1
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
2
|
't Hart BA, Luchicchi A, Schenk GJ, Stys PK, Geurts JJG. Mechanistic underpinning of an inside-out concept for autoimmunity in multiple sclerosis. Ann Clin Transl Neurol 2021; 8:1709-1719. [PMID: 34156169 PMCID: PMC8351380 DOI: 10.1002/acn3.51401] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The neuroinflammatory disease multiple sclerosis is driven by autoimmune pathology in the central nervous system. However, the trigger of the autoimmune pathogenic process is unknown. MS models in immunologically naïve, specific‐pathogen‐free bred rodents support an exogenous trigger, such as an infection. The validity of this outside–in pathogenic concept for MS has been frequently challenged by the difficulty to translate pathogenic concepts developed in these models into effective therapies for the MS patient. Studies in well‐validated non‐human primate multiple sclerosis models where, just like in humans, the autoimmune pathogenic process develops from an experienced immune system trained by prior infections, rather support an endogenous trigger. Data reviewed here corroborate the validity of this inside–out pathogenic concept for multiple sclerosis. They also provide a plausible sequence of events reminiscent of Wilkin’s primary lesion theory: (i) that autoimmunity is a physiological response of the immune system against excess antigen turnover in diseased tissue (the primary lesion) and (ii) that individuals developing autoimmune disease are (genetically predisposed) high responders against critical antigens. Data obtained in multiple sclerosis brains reveal the presence in normally appearing white matter of myelinated axons where myelin sheaths have locally dissociated from their enwrapped axon (i.e., blistering). The ensuing disintegration of axon–myelin units potentially causes the excess systemic release of post‐translationally modified myelin. Data obtained in a unique primate multiple sclerosis model revealed a core pathogenic role of T cells present in the normal repertoire, which hyper‐react to post‐translationally modified (citrullinated) myelin–oligodendrocyte glycoprotein and evoke clinical and pathological aspects of multiple sclerosis.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Antonio Luchicchi
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Geert J Schenk
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Jeroen J G Geurts
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Multiple sclerosis and drug discovery: A work of translation. EBioMedicine 2021; 68:103392. [PMID: 34044219 PMCID: PMC8245896 DOI: 10.1016/j.ebiom.2021.103392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is after trauma the most important neurological disease in young adults, affecting 1 per 1000 individuals. With currently available medications, most of these targeting the immune system, satisfactory results have been obtained in patients with relapsing MS, but these can have serious adverse effects. Moreover, despite some promising developments, such as with B cell targeting therapies or sphingosine-1-phosphate modulating drugs, there still is a high unmet need of safe drugs with broad efficacy in patients with progressive MS. Despite substantial investments and intensive preclinical research, the proportion of promising lead compounds that reaches the approved drug status remains disappointingly low. One cause lies in the poor predictive validity of MS animal models used in the translation of pathogenic mechanisms into safe and effective treatments for the patient. This disturbing situation has raised criticism against the relevance of animal models used in preclinical research and calls for improvement of these models. This publication presents a potentially useful strategy to enhance the predictive validity of MS animal models, namely, to analyze the causes of failure in forward translation (lab to clinic) via reverse translation (clinic to lab). Through this strategy new insights can be gained that can help generate more valid MS models.
Collapse
|
4
|
't Hart BA. A Tolerogenic Role of Cathepsin G in a Primate Model of Multiple Sclerosis: Abrogation by Epstein-Barr Virus Infection. Arch Immunol Ther Exp (Warsz) 2020; 68:21. [PMID: 32556812 PMCID: PMC7299916 DOI: 10.1007/s00005-020-00587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
Using a non-human primate model of the autoimmune neuroinflammatory disease multiple sclerosis (MS), we have unraveled the role of B cells in the making and breaking of immune tolerance against central nervous system myelin. It is discussed here that B cells prevent the activation of strongly pathogenic T cells present in the naïve repertoire, which are directed against the immunodominant myelin antigen MOG (myelin oligodendrocyte glycoprotein). Prevention occurs via destructive processing of a critical epitope (MOG34-56) through the lysosomal serine protease cathepsin G. This effective tolerance mechanism is abrogated when the B cells are infected with Epstein–Barr virus, a ubiquitous γ1-herpesvirus that entails the strongest non-genetic risk factor for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands. .,Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Lefeuvre JA, Guy JR, Luciano NJ, Ha SK, Leibovitch E, Santin MD, Silva AC, Jacobson S, Lehéricy S, Reich DS, Sati P. The spectrum of spinal cord lesions in a primate model of multiple sclerosis. Mult Scler 2019; 26:284-293. [PMID: 30730246 DOI: 10.1177/1352458518822408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a nonhuman primate model of multiple sclerosis (MS) that shares numerous clinical, radiological, and pathological features with MS. Among the clinical features are motor and sensory deficits that are highly suggestive of spinal cord (SC) damage. OBJECTIVE To characterize the extent and nature of SC damage in symptomatic marmosets with EAE using a combined magnetic resonance imaging (MRI) and histopathology approach. MATERIALS AND METHODS SC tissues from five animals were scanned using 7 T MRI to collect high-resolution ex vivo images. Lesions were segmented and classified based on shape, size, and distribution along the SC. Tissues were processed for histopathological characterization (myelin and microglia/macrophages). Statistical analysis, using linear mixed-effects models, evaluated the association between MRI and histopathology. RESULTS Marmosets with EAE displayed two types of SC lesions: focal and subpial lesions. Both lesion types were heterogeneous in size and configuration and corresponded to areas of marked demyelination with high density of inflammatory cells. Inside the lesions, the MRI signal was significantly correlated with myelin content (p < 0.001). CONCLUSIONS Our findings underscore the relevance of this nonhuman primate EAE model for better understanding mechanisms of MS lesion formation in the SC.
Collapse
Affiliation(s)
- Jennifer A Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA/Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emily Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mathieu D Santin
- Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Attenuation of Experimental Autoimmune Encephalomyelitis in a Common Marmoset Model by Dendritic Cell-Modulating Anti-ICAM-1 Antibody, MD-3. Mol Neurobiol 2018; 56:5136-5145. [DOI: 10.1007/s12035-018-1438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
9
|
Kap YS, Bus-Spoor C, van Driel N, Dubbelaar ML, Grit C, Kooistra SM, Fagrouch ZC, Verschoor EJ, Bauer J, Eggen BJL, Harmsen HJM, Laman JD, 't Hart BA. Targeted Diet Modification Reduces Multiple Sclerosis-like Disease in Adult Marmoset Monkeys from an Outbred Colony. THE JOURNAL OF IMMUNOLOGY 2018; 201:3229-3243. [PMID: 30341184 DOI: 10.4049/jimmunol.1800822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in common marmosets is a translationally relevant model of the chronic neurologic disease multiple sclerosis. Following the introduction of a new dietary supplement in our purpose-bred marmoset colony, the percentage of marmosets in which clinically evident EAE could be induced by sensitization against recombinant human myelin oligodendrocyte glycoprotein in IFA decreased from 100 to 65%. The reduced EAE susceptibility after the dietary change coincided with reduced Callitrichine herpesvirus 3 expression in the colony, an EBV-related γ1-herpesvirus associated with EAE. We then investigated, in a controlled study in marmoset twins, which disease-relevant parameters were affected by the dietary change. The selected twins had been raised on the new diet for at least 12 mo prior to the study. In twin siblings reverted to the original diet 8 wk prior to EAE induction, 100% disease prevalence (eight out of eight) was restored, whereas in siblings remaining on the new diet the EAE prevalence was 75% (six out of eight). Spinal cord demyelination, a classical hallmark of the disease, was significantly lower in new-diet monkeys than in monkeys reverted to the original diet. In new-diet monkeys, the proinflammatory T cell response to recombinant human myelin oligodendrocyte glycoprotein was significantly reduced, and RNA-sequencing revealed reduced apoptosis and enhanced myelination in the brain. Systematic typing of the marmoset gut microbiota using 16S rRNA sequencing demonstrated a unique, Bifidobacteria-dominated composition, which changed after disease induction. In conclusion, targeted dietary intervention exerts positive effects on EAE-related parameters in multiple compartments of the marmoset's gut-immune-CNS axis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Carien Bus-Spoor
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Marissa L Dubbelaar
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Corien Grit
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Susanne M Kooistra
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Jan Bauer
- Department for Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bart J L Eggen
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jon D Laman
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| |
Collapse
|
10
|
Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A. Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler 2018; 25:306-324. [PMID: 30319015 DOI: 10.1177/1352458518805246] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central nervous system. Animal models of MS have been critical for elucidating MS pathological mechanisms and how they may be targeted for therapeutic intervention. Here we review the most commonly used animal models of MS. Although these animal models cannot fully replicate the MS disease course, a number of models have been developed to recapitulate certain stages. Experimental autoimmune encephalomyelitis (EAE) has been used to explore neuroinflammatory mechanisms and toxin-induced demyelinating models to further our understanding of oligodendrocyte biology, demyelination and remyelination. Zebrafish models of MS are emerging as a useful research tool to validate potential therapeutic candidates due to their rapid development and amenability to genetic manipulation.
Collapse
Affiliation(s)
- David John Burrows
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Saurabh A Jain
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Milena De Felice
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Tennore M Ramesh
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK/Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y, Sun H, Duan Y, Chang S, Chen G, Ji W, Xu RH, Si W. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov 2018; 4:28. [PMID: 30131877 PMCID: PMC6102276 DOI: 10.1038/s41420-018-0091-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Nonhuman primate experimental autoimmune encephalomyelitis (EAE) is a valuable model for multiple sclerosis, an inflammatory demyelinating disease in the central nervous system (CNS). Human embryonic stem cell-derived mesenchymal stem cells (EMSC) are effective in treating murine EAE. Yet, it remains unknown whether the EMSC efficacy is translatable to humans. Here we induced a primate EAE model in cynomolgus monkeys and delivered EMSC in spheres (EMSCsp) to preserve the cell viability during long-distance transportation. EMSCsp intrathecally injected into the CNS, remarkably reduced the clinical symptoms, brain lesions, and neuronal demyelination in the EAE monkeys during a 3-month observation. Whereas, symptoms in the vehicle control-injected EAE monkey remained and reduced slowly and MRI lesions in brain expanded. Moreover, EMSC could transdifferentiate into neural cells in vivo in the CNS of the treated animals. Supporting evidence demonstrated that EMSCsp cells cultured in cerebrospinal fluid from the EAE monkeys largely converted to neural cells with elevated expression of genes for neuronal markers, neurotrophic factors, and neuronal myelination. Thus, this study demonstrates that EMSCsp injected directly into the CNS, can attenuate the disease progression in the primate EAE model, highly encouraging for clinical translation.
Collapse
Affiliation(s)
- Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Hongxuan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Huiyan Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, Jilin China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Shaohui Chang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Guokai Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| |
Collapse
|
12
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
13
|
Dunham J, Bauer J, Campbell GR, Mahad DJ, van Driel N, van der Pol SMA, 't Hart BA, Lassmann H, Laman JD, van Horssen J, Kap YS. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis. J Neuropathol Exp Neurol 2017; 76:467-478. [PMID: 28505283 DOI: 10.1093/jnen/nlx034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism.
Collapse
Affiliation(s)
- Jordon Dunham
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jan Bauer
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Graham R Campbell
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Don J Mahad
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Nikki van Driel
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Susanne M A van der Pol
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Bert A 't Hart
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Hans Lassmann
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jon D Laman
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jack van Horssen
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Yolanda S Kap
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| |
Collapse
|
14
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
15
|
Stimmer L, Fovet CM, Serguera C. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Vet Pathol 2017; 55:27-41. [DOI: 10.1177/0300985817712794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.
Collapse
Affiliation(s)
- Lev Stimmer
- U1169/US27 Platform for experimental pathology, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Claire-Maëlle Fovet
- U1169/US27 Platform for general surgery, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Ché Serguera
- US27, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| |
Collapse
|
16
|
Peschl P, Bradl M, Höftberger R, Berger T, Reindl M. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Front Immunol 2017; 8:529. [PMID: 28533781 PMCID: PMC5420591 DOI: 10.3389/fimmu.2017.00529] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS). Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients' samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic. This article provides deeper insight into recent developments, the clinical relevance of MOG Abs and their role in the immunpathogenesis of inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Patrick Peschl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
't Hart BA, Kap YS. An essential role of virus-infected B cells in the marmoset experimental autoimmune encephalomyelitis model. Mult Scler J Exp Transl Clin 2017; 3:2055217317690184. [PMID: 28607749 PMCID: PMC5466146 DOI: 10.1177/2055217317690184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
Infection with Epstein–Barr virus (EBV) has been associated with an enhanced risk of genetically susceptible individuals to develop multiple sclerosis (MS). However, an explanation for the contrast between the high EBV infection prevalence (60–90%) and the low MS prevalence (0.1%) eludes us. Here we propose a new concept for the EBV–MS association developed in the experimental autoimmune encephalomyelitis model in marmoset monkeys, which are naturally infected with the EBV-related γ1-herpesvirus CalHV3. The data indicate that the infection of B cells with a γ1-herpesvirus endows them with the capacity to activate auto-aggressive CD8+ T cells specific for myelin oligodendrocyte glycoprotein.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
18
|
'tHart BA, Kap YS, Morandi E, Laman JD, Gran B. EBV Infection and Multiple Sclerosis: Lessons from a Marmoset Model. Trends Mol Med 2016; 22:1012-1024. [PMID: 27836419 DOI: 10.1016/j.molmed.2016.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is thought to be initiated by the interaction of genetic and environmental factors, eliciting an autoimmune attack on the central nervous system. Epstein-Barr virus (EBV) is the strongest infectious risk factor, but an explanation for the paradox between high infection prevalence and low MS incidence remains elusive. We discuss new data using marmosets with experimental autoimmune encephalomyelitis (EAE) - a valid primate model of MS. The findings may help to explain how a common infection can contribute to the pathogenesis of MS. We propose that EBV infection induces citrullination of peptides in conjunction with autophagy during antigen processing, endowing B cells with the capacity to cross-present autoantigen to CD8+CD56+ T cells, thereby leading to MS progression.
Collapse
Affiliation(s)
- Bert A 'tHart
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands.
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Jon D Laman
- University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK; Department of Neurology, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, UK
| |
Collapse
|
19
|
Jagessar SA, Holtman IR, Hofman S, Morandi E, Heijmans N, Laman JD, Gran B, Faber BW, van Kasteren SI, Eggen BJL, 't Hart BA. Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein. THE JOURNAL OF IMMUNOLOGY 2016; 197:1074-88. [PMID: 27412414 DOI: 10.4049/jimmunol.1600124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E-restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20(+) spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40-48 core epitope. Finally, LCV infection also induced expression of LC3-II(+) cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40-48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40-48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, 2288GJ Rijswijk, the Netherlands; Department of Immunology, Erasmus University Medical Center, 3015CE Rotterdam, the Netherlands; MS Centre ErasMS, 3015CE Rotterdam, the Netherlands
| | - Inge R Holtman
- Department of Neuroscience, University Medical Center, University Groningen, 9713AV Groningen, the Netherlands
| | - Sam Hofman
- Department of Immunobiology, Biomedical Primate Research Centre, 2288GJ Rijswijk, the Netherlands
| | - Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, NG7 2UH Nottingham, United Kingdom
| | - Nicole Heijmans
- Department of Immunobiology, Biomedical Primate Research Centre, 2288GJ Rijswijk, the Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center, University Groningen, 9713AV Groningen, the Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, NG7 2UH Nottingham, United Kingdom
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, 2288GJ Rijswijk, the Netherlands; and
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, 2333CC Leiden, the Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, University Medical Center, University Groningen, 9713AV Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2288GJ Rijswijk, the Netherlands; Department of Immunology, Erasmus University Medical Center, 3015CE Rotterdam, the Netherlands; Department of Neuroscience, University Medical Center, University Groningen, 9713AV Groningen, the Netherlands;
| |
Collapse
|
20
|
Kap YS, Jagessar SA, Dunham J, 't Hart BA. The common marmoset as an indispensable animal model for immunotherapy development in multiple sclerosis. Drug Discov Today 2016; 21:1200-5. [PMID: 27060373 DOI: 10.1016/j.drudis.2016.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
New drugs often fail in the translation from the rodent experimental autoimmune encephalomyelitis (EAE) model to human multiple sclerosis (MS). Here, we present the marmoset EAE model as an indispensable model for translational research into MS. The genetic heterogeneity of this species and lifelong exposure to chronic latent infections and environmental pathogens create a human-like immune system. Unique to this model is the presence of the pathological hallmark of progressive MS, in particular cortical grey matter lesions. Another great possibility of this model is systemic and longitudinal immune profiling, whereas in humans and mice immune profiling is usually performed in a single compartment (i.e. blood or spleen, respectively). Overall, the marmoset model provides unique opportunities for systemic drug-effect profiling.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Medical Physiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Medical Physiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
't Hart BA, Dunham J, Jagessar SA, Kap YS. The common marmoset (<i>Callithrix jacchus</i>): a relevant preclinical model of human (auto)immune-mediated inflammatory disease of the brain. Primate Biol 2016. [DOI: 10.5194/pb-3-9-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The increasing prevalence of chronic autoimmune-mediated inflammatory disorders (AIMIDs) in aging human populations creates a high unmet need for safe and effective medications. However, thus far the translation of pathogenic concepts developed in animal models into effective treatments for the patient has been notoriously difficult. The main reason is that currently used mouse-based animal models for the pipeline selection of promising new treatments were insufficiently predictive for clinical success. Regarding the high immunological similarity between human and non-human primates (NHPs), AIMID models in NHPs can help to bridge the translational gap between rodent and man. Here we will review the preclinical relevance of the experimental autoimmune encephalomyelitis (EAE) model in common marmosets (Callithrix jacchus), a small-bodied neotropical primate. EAE is a generic AIMID model projected on the human autoimmune neuro-inflammatory disease multiple sclerosis (MS).
Collapse
|
22
|
Jagessar SA, Dijkman K, Dunham J, 't Hart BA, Kap YS. Experimental Autoimmune Encephalomyelitis in Marmosets. Methods Mol Biol 2016; 1304:171-186. [PMID: 25208751 DOI: 10.1007/7651_2014_113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e., investigating the pathogenic mechanisms involved in MS, and applied research, testing the efficacy of new potential drugs.In this chapter, we will describe a method to induce EAE in the marmoset. In addition, we will explain the most common immunological techniques involved in the marmoset EAE research, namely isolation of mononuclear cells (MNC) from peripheral blood and lymphoid tissue, assaying T cell proliferation by thymidine incorporation, MNC phenotyping by flow cytometry, antibody measurement by ELISA, generation of B cell lines and antigen-specific T cell lines, and assaying cytotoxic T cells.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, 3306, 2280 GH, Rijswijk, The Netherlands,
| | | | | | | | | |
Collapse
|
23
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Weissert R, 't Hart BA. Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant. J Neuroinflammation 2015; 12:169. [PMID: 26377397 PMCID: PMC4574133 DOI: 10.1186/s12974-015-0378-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/16/2015] [Indexed: 11/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) in the common marmoset monkey (Callithrix jacchus) is a relevant preclinical model for translational research into immunopathogenic mechanisms operating in multiple sclerosis (MS). Prior studies showed a core pathogenic role of T and B cells specific for myelin oligodendrocyte glycoprotein (MOG). However, in those studies, the quality of the response against MOG epitopes was strongly biased by bacterial antigens in the complete Freund’s adjuvant (CFA), in which the immunizing recombinant human (rh) MOG protein had been formulated. In response to the need of a more refined EAE model, we have tested whether disease could also be induced with rhMOG in incomplete Freund’s adjuvant (IFA). Method Marmosets were immunized with rhMOG emulsified in IFA in the dorsal skin. Monkeys that did not develop neurological deficit were given booster immunizations at 28-day interval with the same antigen preparation. In a second experiment, three marmoset twin pairs were sensitized against MOG peptides in IFA to study a possibility for suppressive activity towards pathogenic T cells directed against the encephalitogenic epitope MOG40-48. Results Despite the absence of strong danger signals in the rhMOG/IFA inoculum, all monkeys developed clinically evident EAE symptoms. Moreover, in all monkeys, demyelinated lesions were present in the white matter and in two cases also in the cortical grey matter. Immune profiling at height of the disease showed a dominant T cell response against the overlapping peptides 14–36 and 24–46, but reactivity against the pathogenically most relevant peptide 34–56 was conspicuously absent. In the second experiment, there was an indication for a possible suppressive mechanism. Conclusions Immunization of marmoset monkeys with rhMOG in IFA elicits clinical EAE in all animals. Moreover, rhMOG contains pathogenic and regulatory epitopes, but the pathogenic hierarchy of rhMOG epitopes is strongly influenced by the adjuvant in which the protein is formulated. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0378-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Nicole Heijmans
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands
| | - Erwin L A Blezer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Neuroscience, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
24
|
Kap YS, van Driel N, Arends R, Rouwendal G, Verolin M, Blezer E, Lycke N, 't Hart BA. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10-60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model. Clin Exp Immunol 2015; 180:28-39. [PMID: 25393803 DOI: 10.1111/cei.12487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 01/11/2023] Open
Abstract
Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells that drive tissue inflammation and injury. In this study, we have investigated whether the course of experimental autoimmune encephalomyelitis (EAE) in mice and marmosets can be altered by a potent tolerizing fusion protein. In addition, a multi-parameter immunological analysis was performed in marmosets to assess whether the treatment induces modulation of EAE-associated cellular and humoral immune reactions. The fusion protein, CTA1R9K-hMOG10-60-DD, contains a mutated cholera toxin A1 subunit (CTA1R9K), a dimer of the Ig binding D region of Staphylococcus aureus protein A (DD), and the human myelin oligodendrocyte glycoprotein (hMOG) sequence 10-60. We observed that intranasal application of CTA1R9K-hMOG10-60-DD seems to skew the immune response against myelin oligodendrocyte glycoprotein (MOG) towards a regulatory function. We show a reduced number of circulating macrophages, reduced MOG-induced expansion of mononuclear cells in peripheral blood, reduced MOG-induced production of interleukin (IL)-17A in spleen, increased MOG-induced production of IL-4 and IL-10 and an increased percentage of cells expressing programmed cell death-1 (PD-1) and CC chemokine receptor 4 (CCR4). Nevertheless, the treatment did not detectably change the EAE course and pathology. Thus, despite a detectable effect on relevant immune parameters, the fusion protein failed to influence the clinical and pathological outcome of disease. This result warrants further development and improvement of this specifically targeted tolerance inducing therapy.
Collapse
Affiliation(s)
- Y S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; MS Centre ErasMS, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
't Hart BA, van Kooyk Y, Geurts JJG, Gran B. The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann Clin Transl Neurol 2015; 2:581-93. [PMID: 26000330 PMCID: PMC4435712 DOI: 10.1002/acn3.194] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is an enigmatic autoimmune-driven inflammatory/demyelinating disease of the human central nervous system (CNS), affecting brain, spinal cord, and optic nerves. The cause of the disease is not known and the number of effective treatments is limited. Despite some clear successes, translation of immunological discoveries in the mouse experimental autoimmune encephalomyelitis (EAE) model into effective therapies for MS patients has been difficult. This translation gap between MS and its elected EAE animal model reflects the phylogenetic distance between humans and their experimental counterpart, the inbred/specific pathogen free (SPF) laboratory mouse. Objective Here, we discuss that important new insights can be obtained into the mechanistic basis of the therapy paradox from the study of nonhuman primate EAE (NHP-EAE) models, the well-validated EAE model in common marmosets (Callithrix jacchus) in particular. Interpretation Data presented in this review demonstrate that due to a considerable immunological and pathological overlap with mouse EAE on one side and MS on the other, the NHP EAE model can help us bridge the translation gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre Rijswijk, The Netherlands ; Department Neuroscience, University Medical Center, University of Groningen Groningen, The Netherlands
| | - Yvette van Kooyk
- Department of Cell Biology and Immunology, Free University Medical Center Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neuroscience, Free University Medical Center Amsterdam, The Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine Nottingham, United Kingdom
| |
Collapse
|
26
|
‘t Hart BA, Jagessar SA, Kap YS, Haanstra KG, Philippens IH, Serguera C, Langermans J, Vierboom M. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies. Drug Discov Today 2014; 19:1394-401. [DOI: 10.1016/j.drudis.2014.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/10/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
|
27
|
Nelson M, Loveday M. Exploring the innate immunological response of an alternative nonhuman primate model of infectious disease; the common marmoset. J Immunol Res 2014; 2014:913632. [PMID: 25170519 PMCID: PMC4129158 DOI: 10.1155/2014/913632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is increasingly being utilised as a nonhuman primate model for human disease, ranging from autoimmune to infectious disease. In order to fully exploit these models, meaningful comparison to the human host response is necessary. Commercially available reagents, primarily targeted to human cells, were utilised to assess the phenotype and activation status of key immune cell types and cytokines in naive and infected animals. Single cell suspensions of blood, spleen, and lung were examined. Generally, the phenotype of cells was comparable between humans and marmosets, with approximately 63% of all lymphocytes in the blood of marmosets being T cells, 25% B-cells, and 12% NK cells. The percentage of neutrophils in marmoset blood were more similar to human values than mouse values. Comparison of the activation status of cells following experimental systemic or inhalational infection exhibited different trends in different tissues, most obvious in cell types active in the innate immune response. This work significantly enhances the ability to understand the immune response in these animals and fortifies their use as models of infectious disease.
Collapse
Affiliation(s)
- M. Nelson
- Biomedical Science Department, DSTL, Porton Down, Salisbury SP4 0JQ, UK
| | - M. Loveday
- Biomedical Science Department, DSTL, Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
28
|
Espitia Pinzon N, Stroo E, ‘t Hart BA, Bol JGJM, Drukarch B, Bauer J, van Dam AM. Tissue transglutaminase in marmoset experimental multiple sclerosis: discrepancy between white and grey matter. PLoS One 2014; 9:e100574. [PMID: 24959868 PMCID: PMC4069090 DOI: 10.1371/journal.pone.0100574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Infiltration of leukocytes is a major pathological event in white matter lesion formation in the brain of multiple sclerosis (MS) patients. In grey matter lesions, less infiltration of these cells occur, but microglial activation is present. Thus far, the interaction of β-integrins with extracellular matrix proteins, e.g. fibronectin, is considered to be of importance for the influx of immune cells. Recent in vitro studies indicate a possible role for the enzyme tissue Transglutaminase (TG2) in mediating cell adhesion and migration. In the present study we questioned whether TG2 is present in white and grey matter lesions observed in the marmoset model for MS. To this end, immunohistochemical studies were performed. We observed that TG2, expressed by infiltrating monocytes in white matter lesions co-expressed β1-integrin and is located in close apposition to deposited fibronectin. These data suggest an important role for TG2 in the adhesion and migration of infiltrating monocytes during white matter lesion formation. Moreover, in grey matter lesions, TG2 is mainly present in microglial cells together with some β1-integrin, whereas fibronectin is absent in these lesions. These data imply an alternative role for microglial-derived TG2 in grey matter lesions, e.g. cell proliferation. Further research should clarify the functional role of TG2 in monocytes or microglial cells in MS lesion formation.
Collapse
Affiliation(s)
- Nathaly Espitia Pinzon
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Esther Stroo
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Bert A. ‘t Hart
- Biomedical Primate Research Center, Department of Immunobiology, Rijswijk, The Netherlands
- University Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - John G. J. M. Bol
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Jan Bauer
- Center for Brain Research, Department of Neuroimmunology, Vienna, Austria
| | - Anne-Marie van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Jagessar SA, Vierboom M, Blezer ELA, Bauer J, Hart BA', Kap YS. Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Exp Anim 2014; 62:159-71. [PMID: 23903050 PMCID: PMC4160941 DOI: 10.1538/expanim.62.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied Neotropical
primate and a useful preclinical animal model for translational research into
autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and
multiple sclerosis (MS). The animal model for MS established in marmosets has proven their
value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of
new therapies that cannot be tested in lower species because of their specificity for
humans. Effective usage of the marmoset in preclinical immunological research has been
hampered by the limited availability of blood for immunological studies and of reagents
for profiling of cellular and humoral immune reactions. In this paper, we give a concise
overview of the procedures and reagents that were developed over the years in our
laboratory in marmoset models of the above-mentioned diseases.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Induction of encephalitis in rhesus monkeys infused with lymphocryptovirus-infected B-cells presenting MOG(34-56) peptide. PLoS One 2013; 8:e71549. [PMID: 23977076 PMCID: PMC3744571 DOI: 10.1371/journal.pone.0071549] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The overlapping epidemiology of multiple sclerosis (MS) and Epstein-Barr virus (EBV), the increased risk to develop MS after infectious mononucleosis (IM) and the localization of EBV-infected B-cells within the MS brain suggest a causal link between EBV and MS. However, the underlying mechanism is unknown. We hypothesize that EBV-infected B-cells are capable of eliciting a central nervous system (CNS) targeting autoimmune reaction. To test this hypothesis we have developed a novel experimental model in rhesus monkeys of IM-like disease induced by infusing autologous B-lymphoblastoid cells (B-LCL). Herpesvirus papio (HVP) is a lymphocryptovirus related to EBV and was used to generate rhesus monkey B-LCL. Three groups of five animals were included; each group received three intravenous infusions of B-LCL that were either pulsed with the encephalitogenic self peptide MOG34–56 (group A), a mimicry peptide (981–1003) of the major capsid protein of cytomegalovirus (CMVmcp981–1003; group B) or the citrullinated MOG34–56 (cMOG34–56; group C). Groups A and B received on day 98 a single immunization with MOG34–56 in incomplete Freund’s adjuvant (IFA). Group C monkeys were euthanized just prior to day 98 without booster immunization. We observed self-peptide-specific proliferation of T-cells, superimposed on similar strong proliferation of CD3+CD8+ T-cells against the B-LCL as observed in IM. The brains of several monkeys contained perivascular inflammatory lesions of variable size, comprising CD3+ and CD68+ cells. Moreover, clusters of CD3+ and CD20+ cells were detected in the meninges. The only evident clinical sign was substantial loss of bodyweight (>15%), a symptom observed both in early autoimmune encephalitis and IM. In conclusion, this model suggests that EBV-induced B-LCL can elicit a CNS targeting inflammatory (auto)immune reaction.
Collapse
|
31
|
Induction of experimental autoimmune encephalomyelitis with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant in three non-human primate species. J Neuroimmune Pharmacol 2013; 8:1251-64. [PMID: 23821341 PMCID: PMC3889224 DOI: 10.1007/s11481-013-9487-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/26/2022]
Abstract
The experimental autoimmune encephalitis (EAE) model is used for preclinical research into the pathogenesis of multiple sclerosis (MS), mostly in inbred, specific pathogen free (SPF)-raised laboratory mice. However, the naive state of the laboratory mouse immune system is considered a major hurdle in the translation of principles from the EAE model to the MS patient. Non-human primates (NHP) have an immune system harboring T- and B-cell memory against environmental antigens, similar as in humans. We sought to further refine existing NHP EAE models, which may help to bridge the gab between mouse EAE models and MS. We report here on new EAE models in three NHP species: rhesus monkeys (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis) and common marmosets (Callithrix jacchus). EAE was induced with recombinant human myelin oligodendrocyte glycoprotein extracellular domain (1–125) (rhMOG) formulated in incomplete Freund’s adjuvant (IFA). IFA lacks the bacterial antigens that are present in complete Freund’s adjuvant (CFA), which are notorious for the induction of discomforting side effects. Clinically evident EAE could be induced in two out of five rhesus monkeys, six out of six cynomolgus monkeys and six out of six common marmosets. In each of these species, the presence of an early, high anti-rhMOG IgM response is correlated with EAE with an earlier onset and more severe disease course. Animals without an early high IgM response either did not develop disease (rhesus monkeys) or developed only mild signs of neurological deficit (marmoset and cynomolgus monkeys).
Collapse
|
32
|
't Hart BA, Jagessar SA, Haanstra K, Verschoor E, Laman JD, Kap YS. The Primate EAE Model Points at EBV-Infected B Cells as a Preferential Therapy Target in Multiple Sclerosis. Front Immunol 2013; 4:145. [PMID: 23781220 PMCID: PMC3680746 DOI: 10.3389/fimmu.2013.00145] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/28/2013] [Indexed: 01/08/2023] Open
Abstract
The remarkable clinical efficacy of anti-CD20 monoclonal antibodies (mAb) in relapsing-remitting multiple sclerosis points at the critical involvement of B cells in the disease. However, the exact pathogenic contribution of B cells is poorly understood. In this publication we review new data on the role of CD20+ B cells in a unique experimental autoimmune encephalomyelitis (EAE) model in common marmosets (Callithrix jacchus), a small-bodied neotropical primate. We will also discuss the relevance of these data for MS. Different from rodent EAE models, but similar to MS, disease progression in marmosets can develop independent of autoantibodies. Progressive disease is mediated by MHC class Ib (Caja-E) restricted cytotoxic T cells, which are activated by γ-herpesvirus-infected B cells and cause widespread demyelination of cortical gray matter. B-cell directed monoclonal antibody therapies (anti-CD20 versus anti-BLyS and anti-APRIL) have a variable effect on EAE progression, which we found associated with variable depletion of the Epstein Barr virus (EBV)-like γ-herpesvirus CalHV3 from lymphoid organs. These findings support an important pathogenic role of CD20+ B cell in MS, especially of the subset infected with EBV.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk , Netherlands ; Multiple Sclerosis Center, Erasmus MC , Rotterdam , Netherlands ; Department of Neuroscience, University Medical Center Groningen , Groningen , Netherlands ; Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Anwar Jagessar S, Fagrouch Z, Heijmans N, Bauer J, Laman JD, Oh L, Migone T, Verschoor EJ, ’t Hart BA. The Different Clinical Effects of Anti-BLyS, Anti-APRIL and Anti-CD20 Antibodies Point at a Critical Pathogenic Role of γ-Herpesvirus Infected B Cells in the Marmoset EAE Model. J Neuroimmune Pharmacol 2013; 8:727-38. [DOI: 10.1007/s11481-013-9448-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
|
34
|
Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog 2013; 9:e1003138. [PMID: 23382677 PMCID: PMC3561285 DOI: 10.1371/journal.ppat.1003138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders.
Collapse
|
35
|
't Hart BA, Chalan P, Koopman G, Boots AMH. Chronic autoimmune-mediated inflammation: a senescent immune response to injury. Drug Discov Today 2012. [PMID: 23195330 DOI: 10.1016/j.drudis.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of chronic autoimmune-mediated inflammatory diseases (AIMIDs) in ageing western societies is a major challenge for the drug development industry. The current high medical need for more-effective treatments is at least in part caused by our limited understanding of the mechanisms that drive chronic inflammation. Here, we postulate a role for immunosenescence in the progression of acute to chronic inflammation via a dysregulated response to primary injury at the level of the damaged target organ. A corollary to this notion is that treatment of acute versus chronic phases of disease might require differential targeting strategies.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
36
|
B-Cell Depletion Abrogates T Cell-Mediated Demyelination in an Antibody-Nondependent Common Marmoset Experimental Autoimmune Encephalomyelitis Model. J Neuropathol Exp Neurol 2012; 71:716-28. [DOI: 10.1097/nen.0b013e3182622691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Jagessar SA, Heijmans N, Oh L, Bauer J, Blezer ELA, Laman JD, Migone TS, Devalaraja MN, 't Hart BA. Antibodies against human BLyS and APRIL attenuate EAE development in marmoset monkeys. J Neuroimmune Pharmacol 2012; 7:557-70. [PMID: 22870852 PMCID: PMC3419352 DOI: 10.1007/s11481-012-9384-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/04/2022]
Abstract
B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund’s adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40high B cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department Immunobiology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1085] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
39
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Blokhuis JH, Wubben JAM, Drijfhout JW, van den Elsen PJ, Laman JD, Hart BA'. Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG34-56 peptide in incomplete adjuvant. Eur J Immunol 2012; 42:217-27. [PMID: 21928277 DOI: 10.1002/eji.201141863] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE) has been documented in common marmosets using peptide 34-56 from human myelin/oligodendrocyte glycoprotein (MOG(34-56) ) in incomplete Freund's adjuvant (IFA). Here, we report that this EAE model is associated with widespread demyelination of grey and white matter. We performed an in-depth analysis of the specificity, MHC restriction and functions of the activated T cells in the model, which likely cause EAE in an autoantibody-independent manner. T-cell lines isolated from blood and lymphoid organs of animals immunized with MOG(34-56) displayed high production of IL-17A and specific lysis of MOG(34-56) -pulsed EBV B-lymphoblastoid cells as typical hallmarks. Cytotoxicity was directed at the epitope MOG(40-48) presented by the non-classical MHC class Ib allele Caja-E, which is orthologue to HLA-E and is expressed in non-inflamed brain. In vivo activated T cells identified by flow cytometry in cultures with MOG(34-56,) comprised CD4(+) CD56(+) and CD4(+) CD8(+) CD56(+) T cells. Furthermore, phenotypical analysis showed that CD4(+) CD8(+) CD56(+) T cells also expressed CD27, but CD16, CD45RO, CD28 and CCR7 were absent. These results show that, in the MOG34-56/IFA marmoset EAE model, a Caja-E-restricted population of autoreactive cytotoxic T cells plays a key role in the process of demyelination in the grey and white matter.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
B-cell depletion attenuates white and gray matter pathology in marmoset experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2011; 70:992-1005. [PMID: 22002426 DOI: 10.1097/nen.0b013e318234d421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20. In vivo magnetic resonance imaging showed widespread brain white matter demyelination in control marmosets that was absent in CD20 antibody-treated marmosets. High-contrast postmortem magnetic resonance imaging showed white matter lesions in 4of the 7 antibody-treated marmosets, but these were significantly smaller than those in controls. The same technique revealed gray matter lesions in 5 control marmosets, but none in antibody-treated marmosets. Histologic analysis confirmed that inflammation, demyelination, and axonal damage were substantially reduced in brain, spinal cord, and optic nerves of CD20 antibody-treated marmosets. In conclusion, CD20-postive B-cell depletion by HuMab 7D8 profoundly reduced the development of both white and gray matter lesions in the marmoset CNS. These data underline the central role of B cells in CNS inflammatory-demyelinating disease.
Collapse
|
41
|
Discrepant effects of human interferon-gamma on clinical and immunological disease parameters in a novel marmoset model for multiple sclerosis. J Neuroimmune Pharmacol 2011; 7:253-65. [PMID: 22012268 PMCID: PMC3280389 DOI: 10.1007/s11481-011-9320-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/02/2011] [Indexed: 11/18/2022]
Abstract
The core pathogenic process in the common marmoset model of multiple sclerosis (MS) is the activation of memory-like T cells specific for peptide 34 to 56 derived from the extracellular domain of myelin/oligodendrocyte glycoprotein (MOG34-56). Immunization with MOG34-56 in incomplete Freund’s adjuvant is a sufficient stimulus for in vivo activation of these T cells, together with the induction of MS-like disease and CNS pathology. Ex vivo functional characteristics of MOG34-56 specific T cells are specific cytolysis of peptide pulsed target cells and high IL-17A production. To indentify possible functions in this new model of T helper 1 cells, which play a central pathogenic role in MS models induced with complete Freund’s adjuvant, we tested the effect of human interferon-γ (IFNγ) administration during disease initiation of the disease (day 0–25) and around the time of disease expression (psd 56–81). The results show a clear modulatory effect of early IFNγ treatment on humoral and cellular autoimmune parameters, but no generalized mitigating effect on the disease course. These results argue against a prominent pathogenic role of T helper 1 cells in this new marmoset EAE model.
Collapse
|
42
|
Shiina T, Kono A, Westphal N, Suzuki S, Hosomichi K, Kita YF, Roos C, Inoko H, Walter L. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus). Immunogenetics 2011; 63:485-99. [PMID: 21505866 DOI: 10.1007/s00251-011-0526-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/07/2011] [Indexed: 01/20/2023]
Abstract
Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
't Hart BA, Gran B, Weissert R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 2011; 17:119-25. [PMID: 21251877 DOI: 10.1016/j.molmed.2010.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
Abstract
The high failure rate of immunotherapies in multiple sclerosis (MS) clinical trials demonstrates problems in translating new treatment concepts from animal models to the patient. One main reason for this 'immunotherapy gap' is the usage of immunologically immature, microbiologically clean and genetically homogeneous rodent strains. Another reason is the artificial nature of the experimental autoimmune encephalomyelitis model, which favors CD4+ T cell driven autoimmune mechanisms, whereas CD8+ T cells are prevalent in MS lesions. In this paper, we discuss preclinical models in humanized rodents and non-human primates that are genetically closer to MS. We also discuss models that best reproduce specific aspects of MS pathology and how these can potentially improve preclinical selection of promising therapies from the discovery pipeline.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | | | |
Collapse
|
44
|
Vierboom MPM, Breedveld E, Kondova I, 't Hart BA. Collagen-induced arthritis in common marmosets: a new nonhuman primate model for chronic arthritis. Arthritis Res Ther 2010; 12:R200. [PMID: 20977720 PMCID: PMC2991037 DOI: 10.1186/ar3172] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION There is an ever-increasing need for animal models to evaluate efficacy and safety of new therapeutics in the field of rheumatoid arthritis (RA). Particularly for the early preclinical evaluation of human-specific biologicals targeting the progressive phase of the disease, there is a need for relevant animal models. In response to this requirement we set out to develop a model of collagen-induced arthritis (CIA) in a small-sized nonhuman primate species (300 to 400 g at adult age); that is, the common marmoset (Callithrix jacchus). METHODS Twenty-two animals divided into three experiments were immunized with collagen type II (CII) of either bovine or chicken origin with different immunization strategies. The animals were analyzed for clinical manifestation of arthritis, hematology and clinical chemistry, immunological responses against CII and histopathological features of the arthritis. RESULTS Clinically manifest arthritis was observed in almost 100% (21 out of 22) of the animals. Fifty percent of the animals developed semi-acute CIA while the other 50% displayed a more chronic disease. Both cellular (CD3/CD4 and CD3/CD8) and humoral responses (IgM and IgG) against CII were involved in the development of the disease. Besides mild histopathological changes in bone and cartilage, severe inflammation in extraarticular tissues like periosteum and subcutaneous tissues was observed. CONCLUSIONS This new model in marmosets more closely resembles chronic RA with respect to the chronic disease course and pathomorphological presentation than the more acute monophasic and destructive CIA model in macaques. This model can therefore fill a niche in preclinical testing of new human specific therapeutics.
Collapse
Affiliation(s)
- Michel P M Vierboom
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Kap YS, van Driel N, Blezer E, Parren PWHI, Bleeker WK, Laman JD, Craigen JL, 't Hart BA. Late B cell depletion with a human anti-human CD20 IgG1κ monoclonal antibody halts the development of experimental autoimmune encephalomyelitis in marmosets. THE JOURNAL OF IMMUNOLOGY 2010; 185:3990-4003. [PMID: 20739677 DOI: 10.4049/jimmunol.1001393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Depletion of CD20(+) B cells has been related to reduced clinical activity in relapsing-remitting multiple sclerosis. The underlying mechanism is not understood, because serum IgG levels were unaltered by the treatment. We report the effect of late B cell depletion on cellular and humoral immune mechanisms in a preclinical multiple sclerosis model (i.e., experimental autoimmune encephalomyelitis [EAE] in the common marmoset). We used a novel human anti-human CD20 IgG1κ mAb (HuMab 7D8) that cross-reacts with marmoset CD20. EAE was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein (MOG) in CFA. After 21 d, B cells were depleted in seven monkeys by HuMab 7D8, and seven control monkeys received PBS. The Ab induced profound and long-lasting B cell depletion from PBMCs and lymphoid organs throughout the observation period of 106 d. Whereas all of the control monkeys developed clinically evident EAE, overt neurologic deficits were reduced substantially in three HuMab 7D8-treated monkeys, and four HuMab 7D8-treated monkeys remained completely asymptomatic. The effect of HuMab 7D8 was confirmed on magnetic resonance images, detecting only small lesions in HuMab 7D8-treated monkeys. The infusion of HuMab 7D8 arrested the progressive increase of anti-MOG IgG Abs. Although CD3(+) T cell numbers in lymphoid organs were increased, their proliferation and cytokine production were impaired significantly. Most notable were the substantially reduced mRNA levels of IL-7 and proinflammatory cytokines (IL-6, IL-17A, IFN-γ, and TNF-α). In conclusion, B cell depletion prevents the development of clinical and pathological signs of EAE, which is associated with impaired activation of MOG-reactive T cells in lymphoid organs.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Effects of early IL-17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010; 6:341-53. [PMID: 20700661 PMCID: PMC3128270 DOI: 10.1007/s11481-010-9238-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/28/2010] [Indexed: 11/24/2022]
Abstract
We report on the effect of antibody-mediated neutralization of interleukin (IL)-17A in a non-human primate experimental autoimmune encephalomyelitis (EAE) model induced with recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We tested a human-anti-human IL-17A-antibody in two doses (3 and 30 mg/kg) against placebo (PBS). The treatment was started 1 day before EAE induction and continued throughout the experiment. Although all monkeys developed clinically evident EAE, the onset of neurological signs was delayed in some monkeys from both treatment groups. Total CNS lesion volumes, demyelination, or inflammation did not differ between the different groups. Immune profiling revealed an altered distribution of IL-17A producing cells in the lymphoid organs of antibody-treated monkeys. Comparable numbers of IL-17A producing cells were observed in the brain. RhMOG-induced T cell proliferation in the lymph nodes was slightly reduced after anti-IL-17A antibody treatment. To summarize, we found that anti-IL-17A antibody as a single treatment from disease induction effects a trend towards delayed neurological disease progression in the marmoset EAE model, although the effect did not reach statistical significance. This suggests a role of IL-17A in late stage disease in the marmoset EAE model, but IL-17A may not be the dominant pathogenic cytokine.
Collapse
|
47
|
Abstract
Cellular apoptosis induced by T cells is mainly mediated by two pathways. One, granule exocytosis utilizes perforin/granzymes. The other involves signaling through death receptors of the TNF-alpha R super-family, especially FasL. Perforin plays a central role in apoptosis induced by granzymes. However, the mechanisms of perforin-mediated cytotoxicity are still not elucidated completely. Perforin is not only a pore-forming protein, but also performs multiple biological functions or perforin performs one biological function (cytolysis), but has multiple biological implications in the cellular immune responses, including regulation of proliferation of CD8+ CTLs.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, 300 Jefferson Hospital for Neurosciences Building, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA. [corrected]
| |
Collapse
|
48
|
Induction of Progressive Demyelinating Autoimmune Encephalomyelitis in Common Marmoset Monkeys Using MOG34-56Peptide in Incomplete Freund Adjuvant. J Neuropathol Exp Neurol 2010; 69:372-85. [DOI: 10.1097/nen.0b013e3181d5d053] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, 't Hart B, Vescovi A, Martino G. Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 2009; 66:343-54. [PMID: 19798728 DOI: 10.1002/ana.21745] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transplanted neural stem/precursor cells (NPCs) display peculiar therapeutic plasticity in vivo. Although the replacement of cells was first expected as the prime therapeutic mechanism of stem cells in regenerative medicine, it is now clear that transplanted NPCs simultaneously instruct several therapeutic mechanisms, among which replacement of cells might not necessarily prevail. A comprehensive understanding of the mechanism(s) by which NPCs exert their therapeutic plasticity is lacking. This study was designed as a preclinical approach to test the feasibility of human NPC transplantation in an outbreed nonhuman primate experimental autoimmune encephalomyelitis (EAE) model approximating the clinical and complex neuropathological situation of human multiple sclerosis (MS) more closely than EAE in the standard laboratory rodent. METHODS We examined the safety and efficacy of the intravenous (IV) and intrathecal (IT) administration of human NPCs in common marmosets affected by human myelin oligodendrocyte glycoprotein 1-125-induced EAE. Treatment commenced upon the occurrence of detectable brain lesions on a 4.7T spectrometer. RESULTS EAE marmosets injected IV or IT with NPCs accumulated lower disability and displayed increased survival, as compared with sham-treated controls. Transplanted NPCs persisted within the host central nervous system (CNS), but were also found in draining lymph nodes, for up to 3 months after transplantation and exhibited remarkable immune regulatory capacity in vitro. INTERPRETATION Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS.
Collapse
Affiliation(s)
- Stefano Pluchino
- Neuroimmunology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kap YS, Laman JD, 't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset, a bridge between rodent EAE and multiple sclerosis for immunotherapy development. J Neuroimmune Pharmacol 2009; 5:220-30. [PMID: 19826959 DOI: 10.1007/s11481-009-9178-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/29/2009] [Indexed: 12/22/2022]
Abstract
The attrition rate of new drugs for central nervous system diseases including multiple sclerosis (MS) is very high. A widely recognized bottleneck in the selection of promising central nervous system drug candidates from the development pipeline is the lack of sufficiently predictive animal models. Here, we review how the experimental autoimmune encephalomyelitis (EAE) model in the Neotropical primate "common marmoset" can help to bridge the gap between rodent EAE models and MS. The EAE model in the marmoset closely resembles MS in the clinical as well as pathological presentation and can be used for fundamental research into immunopathogenic mechanisms and for therapy development. We discuss recent insights arising from this model, both on novel therapeutics and immunopathogenesis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands
| | | | | |
Collapse
|