1
|
Qu H, Liu Q, Zheng D, Ni Y, Xiao X. A Comprehensive Bibliometric Analysis of Orchitis Research from 1980 to 2023. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:207-243. [PMID: 40301259 DOI: 10.1007/978-3-031-82990-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Orchitis, an inflammation of the testes, presents significant implications for male fertility and has been a focal area of scientific inquiry over the past four decades. This study employs a comprehensive bibliometric analysis to assess the progression of global research on orchitis from 1980 to 2023. Drawing from a dataset of 1586 publications indexed in the Web of Science Core Collection, we uncover emerging patterns, collaborations, and pivotal works that have shaped the field. The United States, China, and Germany emerge as leading contributors, while the Journal of Urology stands out as a primary publishing avenue. The results highlight the increasing recognition of autoimmune responses, alongside infectious agents, as key contributors to orchitis. Moreover, molecules such as TNF-α, IL-6, and IFN-γ are identified as central to the disease's pathology. The dynamic interplay of testosterone and regulatory T cells is underscored as a determinant of the testicular immune milieu. Notably, disruptions in the blood-testis barrier (BTB) and germ cell apoptosis emerge as pivotal consequences of the condition. This analysis underscores the expansive and multidisciplinary nature of orchitis research, revealing a consistent growth in collaborative endeavors. In summary, our findings catalog the evolution of orchitis research, providing a consolidated perspective on past achievements and signposting future research avenues. Such insights are instrumental for researchers aiming to navigate the complexities of orchitis and its multifaceted impact on male reproductive health.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiubei Liu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Zerimech S, Nguyen H, Vandenbark AA, Offner H, Baltan S. Novel therapeutic for multiple sclerosis protects white matter function in EAE mouse model. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1237078. [PMID: 37933270 PMCID: PMC10627517 DOI: 10.3389/fmmed.2023.1237078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease with prominent axon dysfunction. Our previous studies in an MS mouse model, experimental autoimmune encephalomyelitis (EAE), demonstrated that major histocompatibility complex Class II constructs can reverse clinical signs of EAE. These constructs block binding and downstream signaling of macrophage migration inhibitory factors (MIF-1/2) through CD74, thereby inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) activation and tissue inflammation and promoting remyelination. To directly assess the effects of a novel third generation construct, DRhQ, on axon integrity in EAE, we compared axon conduction properties using electrophysiology on corpus callosum slices and optic nerves. By using two distinct white matter (WM) tracts, we aimed to assess the impact of the EAE and the benefit of DRhQ on myelinated and unmyelinated axons as well as to test the clinical value of DRhQ on demyelinating lesions in CC and optic myelitis. Our study found that EAE altered axon excitability, delayed axon conduction and slowed spatiotemporal summation correlated with diffuse astrocyte and microglia activation. Because MS predisposes patients to stroke, we also investigated and showed that vulnerability to WM ischemia is increased in the EAE MS mouse model. Treatment with DRhQ after the onset of EAE drastically inhibited microglial and astrocyte activation, improved functional integrity of the myelinated axons and enhanced recovery after ischemia. These results demonstrate that DRhQ administered after the onset of EAE promotes WM integrity and function, and reduces subsequent vulnerability to ischemic injury, suggesting important therapeutic potential for treatment of progressive MS.
Collapse
Affiliation(s)
- Sarah Zerimech
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| | - Arthur A. Vandenbark
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Selva Baltan
- Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
Raza A, Diehl SA, Krementsov DN, Case LK, Li D, Kost J, Ball RL, Chesler EJ, Philip VM, Huang R, Chen Y, Ma R, Tyler AL, Mahoney JM, Blankenhorn EP, Teuscher C. A genetic locus complements resistance to Bordetella pertussis-induced histamine sensitization. Commun Biol 2023; 6:244. [PMID: 36879097 PMCID: PMC9988836 DOI: 10.1038/s42003-023-04603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.
Collapse
Affiliation(s)
- Abbas Raza
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laure K Case
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Dawei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jason Kost
- Catalytic Data Science, Charleston, SC, 29403, USA
| | - Robyn L Ball
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Rui Huang
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Chen
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Runlin Ma
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Anna L Tyler
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
- Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
4
|
Musio S, Costanza M, Poliani PL, Fontana E, Cominelli M, Abolafio G, Steinman L, Pedotti R. Treatment with anti-FcεRIα antibody exacerbates EAE and T-cell immunity against myelin. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e342. [PMID: 28616446 PMCID: PMC5462602 DOI: 10.1212/nxi.0000000000000342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Abstract
Objective: To investigate the effects of targeting the high-affinity receptor for immunoglobulin E (FcεRI), that plays a central role in allergic responses and is constitutively expressed on mast cells and basophils, in clinical disease and autoimmune T-cell response in experimental MS. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein 35–55. Anti-FcεRI α-chain antibody was administered intraperitoneally. CNS immunohistochemistry, flow cytometry analysis of immune cell populations, IgE and histamine serum concentration, immune cell proliferation, and cytokine measurement were performed. In BALB/c mice, EAE was induced by immunization with myelin proteolipid protein 185–206. Results: Treatment with anti-FcεRIα antibody resulted in exacerbation of EAE and increased CNS inflammation in C57BL/6 mice. Treated mice displayed long-lasting complete depletion of basophils in the blood stream and peripheral lymphoid organs and increased antigen-induced immune cell proliferation and production of interferon-γ, interleukin (IL)-17, IL-6, and granulocyte-macrophage colony-stimulating factor. In BALB/c mice, which are T-helper (Th) 2 prone and resistant to EAE, treatment with anti-FcεRIα antibody restored susceptibility to EAE. Conclusion: Our observations that anti-FcεRIα antibody increases Th1 and Th17 responses against myelin antigen and exacerbates EAE suggest that FcεRI, basophils, and possibly other FcεRI-bearing cells that might be affected by this antibody play important roles in influencing the severity of CNS autoimmunity.
Collapse
Affiliation(s)
- Silvia Musio
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Massimo Costanza
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Pietro Luigi Poliani
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Elena Fontana
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Manuela Cominelli
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Gabriella Abolafio
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Lawrence Steinman
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| | - Rosetta Pedotti
- Department of Clinical Neuroscience (S.M., M. Costanza, R.P.), Foundation Neurological Institute IRCCS C. Besta, Milan; Department of Molecular and Translational Medicine (P.L.P., E.F., M. Cominelli), Pathology Unit, University of Brescia; Department of Experimental Oncology and Molecular Medicine (G.A.), Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy; and Department of Neurology and Neurological Sciences (L.S.), Stanford University School of Medicine, CA
| |
Collapse
|
5
|
Hurt CM, Angelotti T. Expression and trafficking of functional G protein-coupled receptors are related, yet distinct, concepts. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1009-12. [PMID: 25103411 DOI: 10.1007/s00210-014-1028-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Affiliation(s)
- Carl M Hurt
- Department of Anesthesia/CCM, Stanford University Medical School, Stanford, CA, 94305, USA
| | | |
Collapse
|
6
|
Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:569-579. [PMID: 24643471 DOI: 10.1007/s00210-014-0972-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.
Collapse
|
7
|
Krementsov DN, Wall EH, Martin RA, Subramanian M, Noubade R, Rio RD, Mawe GM, Bond JP, Poynter ME, Blankenhorn EP, Teuscher C. Histamine H(3) receptor integrates peripheral inflammatory signals in the neurogenic control of immune responses and autoimmune disease susceptibility. PLoS One 2013; 8:e62743. [PMID: 23894272 PMCID: PMC3718788 DOI: 10.1371/journal.pone.0062743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022] Open
Abstract
Histamine H3 receptor (Hrh3/H3R) is primarily expressed by neurons in the central nervous system (CNS) where it functions as a presynaptic inhibitory autoreceptor and heteroreceptor. Previously, we identified an H3R-mediated central component in susceptibility to experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS), related to neurogenic control of blood brain barrier permeability and peripheral T cell effector responses. Furthermore, we identified Hrh3 as a positional candidate for the EAE susceptibility locus Eae8. Here, we characterize Hrh3 polymorphisms between EAE-susceptible and resistant SJL and B10.S mice, respectively, and show that Hrh3 isoform expression in the CNS is differentially regulated by acute peripheral inflammatory stimuli in an allele-specific fashion. Next, we show that Hrh3 is not expressed in any subpopulations of the immune compartment, and that secondary lymphoid tissue is anatomically poised to be regulated by central H3R signaling. Accordingly, using transcriptome analysis, we show that, inflammatory stimuli elicit unique transcriptional profiles in the lymph nodes of H3RKO mice compared to WT mice, which is indicative of negative regulation of peripheral immune responses by central H3R signaling. These results further support a functional link between the neurogenic control of T cell responses and susceptibility to CNS autoimmune disease coincident with acute and/or chronic peripheral inflammation. Pharmacological targeting of H3R may therefore be useful in preventing the development and formation of new lesions in MS, thereby limiting disease progression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation
- Genetic Predisposition to Disease/genetics
- Hematopoiesis/genetics
- Hematopoiesis/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Intracellular Space/metabolism
- Lymph Nodes/immunology
- Male
- Mice
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Structure, Tertiary
- Receptors, Histamine H3/chemistry
- Receptors, Histamine H3/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Dimitry N. Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Emma H. Wall
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Rebecca A. Martin
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Meenakumari Subramanian
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Rajkumar Noubade
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Roxana Del Rio
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Gary M. Mawe
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Matthew E. Poynter
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
8
|
New developments in the use of histamine and histamine receptors. Curr Allergy Asthma Rep 2011; 11:94-100. [PMID: 21104347 DOI: 10.1007/s11882-010-0163-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Histamine and the histamine receptors are important regulators of a plethora of biological processes, including immediate hypersensitivity reactions and acid secretion in the stomach. In these roles, antihistamines have found widespread therapeutic applications, while the last receptor to be discovered, the H4 histamine receptor, has become a major target of novel therapeutics. Recent studies involving human genetic variance and the development of mice lacking specific receptors or the ability to generate histamine have shown roles for the histamine pathway that extend well beyond the established roles. These include identification of previously unappreciated mechanisms through which histamine regulates inflammation in allergy, as well as roles in autoimmunity, infection, and pain. As a result, antihistamines may have wider applications in the future than previously predicted.
Collapse
|
9
|
Podojil JR, Padval MV, Miller SD. Combination treatment of mice with CRx-153 (nortriptyline and desloratadine) decreases the severity of experimental autoimmune encephalomyelitis. Cell Immunol 2011; 270:237-50. [PMID: 21696712 DOI: 10.1016/j.cellimm.2011.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 01/06/2023]
Abstract
Pro-inflammatory CD4(+) T cell-mediated autoimmune diseases, such as multiple sclerosis, are hypothesized to be initiated and maintained by self-reactive interferon-gamma (IFN-γ) and interleukin-17 (IL-17) producing CD4(+) T cells. Previous studies have shown moderate to significant alterations in inflammatory T cell responses and potentially treatment of autoimmune disease by administration of antihistamine or tricyclic antidepressants alone. The goal of the present study was to determine if treatment of PLP(139-151)-induced relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) in SJL/J mice with a combination of two FDA approved drugs for other indications could decrease R-EAE disease. The findings show that combination treatment with desloratadine and nortriptyline decreases the mean clinical score, disease relapse frequency, and number of CD4(+) T cells infiltrating into the CNS. In addition, combination treatment of PLP(139-151) primed mice decreases the level of IFN-γ and IL-17 secreted via a decrease in both the number of cells secreting and the amount of cytokine secreted per cell following PLP(139-151) reactivation ex vivo. This is in contrast to an increase in the level of IL-4 produced and the number of IL-4 secreting cells. The data also show that combination treatment with desloratadine and nortriptyline inhibits the production of IFN-γ and IL-17 produced by naive CD4(+) T cells activated in the presence of Th1 cell- and Th17 cell-promoting conditions, while increasing the level of IL-4 produced by naive CD4(+) T cells activated in the presence of Th2 cell-promoting conditions. The present findings suggest a novel method for the development of a putative autoimmune therapy.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
10
|
Lapilla M, Gallo B, Martinello M, Procaccini C, Costanza M, Musio S, Rossi B, Angiari S, Farina C, Steinman L, Matarese G, Constantin G, Pedotti R. Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. J Leukoc Biol 2010; 89:259-67. [PMID: 21071626 DOI: 10.1189/jlb.0910486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine may contribute to the pathology of MS and its animal model EAE. We explored the effects of histamine and specific HR agonists on activation and migratory capacity of myelin-autoreactive T cells. We show that histamine in vitro inhibits proliferation and IFN-γ production of mouse T cells activated against PLP(139-151). These effects were mimicked by the H1R agonist HTMT and the H2R agonist dimaprit and were associated with reduced activation of ERK½ kinase and with increased levels of cell cycle inhibitor p27Kip-1, both involved in T cell proliferation and anergy. H1R and H2R agonists reduced spontaneous and chemokine-induced adhesion of autoreactive T cells to ICAM-1 in vitro and blocked firm adhesion of these cells in inflamed brain microcirculation in vivo. Thus histamine, through H1R and H2R, inhibits activation of myelin-autoreactive T cells and their ability to traffic through the inflamed BBB. Strategies aimed at interfering with the histamine axis might have relevance in the therapy of autoimmune disease of the CNS.
Collapse
Affiliation(s)
- Marilena Lapilla
- Neurological Institute Foundation, IRCCS Carlo Besta, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schneider E, Leite-de-Moraes M, Dy M. Histamine, Immune Cells and Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 709:81-94. [DOI: 10.1007/978-1-4419-8056-4_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Watelet JB, Gillard M, Benedetti MS, Lelièvre B, Diquet B. Therapeutic management of allergic diseases. Drug Metab Rev 2009; 41:301-43. [PMID: 19601717 DOI: 10.1080/10837450902891204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allergic diseases are characterized by the activation of inflammatory cells and by a massive release of mediators. The aim of this chapter was to describe succinctly the modes of action, indications, and side effects of the major antiallergic and antiasthmatic drugs. When considering the ideal pharmacokinetic characteristics of a drug, a poorly metabolized drug may confer a lower variability in plasma concentrations and metabolism-based drug interactions, although poorly metabolized drugs may be prone to transporter-based disposition and interactions. The ideal pharmacological properties of a drug include high binding affinity, high selectivity, and appropriate association and dissociation rates. Finally, from a patient perspective, the frequency and route of administration are important considerations for ease of use.
Collapse
Affiliation(s)
- Jean-Baptiste Watelet
- Department of Otohinolaryngology, Head and Neck Surgery, Ghent University Hospital, Ghent University, Belgium.
| | | | | | | | | |
Collapse
|