1
|
Fredlund F, Fryklund C, Trujeque-Ramos O, Staley HA, Pardo J, Luk KC, Tansey MG, Swanberg M. Lack of neuroprotection after systemic administration of the soluble TNF inhibitor XPro1595 in an rAAV6-α-Syn + PFFs-induced rat model for Parkinson's disease. Neurobiol Dis 2025; 207:106841. [PMID: 39954745 DOI: 10.1016/j.nbd.2025.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration, α-Synuclein (α-Syn) pathology, and inflammation. Microglia in the substantia nigra pars compacta (SNpc) upregulate major histocompatibility complex class II (MHCII), and variants in genes encoding MHCII affect PD risk. Additionally, elevated TNF levels and α-Syn-reactive T cells in circulation suggest a strong link between innate and adaptive immune responses in PD. We have previously reported that reduced levels of the class II transactivator, the master regulator of MHCII expression, increases susceptibility to α-Syn-induced PD-like pathology in rats and are associated with higher serum levels of soluble TNF (sTNF). Here, we demonstrate that inhibiting sTNF with a dominant-negative TNF variant, XPro1595, known to be neuroprotective in endotoxin- and toxin-induced neurodegeneration models, fails to protect against robust α-Syn-induced PD-like pathology in rats. We used a model combining rAAV-mediated α-Syn overexpression in SNpc with striatal injection of α-Syn preformed fibrils two weeks later. Systemic XPro1595 treatment was initiated one-week post-rAAV-α-Syn. We observed up to 70 % loss of striatal dopaminergic fibers without treatment, and no protective effects on dopaminergic neurodegeneration after XPro1595 administration. Pathological α-Syn levels as well as microglial and astrocytic activation were not reduced in SNpc or striatum following XPro1595 treatment. An increase in IL-6 and IL-1β levels in CSF was observed in rats treated with XPro1595, possibly explaining a lack of protective effects following treatment. Our results highlight the need to determine the importance of timing of treatment initiation, which is crucial for future applications of sTNF therapies in PD patients.
Collapse
Affiliation(s)
- Filip Fredlund
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Claes Fryklund
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Olivia Trujeque-Ramos
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hannah A Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Joaquin Pardo
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina; Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Malú G Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Zhang X, Zhang Y, Chen Y, Ji Y, Lyu Y, Miao Z, Duan X, Liu X. Unraveling the immune system's role in peripheral nerve regeneration: a pathway to enhanced healing. Front Immunol 2025; 16:1540199. [PMID: 40061948 PMCID: PMC11885135 DOI: 10.3389/fimmu.2025.1540199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
Peripheral nerve injury (PNI) represents a common challenge in clinical practice. In contrast to the central nervous system (CNS), the peripheral nervous system (PNS) in mature mammals possesses a limited regenerative capacity. Upon the occurrence of PNI, peripheral nerve regeneration (PNR) is initiated, facilitated by the activation of the immune microenvironment and the intrinsic growth potential of neurons. This regenerative process encompasses several key stages, including distal axon degeneration, myelin breakdown, clearance of myelin debris, inflammatory responses from non-neuronal cells, and subsequent axonal regeneration. The immune response, recognized for its role in clearing myelin debris and modulating the local inflammatory milieu, is crucial for initiating axonal regeneration at the proximal stump of nerves. Nevertheless, the precise mechanisms by which the immune response influences PNI and the strategies to harness this process to augment regeneration remain elusive. This article provides a comprehensive overview of the diverse roles and mechanisms of the immune system in PNR and presents insights into potential therapeutic strategies. Furthermore, the article examines immune-associated signaling pathways and their impact on PNR, underscoring the significance of immune modulation in enhancing patient outcomes with PNI. Ultimately, it encapsulates and forecasts the theoretical and practical directions of this field.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
- Clinical Medical Research Center, Department of Neurosurgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 Peolpe’s Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Yanxian Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yuqing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yuxiang Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Zengli Miao
- Clinical Medical Research Center, Department of Neurosurgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 Peolpe’s Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| |
Collapse
|
3
|
Fredlund F, Jimenez-Ferrer I, Grabert K, Belfiori LF, Luk K, Swanberg M. Ciita Regulates Local and Systemic Immune Responses in a Combined rAAV-α-synuclein and Preformed Fibril-Induced Rat Model for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:693-711. [PMID: 38728204 PMCID: PMC11191526 DOI: 10.3233/jpd-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Background Parkinson's disease (PD) is characterized by alpha-synuclein (α-Syn) pathology, neurodegeneration and neuroinflammation. Human leukocyte antigen (HLA) variants associated with PD and α-Syn specific CD4+ T lymphocytes in PD patients highlight the importance of antigen presentation in PD etiology. The class II transactivator (CIITA) regulates major histocompatibility complex class II (MHCII) expression. Reduced Ciita levels significantly increase α-Syn pathology, nigrostriatal neurodegeneration and behavioral deficits in α-Syn-induced rat PD models. Objective Characterize immune profiles associated with enhanced PD-like pathology observed in rats expressing lower Ciita levels (DA.VRA4) compared to the background strain (DA). Methods To model PD, we combined rAAV-mediated α-Syn overexpression in the substantia nigra with striatal injection of α-Syn preformed fibrils. Immune profiles in brain and blood were analyzed by flow cytometry and multiplexed ELISA in naïve rats, 4- and 8 weeks post rAAV injection. Results Flow cytometry showed Ciita-dependent regulation of MHCII on microglia, brain macrophages and circulating myeloid cells. The MHCII-dependent microglial response was highest at 4 weeks post rAAV injection, whereas the MHCII levels in circulating myeloid cells was highest at 8 weeks. There was no major infiltration of macrophages or T lymphocytes into the CNS in response to α-Syn and only subtle Ciita- and/or α-Syn-dependent changes in the T lymphocyte compartment. Lower Ciita levels were consistently associated with higher TNF levels in serum. Conclusions Ciita regulates susceptibility to PD-like pathology through minor but detectable changes in resident and peripheral immune cells and TNF levels, indicating that mild immunomodulatory therapies could have therapeutic effects in PD.
Collapse
Affiliation(s)
- Filip Fredlund
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
- Department of Clinical Sciences, Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Lautaro Francisco Belfiori
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria Swanberg
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Jensen VF, Swanberg M, Herlin M, McGuigan FE, Jørgensen NR, Akesson KE. Differential expression of the inflammatory ciita gene may be accompanied by altered bone properties in intact sex steroid-deficient female rats. BMC Res Notes 2023; 16:372. [PMID: 38115045 PMCID: PMC10729448 DOI: 10.1186/s13104-023-06543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/28/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE The class II transactivator (CIITA), encoded by the CIITA gene, controls expression of immune response regulators, which affect bone homeostasis. Previously, we investigated a functional CIITA polymorphism in elderly women. Women carrying the allele associated with lower CIITA levels displayed higher bone mineral density (BMD), but also higher bone loss. The present exploratory study in a rat model sought to investigate effects of differential expression of Ciita on bone structural integrity and strength. Two strains DA (normal-to-high expression) and DA.VRA4 (lower expression) underwent ovariectomy (OVX) or sham-surgery at ~ 14-weeks of age (DA OVX n = 8, sham n = 4; DA.VRA4 OVX n = 10, sham n = 2). After 16-weeks, femoral BMD and bone mineral content (BMC) were measured and morphometry and biomechanical testing performed. RESULTS In DA.VRA4 rats, BMD/BMC, cross-sectional area and biomechanical properties were lower. Ciita expression was accompanied by OVX-induced changes to cross-sectional area and femoral shaft strength; DA rats had lower maximum load-to-fracture. Thus, while lower Ciita expression associated with lower bone mass, OVX induced changes to structural and mechanical bone properties were less pronounced. CONCLUSION The data tentatively suggests association between Ciita expression and structural and mechanical bone properties, and a possible role in bone changes resulting from estrogen deficiency.
Collapse
Affiliation(s)
- Vivi Fh Jensen
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, 214 28, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, 205 02, Sweden
| | - Maria Swanberg
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, 214 28, Sweden
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, 221 84, Sweden
| | - Maria Herlin
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, 214 28, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, 205 02, Sweden
| | - Fiona E McGuigan
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, 214 28, Sweden.
- Department of Orthopaedics, Skåne University Hospital, Malmö, 205 02, Sweden.
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Centre of Diagnostic Investigation, Rigshospitalet, Glostrup, 2600, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, 214 28, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, 205 02, Sweden
| |
Collapse
|
5
|
Jimenez-Ferrer I, Bäckström F, Dueñas-Rey A, Jewett M, Boza-Serrano A, Luk KC, Deierborg T, Swanberg M. The MHC class II transactivator modulates seeded alpha-synuclein pathology and dopaminergic neurodegeneration in an in vivo rat model of Parkinson's disease. Brain Behav Immun 2021; 91:369-382. [PMID: 33223048 DOI: 10.1016/j.bbi.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/24/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal folding, aggregation and spreading of alpha-synuclein (αsyn) is a mechanistic hypothesis for the progressive neuropathology in Parkinson's disease (PD). Spread of αsyn between cells is supported by clinical, neuropathological and experimental evidence. It has been proposed that a pro-inflammatory micro-environment in response to αsyn can promote its aggregation. We have previously shown that allelic differences in the major histocompatibility complex class two transactivator (Mhc2ta) gene, located in the VRA4 locus, alter MHCII expression levels, microglial activation and antigen presentation capacity in rats upon human αsyn over-expression. In addition, Mhc2ta regulated dopaminergic neurodegeneration and the extent of motor impairment. The purpose of this study was to determine whether Mhc2ta regulates αsyn aggregation, propagation and dopaminergic pathology in an αsyn pre-formed fibril (PFF)-seeded in vivo model of PD. METHODS The DA and DA.VRA4 congenic rat strains share background genome but display differential microglial antigen presenting capacity due to different Mhc2ta alleles in the VRA4 locus. PFFs of human αsyn or BSA solution were injected unilaterally to the striatum of DA and DA.VRA4 rats two weeks after ipsilateral administration of recombinant adeno-associated virus (rAAV) vectors carrying human αsyn or GFP to the substantia nigra pars compacta. Behavioural assessment was performed at 2, 5 and 8 weeks while histological evaluation of αsyn pathology, inflammation and neurodegeneration as well as determination of serum cytokine profiles were performed at 8 weeks. RESULTS rAAV-mediated expression of human αsyn in nigral dopaminergic neurons combined with striatal PFF administration induced enhanced αsyn pathology in DA.VRA4 compared to DA rats. Mhc2ta thus significantly regulated the seeding, propagation and toxicity of αsyn in vivo. This was reflected in terms of wider extent and anatomical distribution of αsyn inclusions, ranging from striatum to the forebrain, midbrain, hindbrain and cerebellum in DA.VRA4. Compared to DA rats, DA.VRA4 also displayed enhanced motor impairment and dopaminergic neurodegeneration as well as higher levels of the proinflammatory cytokines IL-2 and TNFα in serum. CONCLUSIONS We conclude that the key regulator of MHCII expression, Mhc2ta, modulates neuroinflammation, αsyn-seeded Lewy-like pathology, dopaminergic neurodegeneration and motor impairment. This makes Mhc2ta and microglial antigen presentation promising therapeutic targets for reducing the progressive neuropathology and clinical manifestations in PD.
Collapse
Affiliation(s)
- Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Filip Bäckström
- Translational Neurogenetics Unit, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Alfredo Dueñas-Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Michael Jewett
- Translational Neurogenetics Unit, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | | | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Centre for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Hochmeister S, Aeinehband S, Dorris C, Berglund R, Haindl MT, Velikic V, Gustafsson SA, Olsson T, Piehl F, Jagodic M, Zeitelhofer M, Adzemovic MZ. Effect of Vitamin D on Experimental Autoimmune Neuroinflammation Is Dependent on Haplotypes Comprising Naturally Occurring Allelic Variants of CIITA ( Mhc2ta). Front Neurol 2020; 11:600401. [PMID: 33304315 PMCID: PMC7693436 DOI: 10.3389/fneur.2020.600401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023] Open
Abstract
An increasing body of evidence associates low vitamin D levels with increased risk of multiple sclerosis (MS), suggesting the possibility of a gene-environment interaction for this environmental factor in MS pathogenesis. Moreover, it has been shown that vitamin D downregulates major histocompatibility complex (MHC) class II expression in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We here report about the impact of a dietary vitamin D supplementation on EAE in the rat strains having functionally relevant allelic variations in the CIITA (Mhc2ta) gene, a master regulator of MHC class II expression. Full length myelin oligodendrocyte glycoprotein (MOG)-EAE was induced in DA.PVGav1-Vra4 congenic rats harboring the Vra4 locus from PVG strain in the EAE- susceptible DA background, and compared to the parental strains. The congenic rats fed with either vitamin D supplemented, deprived or regular diet developed an intermediate clinical EAE phenotype, in contrast to DA and PVG strains. Immunopathological studies revealed vitamin D dose-dependent effect on demyelination and inflammatory infiltration of the central nervous system (CNS), expression of MHC class II and CIITA, as well as downregulation of a range of pro-inflammatory genes. Taken together, our findings demonstrate an impact of vitamin D on the target tissue pathology and peripheral immune response during EAE in DA.PVGav1-Vra4 congenic strain. Thereby, our data provide evidence of a modulatory effect of vitamin D in context of genetic variances in the Vra4 locus/Mhc2ta gene in MS-like neuroinflammation, with potential relevance for the human demyelinating disease.
Collapse
Affiliation(s)
- Sonja Hochmeister
- Department of General Neurology, Medical University of Graz, Graz, Austria
| | - Shahin Aeinehband
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charles Dorris
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Rasmus Berglund
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michaela T Haindl
- Department of General Neurology, Medical University of Graz, Graz, Austria
| | - Vid Velikic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Sven A Gustafsson
- Department of Molecular Medicine and Surgery, Clinical Chemistry and Blood Coagulation Research, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Vascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Chidlow G, Ebneter A, Wood JPM, Casson RJ. Evidence Supporting an Association Between Expression of Major Histocompatibility Complex II by Microglia and Optic Nerve Degeneration During Experimental Glaucoma. J Glaucoma 2017; 25:681-91. [PMID: 27253969 DOI: 10.1097/ijg.0000000000000447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM We acquired age-matched and sex-matched Sprague-Dawley rats from 2 independent breeding establishments. Serendipitously, we observed that constitutive, and bacterial toxin-induced, expression of major histocompatibility complex (MHC) class II RT1B chain in the uveal tract was much lower in one of the cohorts. Activated microglia are known to upregulate MHC II RT1B expression during optic nerve (ON) degeneration induced by raised intraocular pressure (IOP). We investigated whether, in a model of experimental glaucoma, microglial upregulation of MHC II RT1B was less efficacious and ON degeneration correspondingly less severe in the cohort of rats with low MHC II RT1B expression. METHODS Experimental glaucoma was induced by lasering the trabecular meshwork using a standard protocol. After 2 weeks of elevated IOP, retinal ganglion cells (RGC) survival, ON degeneration, and microglial responses were determined in both cohorts of rats. RESULTS Raised IOP-induced expression of MHC II RT1B by microglia was muted in the "Low" cohort compared with the "High" cohort. Axonal degeneration, RGC loss, and microgliosis were all significantly lower in the cohort of rats with low basal and induced expression of MHC II RT1B, despite both cohorts displaying IOP responses that were indistinguishable in terms of peak IOP and IOP exposure. CONCLUSIONS Expression of MHC II RT1B by activated microglia in the ON during experimental glaucoma was associated with more severe RGC degeneration. Further studies are needed to elucidate the role of MHC II during experimental glaucoma.
Collapse
Affiliation(s)
- Glyn Chidlow
- *Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases †Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, SA, Australia ‡Department of Ophthalmology, Bern University Hospital and University of Bern, Inselspital, Bern, Switzerland
| | | | | | | |
Collapse
|
8
|
Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to α-synuclein-induced dopaminergic neurodegeneration. Neurobiol Dis 2017; 106:279-290. [PMID: 28736195 DOI: 10.1016/j.nbd.2017.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/20/2017] [Accepted: 07/19/2017] [Indexed: 11/22/2022] Open
Abstract
Parkinson's Disease (PD) is a complex and heterogeneous neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta and pathological intracellular accumulation of alpha-synuclein (α-syn). In the vast majority of PD patients, the disease has a complex etiology, defined by multiple genetic and environmental risk factors. Common genetic variants in the human leukocyte-antigen (HLA) region have been associated to PD risk and the carriage of these can double the risk to develop PD. Among these common genetic variants are the ones that modulate the expression of MHCII genes. MHCII molecules encoded in the HLA-region are responsible for antigen presentation to the adaptive immune system and have a key role in inflammatory processes. In addition to cis‑variants affecting MHCII expression, a transactivator encoded by the Mhc2ta gene is the major regulator of MHCII expression. We have previously identified variations in the promoter region of Mhc2ta, encoded in the VRA4 region, to regulate MHCII expression in rats. The expression of MHCII is known to be required in the response to α-syn. However, how the expression of MHCII affects the activation of microglial or the impact of physiological, differential Mhc2ta expression on degeneration of dopaminergic neurons has not previously been addressed. Here we addressed the implications of common genetic allelic variants of the major regulator of MHCII expression on α-syn-induced microglia activation and the severity of the dopaminergic neurodegeneration. We used a viral vector technology to overexpress α-syn in two rat strains; Dark agouti (DA) wild type and DA.VRA4-congenic rats. The congenic strain carries PVG alleles in the VRA4 locus and therefore displays lower Mhc2ta expression levels compared to DA rats. We analyzed the impact of this physiological differential Mhc2ta expression on gliosis, inflammation, degeneration of the nigro-striatal dopamine system and behavioral deficits after α-syn overexpression. We report that allelic variants of Mhc2ta differently modified the microglial activation in response to overexpression of human α-syn in rats. Overexpression of α-syn led to a larger denervation of the nigro-striatal system and significant behavioral deficits in DA.VRA4 congenic rats with lower Mhc2ta expression compared to DA rats. These results indicate that Mhc2ta is a key upstream regulator of the inflammatory response in PD pathology.
Collapse
|
9
|
Yau ACY, Piehl F, Olsson T, Holmdahl R. Effects of C2ta genetic polymorphisms on MHC class II expression and autoimmune diseases. Immunology 2016; 150:408-417. [PMID: 27861821 DOI: 10.1111/imm.12692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 11/28/2022] Open
Abstract
Antigen presentation by the MHC-II to CD4+ T cells is important in adaptive immune responses. The class II transactivator (CIITA in human and C2TA in mouse) is the master regulator of MHC-II gene expression. It coordinates the transcription factors necessary for the transcription of MHC-II molecules. In humans, genetic variations in CIITA have been associated with differential expression of MHC-II and susceptibility to autoimmune diseases. Here we made use of a C2ta congenic mouse strain (expressing MHC-II haplotype H-2q ) to investigate the effect of the natural genetic polymorphisms in type I promoter of C2ta on MHC-II expression and function. We demonstrate that an allelic variant in the type I promoter of C2ta resulted in an increased expression of MHC-II on macrophages (72-151% higher mean florescence intensity) and conventional dendritic cells (13-65% higher mean florescence intensity) in both spleen and peripheral blood. The increase in MHC-II expression resulted in an increase in antigen presentation to T cells in vitro and increased T-cell activation. The differential MHC-II expression in B6Q.C2ta, however, did not alter the disease development in models of rheumatoid arthritis (collagen-induced arthritis and human glucose-6-phosphate-isomerase325-339 -peptide-induced arthritis), or multiple sclerosis (MOG1-125 protein-induced and MOG79-96 peptide-induced experimental autoimmune encephalomyelitis). This is the first study to address the role of an allelic variant in type I promoter of C2ta in MHC-II expression and autoimmune diseases; and shows that C2ta polymorphisms regulate MHC-II expression and T-cell responses but do not necessarily have a strong impact on autoimmune diseases.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Bäckdahl L, Ekman D, Jagodic M, Olsson T, Holmdahl R. Identification of candidate risk gene variations by whole-genome sequence analysis of four rat strains commonly used in inflammation research. BMC Genomics 2014; 15:391. [PMID: 24885425 PMCID: PMC4041999 DOI: 10.1186/1471-2164-15-391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background The DA rat strain is particularly susceptible to the induction of a number of chronic inflammatory diseases, such as models for rheumatoid arthritis and multiple sclerosis. Here we sequenced the genomes of two DA sub-strains and two disease resistant strains, E3 and PVG, previously used together with DA strains in genetically segregating crosses. Results The data uncovers genomic variations, such as single nucleotide variations (SNVs) and copy number variations that underlie phenotypic differences between the strains. Comparisons of regional differences between the two DA sub-strains identified 8 genomic regions that discriminate between the strains that together cover 38 Mbp and harbor 302 genes. We analyzed 10 fine-mapped quantitative trait loci and our data implicate strong candidates for genetic variations that mediate their effects. For example we could identify a single SNV candidate in a regulatory region of the gene Il21r, which has been associated to differential expression in both rats and human MS patients. In the APLEC complex we identified two SNVs in a highly conserved region, which could affect the regulation of all APLEC encoded genes and explain the polygenic differential expression seen in the complex. Furthermore, the non-synonymous SNV modifying aa153 of the Ncf1 protein was confirmed as the sole causative factor. Conclusion This complete map of genetic differences between the most commonly used rat strains in inflammation research constitutes an important reference in understanding how genetic variations contribute to the traits of importance for inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-391) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Thessen Hedreul M, Möller S, Stridh P, Gupta Y, Gillett A, Daniel Beyeen A, Öckinger J, Flytzani S, Diez M, Olsson T, Jagodic M. Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity. Hum Mol Genet 2013; 22:4952-66. [PMID: 23900079 PMCID: PMC3836475 DOI: 10.1093/hmg/ddt343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.
Collapse
Affiliation(s)
- Melanie Thessen Hedreul
- Department of Clinical Neuroscience, Neuroimmunology Unit, Center for Molecular Medicine L8:04, Karolinska Institutet, L8:04, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat. Brain Behav Immun 2013; 27:109-22. [PMID: 23044177 DOI: 10.1016/j.bbi.2012.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/21/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence suggests that genetic background affects outcome of traumatic brain injuries (TBI). Still, there is limited detailed knowledge on what pathways/processes are affected by genetic heterogeneity. The inbred rat strains DA and PVG differ in neuronal survival following TBI. We here carried out global expressional profiling to identify differentially regulated pathways governing the response to an experimental controlled brain contusion injury. One of the most differentially regulated molecular networks concerned immune cell trafficking. Subsequent characterization of the involved cells using flow cytometry demonstrated greater infiltration of neutrophils and monocytes, as well as a higher degree of microglia activation in DA compared to PVG rats. In addition, DA rats displayed a higher number of NK cells and a higher ratio of CD161bright compared to CD161dim NK cells. Local expression of complement pathway molecules such as C1 and C3 was higher in DA and both the key complement component C3 and membrane-attack complex (MAC) could be demonstrated on axons and nerve cells. A stronger activation of the complement system in DA was associated with higher cerebrospinal fluid levels of neurofilament-light, a biomarker for nerve/axonal injury. In summary, we demonstrate substantial differences between DA and PVG rats in activation of inflammatory pathways; in particular, immune cell influx and complement activation associated with neuronal/axonal injury after TBI. These findings suggest genetic influences acting on inflammatory activation to be of importance in TBI and motivate further efforts using experimental forward genetics to identify genes/pathways that affect outcome.
Collapse
|
13
|
Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012; 7:6. [PMID: 22315999 PMCID: PMC3299607 DOI: 10.1186/1750-1326-7-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/08/2012] [Indexed: 12/13/2022] Open
Abstract
A mechanical trauma to the spinal cord can be followed by the development of irreversible and progressive neurodegeneration, as opposed to a temporary or partially reversible neurological damage. An increasing body of experimental and clinical evidence from humans and animal models indicates that spinal cord injury may set in motion the development of disabling and at times fatal neuromuscular disorders, whose occurrence is not normally associated with any major environmental event. This outcome appears to be dependent on the co-occurrence of a particular form of mechanical stress and of a genetically-determined vulnerability. This increased vulnerability to spinal cord injury may depend on a change of the nature and of the timing of activation of a number of neuroprotective and neurodestructive molecular signals in the injured cord. Among the main determinants, we could mention an altered homeostasis of lipids and neurofilaments, an earlier inflammatory response and the failure of the damaged tissue to rein in oxidative damage and apoptotic cell death. These changes could force injured tissue beyond a point of no return and precipitate an irreversible neurodegenerative process. A better knowledge of the molecular signals activated in a state of increased vulnerability to trauma can inform future treatment strategies and the prediction of the neurological outcome after spinal cord injury.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | |
Collapse
|
14
|
Al Nimer F, Beyeen AD, Lindblom R, Ström M, Aeinehband S, Lidman O, Piehl F. Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury. Brain Behav Immun 2011; 25:981-90. [PMID: 20974248 DOI: 10.1016/j.bbi.2010.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023] Open
Abstract
Genetic regulation of autoimmune neuroinflammation is a well known phenomenon, but genetic influences on inflammation following traumatic nerve injuries have received little attention. In this study we examined the inflammatory response in a rat traumatic brain injury (TBI) model, with a particular focus on major histocompatibility class II (MHC II) presentation, in two inbred rat strains that have been extensively characterized in experimental autoimmune encephalomyelitis (EAE); DA and PVG. In addition, MHC and Vra4 congenic strains on these backgrounds were studied to give information on MHC and non-MHC gene contribution. Thus, allelic differences in Vra4, harboring the Ciita gene, was found to regulate expression of the invariant chain at the mRNA level, with a much smaller effect exerted by the MHC locus itself. Notably, however, at the protein level the MHC congenic PVG-RT1(av1) strain displayed much stronger MHCII(+) presentation, as shown both by immunolabeling and flow cytometry, than the PVG strain, dwarfing the effect of Ciita. The PVG-RT1(av1) strain had significantly more T-cell influx than both DA and PVG, suggesting regulation both by MHC and non-MHC genes. Finally, in terms of outcome, the EAE susceptible DA strain displayed a significantly smaller resulting lesion volume than the resistant PVG-RT1(av1) strain. These results provide additional support for a role of adaptive immune response after neurotrauma and demonstrate that outcome is significantly affected by host genetic factors.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska University Hospital, S171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bronson PG, Caillier S, Ramsay PP, McCauley JL, Zuvich RL, De Jager PL, Rioux JD, Ivinson AJ, Compston A, Hafler DA, Sawcer SJ, Pericak-Vance MA, Haines JL, The International Multiple Sclerosis Genetics Consortium (IMSGC), Hauser SL, Oksenberg JR, Barcellos LF. CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Hum Mol Genet 2010; 19:2331-40. [PMID: 20211854 PMCID: PMC2865376 DOI: 10.1093/hmg/ddq101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/05/2010] [Accepted: 03/03/2010] [Indexed: 11/13/2022] Open
Abstract
The MHC class II transactivator gene (CIITA) is an important transcription factor regulating gene required for HLA class II MHC-restricted antigen presentation. Association with HLA class II variation, particularly HLA-DRB1*1501, has been well-established for multiple sclerosis (MS). In addition, the -168A/G CIITA promoter variant (rs3087456) has been reported to be associated with MS. Thus, a multi-stage investigation of variation within CIITA, DRB1*1501 and MS was undertaken in 6108 individuals. In stage 1, 24 SNPs within CIITA were genotyped in 1320 cases and 1363 controls (n = 2683). Rs4774 (missense +1614G/C; G500A) was associated with MS (P = 4.9 x 10(-3)), particularly in DRB1*1501 +individuals (P = 1 x 10(-4)). No association was observed for the -168A/G promoter variant. In stage 2, rs4774 was genotyped in 973 extended families; rs4774*C was also associated with increased risk for MS in DRB1*1501+ families (P = 2.3 x 10(-2)). In a third analysis, rs4774 was tested in cases and controls (stage 1) combined with one case per family (stage 2) for increased power. Rs4774*C was associated with MS (P = 1 x 10(-3)), particularly in DRB1*1501+ cases and controls (P = 1 x 10(-4)). Results obtained from logistic regression analysis showed evidence for interaction between rs4774*C and DRB1*1501 associated with risk for MS (ratio of ORs = 1.72, 95% CI 1.28-2.32, P = 3 x 10(-4)). Furthermore, rs4774*C was associated with DRB1*1501+ MS when conditioned on the presence (OR = 1.67, 95% CI = 1.19-2.37, P = 1.9 x 10(-3)) and absence (OR = 1.49, 95% CI = 1.15-1.95, P = 2.3 x 10(-3)) of CLEC16A rs6498169*G, a putative MS risk allele adjacent to CIITA. Our results provide strong evidence supporting a role for CIITA variation in MS risk, which appears to depend on the presence of DRB1*1501.
Collapse
Affiliation(s)
- Paola G. Bronson
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| | | | - Patricia P. Ramsay
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Rebecca L. Zuvich
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA
| | - Philip L. De Jager
- Program in NeuroPsychiatric Genomics, Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D. Rioux
- Laboratory in Genetics and Genomic Medicine of Inflammation, Montréal Heart Institute, Université de Montréal, Montréal, Québec, CanadaH1T 1C8
| | - Adrian J. Ivinson
- Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA 02155, USA
| | - Alastair Compston
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK and
| | - David A. Hafler
- Program in Medical and Population Genetics, Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurology, School of Medicine, Yale University, New Haven, CT 06520-8018, USA
| | - Stephen J. Sawcer
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK and
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA
| | | | - Stephen L. Hauser
- Department of Neurology and
- Institute for Human Genetics, School of Medicine, University of California, San Francisco, CA 94143-0435, USA
| | - Jorge R. Oksenberg
- Department of Neurology and
- Institute for Human Genetics, School of Medicine, University of California, San Francisco, CA 94143-0435, USA
| | - Lisa F. Barcellos
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| |
Collapse
|
16
|
Diez M, Abdelmagid N, Harnesk K, Ström M, Lidman O, Swanberg M, Lindblom R, Al-Nimer F, Jagodic M, Olsson T, Piehl F. Identification of gene regions regulating inflammatory microglial response in the rat CNS after nerve injury. J Neuroimmunol 2009; 212:82-92. [PMID: 19525015 DOI: 10.1016/j.jneuroim.2009.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 01/21/2023]
Abstract
Local CNS inflammation takes place in many neurological disorders and is important for autoimmune neuroinflammation. Microglial activation is strain-dependent in rats and differential MHC class II expression is influenced by variations in the Mhc2ta gene. Despite sharing Mhc2ta and MHC class II alleles, BN and LEW.1N rats differ in MHC class II expression after ventral root avulsion (VRA). We studied MHC class II expression and glial activation markers in BN rats after VRA. Our results demonstrate that MHC class II expression originates from a subpopulation of IBA1(+), ED1(-), and ED2(-) microglia. We subsequently performed a genome-wide linkage scan in an F2(BNxLEW.1N) population, to investigate gene regions regulating this inflammatory response. Alongside MHC class II, we studied the expression of MHC class I, co-stimulatory molecules, complement components, microglial markers and Il1b. MHC class II and other transcripts were commonly regulated by gene regions on chromosomes 1 and 7. Furthermore, a common region on chromosome 10 regulated expression of complement and co-stimulatory molecules, while a region on chromosome 11 regulated MHC class I. We also detected epistatic interactions in the regulation of the inflammatory process. These results reveal the complex regulation of CNS inflammation by several gene regions, which may have relevance for disease.
Collapse
Affiliation(s)
- Margarita Diez
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, S171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Harnesk K, Swanberg M, Diez M, Olsson T, Piehl F, Lidman O. Differential nerve injury-induced expression of MHC class II in the mouse correlates to genetic variability in the type I promoter of C2ta. J Neuroimmunol 2009; 212:44-52. [PMID: 19481818 DOI: 10.1016/j.jneuroim.2009.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Major histocompatibility complex (MHC) class II is of critical importance for the induction of immune responses. Levels of MHC class II in the nervous system are normally low, but expression is up-regulated in many disease conditions. In rat and human, variation in the MHC class II transactivator gene (C2ta) is associated with differential expression of MHC class II and susceptibility to autoimmune disease. Here we have characterized the response to facial nerve transection in 7 inbred mouse strains (C57BL/6J, DBA/2J, 129X1/SvJ, BALB/cJ, SJL/J, CBA/J, and NOD). The results demonstrate differences in expression of C2ta and markers for MHC class I and II expression, glial activation, and T cell infiltration. Expression levels of C2ta and Cd74 followed similar patterns, in contrast to MHC class I and markers of glial activation. The regulatory region of the C2ta gene was subsequently sequenced in the four strains (C57BL/6/J, DBA/2J, SJL/J and 129X1/SvJ) that represented the phenotypical extremes with regard to C2ta/Cd74 expression. We found 3 single nucleotide polymorphisms in the type I (pI) and type III (pIII) promoters of C2ta, respectively. Higher expression of pI in 129X1/SvJ correlated with the pI haplotype specific for this strain. Furthermore, congenic strains carrying the 129X1/SvJ C2ta allele on B6 background displayed significantly higher C2ta and Cd74 expression compared to parental controls. We conclude that genetic polymorphisms in the type I promoter of C2ta regulates differential expression of MHC class II, but not MHC class I, Cd3 and other markers of glial activation.
Collapse
Affiliation(s)
- Karin Harnesk
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
Thessen Hedreul M, Gillett A, Olsson T, Jagodic M, Harris RA. Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 210:30-9. [PMID: 19269041 DOI: 10.1016/j.jneuroim.2009.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 01/05/2023]
Abstract
The immunological mechanisms underlying autoimmunity are being elucidated through genetic and functional analyses in both humans and rodent models. However, acceptance of models as valid equivalents of human disease is variable, and the validation of defined human candidate molecules in experimental models is hitherto limited. We thus aimed to determine the kinetic expression of several Multiple Sclerosis (MS) candidate genes in the myelin oligodendrocyte glycoprotein (MOG)-induced rat experimental autoimmune encephalomyelitis (EAE) model using susceptible DA and resistant PVG inbred strains. Increased expression of MS candidate genes IL2RA and IL7RA associated with disease susceptibility. Higher expression of these candidate genes and IL18R1 in susceptible rats may lead to enhancement of the disease-driving T(H)1 and T(H)17 pathways. Susceptible DA rats had augmented marker molecules of these pathways and upon restimulation with autoantigen produced increased effector molecules including IFN-gamma, IL-17F and IL-22. The altered T helper cell differentiation pathways led to differences in a MOG-specific proliferative and autoantibody response, which ultimately results in infiltration in the central nervous system and EAE induction. Our results validate the MOG-induced EAE model as having similar mechanisms to human MS and determined the kinetics of several disease mechanisms in relevant tissues.
Collapse
Affiliation(s)
- Melanie Thessen Hedreul
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Piehl F, Olsson T. Inflammation and susceptibility to neurodegeneration: The use of unbiased genetics to decipher critical regulatory pathways. Neuroscience 2009; 158:1143-50. [DOI: 10.1016/j.neuroscience.2008.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
|