeting systemic CD4(+) T(EM) cells, such as bone marrow transplantation, rather than those targeting only intestinal CD4(+) T cells, may be feasible for the treatment of IBD.
Collapse
Affiliation(s)
- Takayuki Tomita
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|