1
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
2
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
3
|
Velez G, Tang PH, Cabral T, Cho GY, Machlab DA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Transl Vis Sci Technol 2018; 7:12. [PMID: 30271679 PMCID: PMC6159735 DOI: 10.1167/tvst.7.5.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Proteomic analysis is an attractive and powerful tool for characterizing the molecular profiles of diseased tissues, such as the vitreous. The complexity of data available for analysis ranges from single (e.g., enzyme-linked immunosorbent assay [ELISA]) to thousands (e.g., mass spectrometry) of proteins, and unlike genomic analysis, which is limited to denoting risk, proteomic methods take snapshots of a diseased vitreous to evaluate ongoing molecular processes in real time. The proteome of diseased ocular tissues was recently characterized, uncovering numerous biomarkers for vitreoretinal diseases and identifying protein targets for approved drugs, allowing for drug repositioning. These biomarkers merit more attention regarding their therapeutic potential and prospective validation, as well as their value as reproducible, sensitive, and specific diagnostic markers. TRANSLATIONAL RELEVANCE Personalized proteomics offers many advantages over alternative precision-health platforms for the diagnosis and treatment of vitreoretinal diseases, including identification of molecular constituents in the diseased tissue that can be targeted by available drugs.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Peter H. Tang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Vision Center Unit, Ophthalmology, EBSERH, HUCAM-UFES, Vitória, Brazil
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Galaxy Y. Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Daniel A. Machlab
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Stephen H. Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
4
|
Bäckdahl L, Ekman D, Jagodic M, Olsson T, Holmdahl R. Identification of candidate risk gene variations by whole-genome sequence analysis of four rat strains commonly used in inflammation research. BMC Genomics 2014; 15:391. [PMID: 24885425 PMCID: PMC4041999 DOI: 10.1186/1471-2164-15-391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background The DA rat strain is particularly susceptible to the induction of a number of chronic inflammatory diseases, such as models for rheumatoid arthritis and multiple sclerosis. Here we sequenced the genomes of two DA sub-strains and two disease resistant strains, E3 and PVG, previously used together with DA strains in genetically segregating crosses. Results The data uncovers genomic variations, such as single nucleotide variations (SNVs) and copy number variations that underlie phenotypic differences between the strains. Comparisons of regional differences between the two DA sub-strains identified 8 genomic regions that discriminate between the strains that together cover 38 Mbp and harbor 302 genes. We analyzed 10 fine-mapped quantitative trait loci and our data implicate strong candidates for genetic variations that mediate their effects. For example we could identify a single SNV candidate in a regulatory region of the gene Il21r, which has been associated to differential expression in both rats and human MS patients. In the APLEC complex we identified two SNVs in a highly conserved region, which could affect the regulation of all APLEC encoded genes and explain the polygenic differential expression seen in the complex. Furthermore, the non-synonymous SNV modifying aa153 of the Ncf1 protein was confirmed as the sole causative factor. Conclusion This complete map of genetic differences between the most commonly used rat strains in inflammation research constitutes an important reference in understanding how genetic variations contribute to the traits of importance for inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-391) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
5
|
Cénit MC, Márquez A, Cordero-Coma M, Gorroño-Echebarría MB, Fonollosa A, Adán A, Martínez-Berriotxoa A, Díaz Valle D, Pato E, Blanco R, Cañal J, Díaz-Llopis M, García Serrano JL, de Ramón E, del Rio MJ, Martín-Villa JM, Molins B, Ortego-Centeno N, Martín J. No evidence of association between common autoimmunity STAT4 and IL23R risk polymorphisms and non-anterior uveitis. PLoS One 2013; 8:e72892. [PMID: 24312163 PMCID: PMC3843656 DOI: 10.1371/journal.pone.0072892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE STAT4 and IL23R loci represent common susceptibility genetic factors in autoimmunity. We decided to investigate for the first time the possible role of different STAT4/IL23R autoimmune disease-associated polymorphisms on the susceptibility to develop non-anterior uveitis and its main clinical phenotypes. METHODS Four functional polymorphisms (rs3821236, rs7574865, rs7574070, and rs897200) located within STAT4 gene as well as three independent polymorphisms (rs7517847, rs11209026, and rs1495965) located within IL23R were genotyped using TaqMan® allelic discrimination in a total of 206 patients with non-anterior uveitis and 1553 healthy controls from Spain. RESULTS No statistically significant differences were found when allele and genotype distributions were compared between non-anterior uveitis patients and controls for any STAT4 (rs3821236: P=0.39, OR=1.12, CI 95%=0.87-1.43; rs7574865: P=0.59 OR=1.07, CI 95%=0.84-1.37; rs7574070: P=0.26, OR=0.89, CI 95%=0.72-1.10; rs897200: P=0.22, OR=0.88, CI 95%=0.71-1.08;) or IL23R polymorphisms (rs7517847: P=0.49, OR=1.08, CI 95%=0.87-1.33; rs11209026: P=0.26, OR=0.78, CI 95%=0.51-1.21; rs1495965: P=0.51, OR=0.93, CI 95%=0.76-1.15). CONCLUSION Our results do not support a relevant role, similar to that described for other autoimmune diseases, of IL23R and STAT4 polymorphisms in the non-anterior uveitis genetic predisposition. Further studies are needed to discard a possible weak effect of the studied variant.
Collapse
Affiliation(s)
- María Carmen Cénit
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| | | | | | | | - Alfredo Adán
- Ophthalmology Department, Hospital Clinic, Barcelona, Spain
| | | | - David Díaz Valle
- Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Esperanza Pato
- Rheumatology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ricardo Blanco
- Rheumatology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | - Joaquín Cañal
- Ophthalmology Department, Hospital Marqués de Valdecilla, Santander, Spain
| | | | | | - Enrique de Ramón
- Internal Medicine Department, Hospital Carlos Haya, Málaga, Spain
| | | | | | - Blanca Molins
- Ophthalmology Department, Hospital Clinic, Barcelona, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| |
Collapse
|
6
|
Kulbrock M, Distl O, Ohnesorge B. A Review of Candidate Genes for Development of Equine Recurrent Uveitis. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Márquez A, Cénit MC, Cordero-Coma M, Ortego-Centeno N, Adán A, Fonollosa A, Díaz Valle D, Pato E, Blanco R, Cañal J, Díaz-Llopis M, de Ramón E, del Rio MJ, García Serrano JL, Artaraz J, Martín-Villa JM, Llorenç V, Gorroño-Echebarría MB, Martín J. Two functional variants of IRF5 influence the development of macular edema in patients with non-anterior uveitis. PLoS One 2013; 8:e76777. [PMID: 24116155 PMCID: PMC3792064 DOI: 10.1371/journal.pone.0076777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. METHODS Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. RESULTS A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (P FDR =5.07E-03, OR=1.48, CI 95%=1.14-1.92 and P FDR =3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. CONCLUSION Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies.
Collapse
Affiliation(s)
- Ana Márquez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| | - María Carmen Cénit
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| | | | | | - Alfredo Adán
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | | | - David Díaz Valle
- Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Esperanza Pato
- Rheumatology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ricardo Blanco
- Rheumatology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | - Joaquín Cañal
- Ophthalmology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | | | - Enrique de Ramón
- Internal Medicine Department, Hospital Carlos Haya, Málaga, Spain
| | | | | | - Joseba Artaraz
- Ophthalmology Department, Hospital de Cruces, Bilbao, Spain
| | | | - Víctor Llorenç
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain
| |
Collapse
|
8
|
Cénit MC, Márquez A, Cordero-Coma M, Fonollosa A, Adán A, Martínez-Berriotxoa A, Llorenç V, Díaz Valle D, Blanco R, Cañal J, Díaz-Llopis M, García Serrano JL, de Ramón E, del Rio MJ, Begoña Gorroño- Echebarría M, Martín-Villa JM, Ortego-Centeno N, Martín J. Evaluation of the IL2/IL21, IL2RA and IL2RB genetic variants influence on the endogenous non-anterior uveitis genetic predisposition. BMC MEDICAL GENETICS 2013; 14:52. [PMID: 23676143 PMCID: PMC3658927 DOI: 10.1186/1471-2350-14-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/08/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Recently, different genetic variants located within the IL2/IL21 genetic region as well as within both IL2RA and IL2RB loci have been associated to multiple autoimmune disorders. We aimed to investigate for the first time the potential influence of the IL2/IL21, IL2RA and IL2RB most associated polymorphisms with autoimmunity on the endogenous non-anterior uveitis genetic predisposition. METHODS A total of 196 patients with endogenous non-anterior uveitis and 760 healthy controls, all of them from Caucasian population, were included in the current study. The IL2/IL21 (rs2069762, rs6822844 and rs907715), IL2RA (2104286, rs11594656 and rs12722495) and IL2RB (rs743777) genetic variants were genotyped using TaqMan® allelic discrimination assays. RESULTS A statistically significant difference was found for the rs6822844 (IL2/IL21 region) minor allele frequency in the group of uveitis patients compared with controls (P(-value)=0.02, OR=0.64 CI 95%=0.43-0.94) although the significance was lost after multiple testing correction. Furthermore, no evidence of association with uveitis was detected for the analyzed genetic variants of the IL2RA or IL2RB loci. CONCLUSION Our results indicate that analyzed IL2/IL21, IL2RA and IL2RB polymorphisms do not seem to play a significant role on the non-anterior uveitis genetic predisposition although further studies are needed in order to clear up the influence of these loci on the non-anterior uveitis susceptibility.
Collapse
Affiliation(s)
- María Carmen Cénit
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18100-Armilla, Granada, Spain
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18100-Armilla, Granada, Spain
| | | | | | - Alfredo Adán
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | | | - Victor Llorenç
- Ophthalmology Department, Hospital Clínic, Barcelona, Spain
| | - David Díaz Valle
- Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ricardo Blanco
- Rheumatology Department, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain
| | - Joaquín Cañal
- Ophthalmology Department, Hospital Marqués de Valdecilla, Santander, Spain
| | | | | | - Enrique de Ramón
- Internal Medicine Department, Hospital Carlos Haya, Málaga, Spain
| | | | | | | | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18100-Armilla, Granada, Spain
| |
Collapse
|
9
|
Cénit MC, Márquez A, Cordero-Coma M, Fonollosa A, Llorenç V, Artaraz J, Díaz Valle D, Blanco R, Cañal J, Salom D, García Serrano JL, de Ramón E, José del Rio M, Gorroño-Echebarría MB, Martín-Villa JM, Molins B, Ortego-Centeno N, Martín J. Lack of association between the protein tyrosine phosphatase non-receptor type 22 R263Q and R620W functional genetic variants and endogenous non-anterior uveitis. Mol Vis 2013; 19:638-643. [PMID: 23559857 PMCID: PMC3611931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/18/2013] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Endogenous uveitis is a major cause of visual loss mediated by the immune system. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes a lymphoid-specific phosphatase that plays a key role in T-cell receptor (TCR) signaling. Two independent functional missense single nucleotide polymorphisms (SNPs) located within the PTPN22 gene (R263Q and R620W) have been associated with different autoimmune disorders. We aimed to analyze for the first time the influence of these PTPN22 genetic variants on endogenous non-anterior uveitis susceptibility. METHODS We performed a case-control study of 217 patients with endogenous non-anterior uveitis and 718 healthy controls from a Spanish population. The PTPN22 polymorphisms (rs33996649 and rs2476601) were genotyped using TaqMan allelic discrimination assays. The allele, genotype, carriers, and allelic combination frequencies were compared between cases and controls with χ(2) analysis or Fisher's exact test. RESULTS Our results showed no influence of the studied SNPs in the global susceptibility analysis (rs33996649: allelic P- value=0.92, odds ratio=0.97, 95% confidence interval=0.54-1.75; rs2476601: allelic P- value=0.86, odds ratio=1.04, 95% confidence interval=0.68-1.59). Similarly, the allelic combination analysis did not provide additional information. CONCLUSIONS Our results suggest that the studied polymorphisms of the PTPN22 gene do not play an important role in the pathophysiology of endogenous non-anterior uveitis.
Collapse
Affiliation(s)
- María Carmen Cénit
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN, CSIC, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Monzon-Casanova E, Paletta D, Starick L, Müller I, Sant'Angelo DB, Pyz E, Herrmann T. Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. Eur J Immunol 2012; 43:404-15. [PMID: 23165932 DOI: 10.1002/eji.201242565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/29/2012] [Accepted: 11/14/2012] [Indexed: 12/18/2022]
Abstract
iNKT cells are a particular lymphocyte population with potent immunomodulatory capa-city; by promoting or suppressing immune responses against infections, tumors, and autoimmunity, iNKT cells are a promising target for immunotherapy. The hallmark of iNKT cells is the expression of a semiinvariant TCR (with an invariant α-chain comprising AV14 and AJ18 gene segments), which recognizes glycolipids presented by CD1d. Here, we identified iNKT cells for the first time in the rat using rat CD1d-dimers and PLZF staining. Importantly, in terms of frequencies (1.05% ± 0.52 SD of all intrahepatic αβ T cells), coreceptor expression and in vitro expansion features, iNKT cells from F344 inbred rats more closely resemble human iNKT cells than their mouse counterparts. In contrast, in LEW inbred rats, which are often used as models for organ-specific autoimmune diseases, iNKT cell numbers are near or below the detection limit. Interestingly, the usage of members of the rat AV14 gene family differed between F344 and LEW inbred rats. In conclusion, the similarities between F344 rat and human iNKT cells and the nearly absent iNKT cells in LEW rats make the rat a promising animal model for the study of iNKT cell-based therapies and of iNKT-cell biology.
Collapse
Affiliation(s)
- Elisa Monzon-Casanova
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Karara AM, Macky TA, Sharawy MH. Pattern of uveitis in an Egyptian population with multiple sclerosis: a hospital-based study. Ophthalmic Res 2012; 49:25-9. [PMID: 23007229 DOI: 10.1159/000341735] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the prevalence and pattern of uveitis in patients with multiple sclerosis (MS). PATIENTS AND METHODS This is a cross-sectional, observational, descriptive clinical study of patients with MS who had complete ophthalmological examination. Data collected comprised demographics of the patients and complete ocular examination findings. Exclusion criteria were history of ocular surgery, trauma or diagnosis of any other ocular pathology. RESULTS Seventy-five patients with a mean age of 32.64 years (ranging from 16 to 50) diagnosed with MS of the relapsing-remitting type were included in this study. There were 34 males and 41 females, a ratio of 5:6. The mean duration of the MS disease was 5.6 years. Eight eyes of 7 patients with a mean age of 20 years had intermediate uveitis, of which 5 were males. Out of the 7 patients, 5 had exacerbated MS, and 2 were in remission; 4 had relative afferent pupillary defect. In the 8 eyes with uveitis, 6 had a best spectacle-corrected visual acuity (BSCVA) of 1, 1 had a BSCVA of 0.5 and 1 had a BSCVA of 0.25. CONCLUSION Uveitis occurs in about 10% of patients with MS affecting younger males with exacerbated disease. Most inflammations of the uveitic MS patients were in the form of intermediate uveitis that was controlled with medication with no visual threatening complications.
Collapse
Affiliation(s)
- Ahmed M Karara
- Department of Ophthalmology, Kasr El Aini Hospital, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
12
|
Understanding uveitis: The impact of research on visual outcomes. Prog Retin Eye Res 2011; 30:452-70. [DOI: 10.1016/j.preteyeres.2011.06.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/01/2023]
|
13
|
Caspi RR. Understanding autoimmune uveitis through animal models. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 2011; 52:1872-9. [PMID: 21450922 DOI: 10.1167/iovs.10-6909] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rachel R Caspi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1857, USA.
| |
Collapse
|
14
|
Current world literature. Curr Opin Allergy Clin Immunol 2009; 9:482-8. [PMID: 19690478 DOI: 10.1097/aci.0b013e3283312f84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Abstract
Experimental autoimmune uveitis (EAU) in animals serves as a model of human uveitis. EAU can be induced in mice by immunization with the retinal antigen interphotoreceptor retinoid binding protein (IRBP) in complete Freund's adjuvant (CFA) or by IRBP-pulsed mature dendritic cells, and can be driven either by a Th17 or a Th1 effector response, depending on the model. The direction of the response is affected by conditions present during the exposure to antigen, including the quality/quantity of innate receptor stimulation and/or type of APC. IL-17 and IFN-gamma production by innate cells such as NKT may also affect the disease process. If exposure to antigen is via a hydrodynamic DNA vaccination with an IRBP-encoding plasmid, the response is directed to a regulatory phenotype, and disease is ameliorated or prevented. Our data shed light on effector and regulatory responses in autoimmune disease, provide balance to the Th1/Th17 paradigm and help to explain the clinical heterogeneity of human uveitis, which occurs in the face of responses to the same ocular antigen(s).
Collapse
Affiliation(s)
- Rachel Caspi
- NIH/UPenn Graduate Program, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 10N222, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Mattapallil MJ, Augello A, Cheadle C, Teichberg D, Becker KG, Chan CC, Mattapallil JJ, Pennesi G, Caspi RR. Differentially expressed genes in MHC-compatible rat strains that are susceptible or resistant to experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2008; 49:1957-70. [PMID: 18281616 PMCID: PMC2547352 DOI: 10.1167/iovs.07-1295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Experimental autoimmune uveitis (EAU) is an established model for immune-mediated human uveitis. Although several genes from major histocompatibility complex (MHC) loci have been shown to play a role in uveitis, little is known about the role of non-MHC genes in the pathogenesis of EAU. Several non-MHC genes have been implicated in the pathogenesis of various autoimmune diseases. The primary objective of this study was to identify the non-MHC genes involved in the pathogenesis of EAU, to identify potential drug targets and possibly to target their protein products for immunotherapy. METHODS EAU was induced in the susceptible (Lewis; LEW) or resistant (Fischer 344; F344) rats that have identical MHC class II haplotype. Draining lymph node cells were obtained during the innate and adaptive phase of the immune response, and the pattern of gene expression was evaluated using microarray technology. Differentially expressed genes were validated at mRNA and protein levels using various methods. RESULTS Susceptibility to EAU was associated with an increased expression of numerous non-MHC genes such as Th1-type cytokines and chemokines, antiapoptotic factors, hormones, and neurotransmitters and a downregulation of selected adhesion molecules. In this study a combined genetic-genomic approach was used to identify different patterns of gene expression associated with the sensitization and effector phase of EAU pathogenesis. CONCLUSIONS The data demonstrate that the differential expression of several non-MHC genes is associated with the mechanism of uveitis.
Collapse
Affiliation(s)
- Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|