1
|
Xie D, Han Z, Wang Y, Shi H, Wu X, Wu J, Dai Y. Integrative analysis of bulk and single-cell RNA sequencing reveals sphingolipid metabolism and immune landscape in clear cell renal cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:5391-5404. [PMID: 39230203 DOI: 10.1002/tox.24319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive behavior and complex molecular heterogeneity, posing significant challenges for treatment and prognostication. This study offers a comprehensive analysis of ccRCC by leveraging both bulk and single-cell RNA sequencing data, with a specific aim to unravel the complexities of sphingolipid metabolism and the intricate dynamics within the tumor microenvironment (TME). By examining ccRCC samples sourced from public databases, our investigation delves deep into the genetic and transcriptomic landscape of this cancer type. Employing advanced analytical techniques, we have identified pivotal patterns in gene expression and cellular heterogeneity, with a special focus on the roles and interactions of various immune cells within the TME. Significantly, our research has unearthed insights into the dynamics of sphingolipid metabolism in ccRCC, shedding light on its potential implications for tumor progression and strategies for immune evasion. A novel aspect of this study is the development of a risk score model designed to enhance prognostic predictions for ccRCC patients, which is currently pending external validation to ascertain its clinical utility. Despite its contributions, the study is mindful of its limitations, including a reliance on observational data from public sources and a primary focus on RNA sequencing data, which may constrain the depth and generalizability of the findings. The study does not encompass critical aspects, such as protein expression, posttranslational modifications, and comprehensive metabolic profiles. Moreover, its retrospective design underscores the necessity for future prospective studies to solidify these preliminary conclusions. Our findings illuminate the intricate interplay between genetic alterations, sphingolipid metabolism, and immune responses in ccRCC. This research not only enhances our understanding of the molecular foundations of ccRCC but also paves the way for the development of targeted therapies and personalized treatment modalities. The study underlines the importance of cautious interpretation of results and champions ongoing research using diverse methodologies to thoroughly comprehend and effectively combat this formidable cancer type.
Collapse
Affiliation(s)
- Dongdong Xie
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhitao Han
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yu Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Haoyu Shi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiang Wu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jiaqing Wu
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
2
|
Combination of Tipifarnib and Sunitinib Overcomes Renal Cell Carcinoma Resistance to Tyrosine Kinase Inhibitors via Tumor-Derived Exosome and T Cell Modulation. Cancers (Basel) 2022; 14:cancers14040903. [PMID: 35205655 PMCID: PMC8870174 DOI: 10.3390/cancers14040903] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Metastatic renal cell carcinoma continues to have a poor prognosis. Chemotherapies and immuno-oncologic therapies have garnered increasing importance in cancer therapy, with improvements in patient care and survival. However, a large proportion of patients present with tumors resistant to these treatments. Exosomes are small extracellular vesicles secreted by all nucleated cells that have proven to be key actors in this resistance. Exosomes carry bioactive oncogenic cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, and chemotherapy resistance. Tipifarnib, in combination with standard therapy, decreased tumor growth in the setting of chemotherapeutic resistance through an exosome-mediated mechanism. After using a qNANO IZON system to compare tumor-derived exosomes collected from untreated and tipifarnib-treated cells, all cancerous cell lines displayed a reduction of vesicle concentration. Tipifarnib also directly inhibited PD-L1 protein expression in chemo-sensitive cell lines and resistant cell lines. Abstract Background: Tyrosine kinase inhibitors (TKI) were initially demonstrated as an efficacious treatment for renal cell carcinoma (RCC). However, after a median treatment length of 14 months, a vast majority of patients develop resistance. This study analyzed a combination therapy of tipifarnib (Tipi) + sunitinib that targeted exosome-conferred drug resistance. Methods: 786-O, 786-O-SR (sunitinib resistant), A498, A498-SR, Caki-2, Caki-2-SR, and 293T cells were cultured. Exosomes were collected using differential ultracentrifugation. Cell proliferation, Jurkat T cell immune assay, and immunoblot analysis were used for downstream analysis. Results: SR exosomes treatment displayed a cytotoxic effect on immune cells. This cytotoxic effect was associated with increased expression of PD-L1 on SR exosomes when compared to sunitinib-sensitive (SS) exosomes. Additionally, Tipi treatment downregulated PD-L1 expression on exosomes derived from SR cell lines. Tipi’s ability to downregulate PD-L1 in exosomes has a significant application within patients. Exosomes collected from patients with RCC showed increased PD-L1 expression over subjects without RCC. Next, exosome concentrations were then compared after Tipi treatment, with all SS cell lines displaying an even greater reduction. On immunoblot assay, 293T cells showed a dose-dependent increase in Alix with no change in either nSMase or Rab27a. Conversely, all the SS and SR cell lines displayed a decrease in all three markers. After a cell proliferation employed a 48-h treatment on all SS and SR cell lines, the drug combination displayed synergistic ability to decrease tumor growth. Conclusions: Tipifarnib attenuates both the exosome endosomal sorting complex required for endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways, thereby blocking exosome biogenesis and secretion as well as downregulating PD-L1 on SS and SR cells.
Collapse
|
3
|
Wang X, Lopez R, Luchtel RA, Hafizi S, Gartrell B, Shenoy N. Immune evasion in renal cell carcinoma: biology, clinical translation, future directions. Kidney Int 2020; 99:75-85. [PMID: 32949550 DOI: 10.1016/j.kint.2020.08.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Targeted therapies and immune checkpoint inhibitors have advanced the treatment landscape of Renal Cell Carcinoma (RCC) over the last decade. While checkpoint inhibitors have demonstrated survival benefit and are currently approved in the front-line and second-line settings, primary and secondary resistance is common. A comprehensive understanding of the mechanisms of immune evasion in RCC is therefore critical to the development of effective combination treatment strategies. This article reviews the current understanding of the different, yet coordinated, mechanisms adopted by RCC cells to evade immune killing; summarizes various aspects of clinical translation thus far, including the currently registered RCC clinical trials exploring agents in combination with checkpoint inhibitors; and provides perspectives on the current landscape and future directions for the field.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, New York, New York, USA
| | - Robert Lopez
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Rebecca A Luchtel
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Sassan Hafizi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Benjamin Gartrell
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Niraj Shenoy
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Experimental Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Wang Y, Lu J, Jiang B, Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol Lett 2020; 19:3059-3070. [PMID: 32256807 PMCID: PMC7074405 DOI: 10.3892/ol.2020.11437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a harmful threat to human health. In addition to surgery, a variety of anticancer drugs are increasingly used in cancer therapy; however, despite the developments in multimodality treatment, the morbidity and mortality of patients with cancer patients are on the increase. The tumor-specific immunosuppressive microenvironment serves an important function in tumor tolerance and escape from immune surveillance leading to tumor progression. Therefore, identifying new drugs or foods that can enhance the tumor immune response is critical to develop improved cancer prevention methods and treatment. Curcumin, a polyphenolic compound extracted from ginger, has been shown to effectively inhibit tumor growth, proliferation, invasion, metastasis and angiogenesis in a variety of tumors. Recent studies have also indicated that curcumin can modulate the tumor immune response and remodel the tumor immunosuppressive microenvironment, indicating its potential in the immunotherapy of cancer. In this review, a brief introduction to the effects of curcumin on the tumor immune response and tumor immune microenvironment is provided and recent clinical trials investigating the potential of curcumin in cancer therapy are discussed.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
5
|
Schoenhacker-Alte B, Mohr T, Pirker C, Kryeziu K, Kuhn PS, Buck A, Hofmann T, Gerner C, Hermann G, Koellensperger G, Keppler BK, Berger W, Heffeter P. Sensitivity towards the GRP78 inhibitor KP1339/IT-139 is characterized by apoptosis induction via caspase 8 upon disruption of ER homeostasis. Cancer Lett 2017; 404:79-88. [PMID: 28716523 DOI: 10.1016/j.canlet.2017.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
The ruthenium drug and GRP78 inhibitor KP1339/IT-139 has already demonstrated promising anticancer activity in a phase I clinical trial. This study aimed to identify mechanisms underlying increased sensitivity to KP1339 treatment. Based on a screen utilizing 23 cell lines, a small panel was selected to compare KP1339-sensitive and low-responsive models. KP1339 sensitivity was neither based on differences in ruthenium accumulation, nor sensitivity to oxidative stress or constituents of KP1339 (ruthenium chloride and indazole). Subsequently, the biochemical response to KP1339 was analyzed using whole genome expression arrays indicating that, while sensitive cell lines were characterized by "response to chemical stimuli" and "regulation of cell death", low-responsive cells preferentially activated pathways controlling cell cycle, DNA repair, and metabolism. Cell culture experiments confirmed that, while low-responsive cells executed cell cycle arrest in G2 phase, pronounced apoptosis induction via activation of caspase 8 was found in sensitive cells. Cell death induction is based on a unique disruption of the ER homeostasis by depletion of key cellular chaperones including GRP78 in combination with enhanced KP1339-mediated protein damage.
Collapse
Affiliation(s)
- Beatrix Schoenhacker-Alte
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria; Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Kushtrim Kryeziu
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Paul-Steffen Kuhn
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Alicia Buck
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090, Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria; Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|
6
|
Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer 2016; 15:83. [PMID: 27993170 PMCID: PMC5168717 DOI: 10.1186/s12943-016-0565-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
Cell lines are still a tool of choice for many fields of biomedical research, including oncology. Although cancer is a very complex disease, many discoveries have been made using monocultures of established cell lines. Therefore, the proper use of in vitro models is crucial to enhance our understanding of cancer. Therapeutics against renal cell cancer (RCC) are also screened with the use of cell lines. Multiple RCC in vitro cultures are available, allowing in vivo heterogeneity in the laboratory, but at the same time, these can be a source of errors. In this review, we tried to sum up the data on the RCC cell lines used currently. An increasing amount of data on RCC shed new light on the molecular background of the disease; however, it revealed how much still needs to be done. As new types of RCC are being distinguished, novel cell lines and the re-exploration of old ones seems to be indispensable to create effective in vitro tools for drug screening and more.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Michal Fiedorowicz
- Department of Experimental Pharmacology, Polish Academy of Science Medical Research Centre, Warsaw, Poland
| | - Camillo Porta
- Department of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| |
Collapse
|
7
|
Bose S, Panda AK, Mukherjee S, Sa G. Curcumin and tumor immune-editing: resurrecting the immune system. Cell Div 2015; 10:6. [PMID: 26464579 PMCID: PMC4603973 DOI: 10.1186/s13008-015-0012-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4+/CD8+ T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy.
Collapse
Affiliation(s)
- Sayantan Bose
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054 India
| | - Abir Kumar Panda
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054 India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054 India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054 India
| |
Collapse
|
8
|
Mahata B, Biswas S, Rayman P, Chahlavi A, Ko J, Bhattacharjee A, Li YT, Li Y, Das T, Sa G, Raychaudhuri B, Vogelbaum MA, Tannenbaum C, Finke JH, Biswas K. GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway. PLoS One 2015. [PMID: 26226135 PMCID: PMC4520498 DOI: 10.1371/journal.pone.0134425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously we demonstrated that human glioblastoma cell lines induce apoptosis in peripheral blood T cells through partial involvement of secreted gangliosides. Here we show that GBM-derived gangliosides induce apoptosis through involvement of the TNF receptor and activation of the caspase cascade. Culturing T lymphocytes with GBM cell line derived gangliosides (10-20μg/ml) demonstrated increased ROS production as early as 18 hrs as indicated by increased uptake of the dye H2DCFDA while western blotting demonstrated mitochondrial damage as evident by cleavage of Bid to t-Bid and by the release of cytochrome-c into the cytosol. Within 48-72 hrs apoptosis was evident by nuclear blebbing, trypan blue positivity and annexinV/7AAD staining. GBM-ganglioside induced activation of the effector caspase-3 along with both initiator caspases (-9 and -8) in T cells while both the caspase-8 and -9 inhibitors were equally effective in blocking apoptosis (60% protection) confirming the role of caspases in the apoptotic process. Ganglioside-induced T cell apoptosis did not involve production of TNF-α since anti-human TNFα antibody was unable to protect T cells from nuclear blebbing and subsequent cell death. However, confocal microscopy demonstrated co-localization of GM2 ganglioside with the TNF receptor and co-immunoprecipitation experiments showed recruitment of death domains FADD and TRADD with the TNF receptor post ganglioside treatment, suggesting direct interaction of gangliosides with the TNF receptor. Further confirmation of the interaction between GM2 and TNFR1 was obtained from confocal microscopy data with wild type and TNFR1 KO (TALEN mediated) Jurkat cells, which clearly demonstrated co-localization of GM2 and TNFR1 in the wild type cells but not in the TNFR1 KO clones. Thus, GBM-ganglioside can mediate T cell apoptosis by interacting with the TNF receptor followed by activation of both the extrinsic and the intrinsic pathway of caspases.
Collapse
Affiliation(s)
- Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Soumika Biswas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Patricia Rayman
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Ali Chahlavi
- Spine and Brain Institute, St. Vincent Medical Center, Jacksonville, Florida, United States of America
| | - Jennifer Ko
- Pathology Institute, Cleveland Clinic, Cleveland, United States of America
| | | | - Yu-Teh Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States of America
| | - Yuntao Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Baisakhi Raychaudhuri
- Brain Tumor and Neuro-oncology Center in the Neurological Institute, Cleveland Clinic, Cleveland, United States of America
| | - Michael A. Vogelbaum
- Brain Tumor and Neuro-oncology Center in the Neurological Institute, Cleveland Clinic, Cleveland, United States of America
| | - Charles Tannenbaum
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - James H. Finke
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
9
|
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700. [PMID: 26140242 DOI: 10.1080/2162402x.2015.1016700] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies.
Collapse
Key Words
- 1MT, 1-methyltryptophan
- COX2, cyclooxygenase-2
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GPI, glycosylphosphatidylinositol
- Gal1, galectin-1
- HDACi, histone deacetylase inhibitor
- HLA, human leukocyte antigen
- IDO, indoleamine-2,3- dioxygenase
- IL-10, interleukin-10
- IMC, immature myeloid cell
- MDSC, myeloid-derived suppressor cells
- MHC, major histocompatibility
- MICA, MHC class I related molecule A
- MICB, MHC class I related molecule B
- NO, nitric oxide
- PARP, poly ADP-ribose polymerase
- PD-1, program death receptor-1
- PD-L1, programmed death ligand 1
- PGE2, prostaglandin E2
- RCAS1, receptor-binding cancer antigen expressed on Siso cells 1
- RCC, renal cell carcinoma
- SOCS, suppressor of cytokine signaling
- STAT3, signal transducer and activator of transcription 3
- SVV, survivin
- T cells
- TCR, T-cell receptor
- TGF-β, transforming growth factor β
- TRAIL, TNF-related apoptosis-inducing ligand
- VCAM-1, vascular cell adhesion molecule-1
- XIAP, X-linked inhibitor of apoptosis protein
- iNOS, inducible nitric-oxide synthase
- immunosuppression
- immunosuppressive factors
- immunotherapy
- tumor microenvironment
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| | - Virginia Drake
- School of Medicine; University of Maryland ; Baltimore, MD USA
| | | | - ShihChi Chiu
- College of Medicine; National Taiwan University ; Taipei, Taiwan
| | - Lei Zheng
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| |
Collapse
|
10
|
El-Sisi AE, Sokar SS, Salem TA, Abu Risha SE. PPARγ-dependent anti-tumor and immunomodulatory actions of pioglitazone. J Immunotoxicol 2014; 12:308-16. [PMID: 25425470 DOI: 10.3109/1547691x.2014.978055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to play important roles in carcinogenesis. The current study was carried out to assess the possible anti-tumor effects of pioglitazone (PIO), a PPARγ agonist, in a mouse mammary carcinoma model, i.e. a solid Ehrlich carcinoma (SEC). Effects of PIO on tumor-induced immune dysfunction, and the possibility that PIO may modulate the anti-tumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several doses of PIO (100 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, IP), was investigated in vivo; end-points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor (TNF)-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that PIO induced significant anti-tumor activity against the SEC. PIO treatments also significantly mitigated both tumor- and doxorubicin-induced declines in immune parameters assessed here. Moreover, PIO led to decreased NF-κB nuclear expression, and, in doing so, appeared to chemo-sensitize these tumor cells to DOX-induced apoptosis. All pioglitazone-studied effects were antagonized by GW9662, a selective PPARγ antagonist.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University , Tanta , Egypt and
| | | | | | | |
Collapse
|
11
|
Drogari‐Apiranthitou M, Panayiotides IG, Mastoris I, Theodoropoulos K, Gouloumi A, Hagen F, Tofas P, Chrisofos M, Tsiodras S, Petrikkos G. Primary cutaneous cryptococcosis and a surprise finding in a chronically immunosuppressed patient. JMM Case Rep 2014. [DOI: 10.1099/jmmcr.0.003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria Drogari‐Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Ioannis Mastoris
- 2nd Department of Pathology, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Theodoropoulos
- 2nd Department of Dermatology, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Alina‐Roxani Gouloumi
- 2nd Department of Pathology, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Ferry Hagen
- Department of Medical Microbiology, Canisius‐Wilhelmina Ziekenhuis (CWZ) Hospital, Nijmegen, The Netherlands
| | - Polydoros Tofas
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Michael Chrisofos
- 2nd Department of Urology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Sotirios Tsiodras
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Georgios Petrikkos
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, University General Hospital “ATTIKON”, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
12
|
Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H, Sayers TJ, Murphy WJ, Wiltrout RH. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/αCD40 therapy. THE JOURNAL OF IMMUNOLOGY 2014; 192:5821-9. [PMID: 24808361 DOI: 10.4049/jimmunol.1400404] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8(+) T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Jeff J Subleski
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Tim Back
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Xin Chen
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | | | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - Thomas J Sayers
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816
| | - Robert H Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
13
|
Sinha K, Pal PB, Sil PC. Cadmium (Cd(2+)) exposure differentially elicits both cell proliferation and cell death related responses in SK-RC-45. Toxicol In Vitro 2014; 28:307-318. [PMID: 24291162 DOI: 10.1016/j.tiv.2013.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/19/2013] [Accepted: 11/15/2013] [Indexed: 01/08/2023]
Abstract
Cadmium (Cd(2+)) is a major nephrotoxic environmental pollutant, affecting mostly proximal convoluted tubule (PCT) cells of the mammalian kidney, while conditionally Cd(2+) could also elicit protective responses with great variety and variability in different systems. The present study was designed to evaluate the molecular mechanism of Cd(2+) toxicity on human PCT derived Renal Cell Carcinoma (RCC), SK-RC-45 and compare its responses with normal human PCT derived cell line, NKE. Exposure of SK-RC-45 cells with different concentrations of CdCl2 (e.g. 0, 10 and 20μM) in serum free medium for 24h generate considerable amount of ROS, accompanied with decreased cell viability and alternations in the cellular and nuclear morphologies, heat shock responses and GCLC mediated protective responses. Also phosphatidylserine externalization, augmentation in the level of caspase-3, PARP, BAD, Apaf1 and cleaved caspase-9 along with decreased expression of Bcl2 and release of cytochrome c confirmed that, Cd(2+) dose dependently induces solely intrinsic pathway of apoptosis in SK-RC-45, independent of JNK. Furthermore, the non-toxic concentration (10μM) of Cd(2+) induced nuclear translocation of Nrf2 and increased expression in the level of HO-1 enzyme suggesting that at the milder concentration, Cd(2+) induces protective signaling pathways. On the other hand, exposure of NKE to different concentrations of CdCl2 (e.g. 0, 10, 20, 30 and 50μM) under the same conditions elevate stronger heat shock and SOD2 mediated protective responses. In contrary to the RCC PCT, the normal PCT derived cell follows JNK dependent and extrinsic pathways of apoptosis. Cumulatively, these results suggest that Cd(2+) exposure dose dependently elicit both cell proliferative and cell death related responses in SK-RC-45 cells and is differentially regulated with respect to normal kidney epithelia derived NKE cells.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Pabitra Bikash Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
14
|
Mohanty S, Saha S, Md S Hossain D, Adhikary A, Mukherjee S, Manna A, Chakraborty S, Mazumdar M, Ray P, Das K, Chakraborty J, Sa G, Das T. ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 2014; 5:e1021. [PMID: 24457965 PMCID: PMC4040699 DOI: 10.1038/cddis.2013.534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 11/09/2022]
Abstract
With the existing knowledge of ATM's role in therapeutic resistance, the present study aimed at identifying the molecular mechanisms that influence ATM to oscillate between chemoresistance and chemosensitivity. We observed that the redox status of tumors functions as a major determinant of ATM-dependent ‘resistance-to-apoptosis' molecular switch. At a low reactive oxygen species (ROS) condition during genotoxic insult, the ATM/sumoylated-IKKγ interaction induced NFκB activation that resisted JNK-mediated apoptosis, whereas increasing cellular ROS restored ATM/JNK apoptotic signaling. A search for the upstream missing link revealed that high ROS induces oxidation and ubiquitin-mediated degradation of PIASγ, thereby disrupting PIASγ-IKKγ cross talk, a pre-requisite for IKKγ sumoylation and subsequent NFκB activation. Interruption in the PIASγ-mediated resistance pathway channels ATM signaling toward ATM/JNK pro-death circuitry. These in vitro results also translated to sensitive and resistant tumor allograft mouse models in which low ROS-induced resistance was over-ruled in PIASγ knockout tumors, while its overexpression inhibited high ROS-dependent apoptotic cues. Cumulatively, our findings identified an unappreciated yet critical combinatorial function of cellular ROS and PIASγ in regulating ATM-mediated chemosensitization of resistant tumors. Thus, therapeutic strategies employing ROS upregulation to inhibit PIASγ during genotoxic therapy may, in future, help to eliminate the problems of NFκB-mediated tumor drug resistance.
Collapse
Affiliation(s)
- S Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - D Md S Hossain
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - A Adhikary
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - A Manna
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - M Mazumdar
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - P Ray
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - K Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - J Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - G Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - T Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| |
Collapse
|
15
|
Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, Chakraborty S, Khan P, Sen A, Das T. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett 2014; 588:549-59. [PMID: 24444609 DOI: 10.1016/j.febslet.2013.11.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/12/2013] [Accepted: 11/24/2013] [Indexed: 12/29/2022]
Abstract
Tumor-suppressive miR-34a, a direct target of p53, has been shown to target several molecules of cell survival pathways. Here, we show that capsaicin-induced oxidative DNA damage culminates in p53 activation to up-regulate expression of miR-34a in non-small cell lung carcinoma (NSCLC) cells. Functional analyses further indicate that restoration of miR-34a inhibits B cell lymphoma-2 (Bcl-2) protein expression to withdraw the survival advantage of these resistant NSCLC cells. In such a proapoptotic cellular milieu, where drug resistance proteins are also down-regulated, p53-transactivated Bcl-2 associated X protein (Bax) induces apoptosis via the mitochondrial death cascade. Our results suggest that p53/miR-34a regulatory axis might be critical in sensitizing drug-resistant NSCLC cells.
Collapse
Affiliation(s)
- Samik Chakraborty
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Minakshi Mazumdar
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Pushpak Bhattacharjee
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Arghya Adhikary
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Argha Manna
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Sreeparna Chakraborty
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Aparna Sen
- Lady Brabourne College, P-1/2, Suhrawardy Ave, Kolkata, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
16
|
Saha S, Hossain DMS, Mukherjee S, Mohanty S, Mazumdar M, Mukherjee S, Ghosh UK, Nayek C, Raveendar C, Khurana A, Chakrabarty R, Sa G, Das T. Calcarea carbonica induces apoptosis in cancer cells in p53-dependent manner via an immuno-modulatory circuit. Altern Ther Health Med 2013; 13:230. [PMID: 24053127 PMCID: PMC3856502 DOI: 10.1186/1472-6882-13-230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. However, the molecular mechanisms underneath the anti-cancer effect, if any, of these medicines have still remained unexplored. To this end we attempted to evaluate the efficacy of calcarea carbonica, a homeopathic medicine, as an anti-cancer agent and to delineate the detail molecular mechanism(s) underlying calcerea carbonica-induced tumor regression. METHODS To investigate and delineate the underlying mechanisms of calcarea carbonica-induced tumor regression, Trypan blue dye-exclusion test, flow cytometric, Western blot and reverse transcriptase-PCR techniques were employed. Further, siRNA transfections and inhibitor studies were used to validate the involvement of p53 pathway in calcarea carbonica-induced apoptosis in cancer cells. RESULTS Interestingly, although calcarea carbonica administration to Ehrlich's ascites carcinoma (EAC)- and Sarcoma-180 (S-180)-bearing Swiss albino mice resulted in 30-35% tumor cell apoptosis, it failed to induce any significant cell death in ex vivo conditions. These results prompted us to examine whether calcarea carbonica employs the immuno-modulatory circuit in asserting its anti-tumor effects. Calcarea carbonica prevented tumor-induced loss of effector T cell repertoire, reversed type-2 cytokine bias and attenuated tumor-induced inhibition of T cell proliferation in tumor-bearing host. To confirm the role of immune system in calcarea carbonica-induced cancer cell death, a battery of cancer cells were co-cultured with calcarea carbonica-primed T cells. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells by calcarea carbonica i.e., (1) activation of the immune system of the host; and (2) induction of cancer cell apoptosis via immuno-modulatory circuit in p53-dependent manner by down-regulating Bcl-2:Bax ratio. Bax up-regulation resulted in mitochondrial transmembrane potential loss and cytochrome c release followed by activation of caspase cascade. Knocking out of p53 by RNA-interference inhibited calcarea carbonica-induced apoptosis thereby confirming the contribution of p53. CONCLUSION These observations delineate the significance of immuno-modulatory circuit during calcarea carbonica-mediated tumor apoptosis. The molecular mechanism identified may serve as a platform for involving calcarea carbonica into immunotherapeutic strategies for effective tumor regression.
Collapse
|
17
|
Xing Y, Zhang W, Song J, Zhang Y, Jiang X, Wang R. Anticancer effects of a novel class rosin-derivatives with different mechanisms. Bioorg Med Chem Lett 2013; 23:3868-72. [DOI: 10.1016/j.bmcl.2013.04.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/24/2013] [Accepted: 04/26/2013] [Indexed: 01/11/2023]
|
18
|
Tsukamoto H, Nishikata R, Senju S, Nishimura Y. Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol Res 2013; 1:64-76. [PMID: 24777249 DOI: 10.1158/2326-6066.cir-13-0030] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Collaborative action between tumor cells and host-derived suppressor cells leads to peripheral tolerance of T cells to tumor antigens. Here, we showed that in tumor-bearing mice, generation of tumor antigen-specific effector T-helper cells (TH1) was significantly attenuated, and impaired TH1 differentiation was restored by the temporal blockade of interleukin (IL)-6 activity at the T-cell priming phase. Furthermore, we found that Gr-1(+) myeloid-derived suppressor cells (MDSC) served as a source of IL-6 in tumor-bearing mice. Adoptive transfer of effector CD4(+) T cells revealed that MDSC-sensitized effector CD4(+) T cells were less potent in mounting antitumor immune responses, although effector T cells generated together with Gr-1(+) cells from tumor-free mice eradicated established tumors. CD8(+) T cells, IFN-γ, and MHC-class II expression in host mice were indispensable for the antitumor activity initiated by effector CD4(+) T cells. Despite comparable suppressive activity of IL-6(+/+) and IL-6(-/-) MDSC on primary T-cell activation, transfer of IL-6(+/+) MDSC, but not IL-6(-/-) MDSC, dampened the efficient induction of effector TH1 cells and counteracted CD4(+) T cell-mediated antitumor immunity including cognate help for CD8(+) T cells in vivo. These findings suggest that, apart from the inhibitory effects on primary T-cell activation, MDSC promote tumor progression by attenuating functional differentiation of tumor-specific CD4(+) T cells into effector TH1 cells through IL-6 production to promote tumor progression. This novel mode of MDSC-induced tolerance of effector CD4(+) T cells should be considered as the basis for the rational design of effective T cell-mediated antitumor therapies.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Authors' Affiliation: Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
19
|
Role of cysteinyl leukotriene receptor-1 antagonists in treatment of experimentally induced mammary tumor. Toxicol Ind Health 2013; 31:1024-36. [DOI: 10.1177/0748233713485884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that a leukotriene (LT)-D4 receptor (i.e. cysteinyl LT1 receptor; CysLT1R) has an important role in carcinogenesis. The current study was carried out to assess the possible antitumor effects of montelukast (MON), a CysLT1R antagonist, in a mouse mammary carcinoma model, that is, a solid Ehrlich carcinoma (SEC). Effects of MON on tumor-induced immune dysfunction and the possibility that MON may modulate the antitumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several dosings with MON (10 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, intraperitoneal), were investigated in vivo; end points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that MON induced significant antitumor activity against the SEC. MON treatments also significantly mitigated both tumor- and DOX-induced declines in immune parameters assessed here. Moreover, MON led to decreased NF-κB nuclear expression and, in doing so, appeared to chemosensitize these tumor cells to DOX-induced apoptosis.
Collapse
|
20
|
Tumor-induced CD8+ T-cell dysfunction in lung cancer patients. Clin Dev Immunol 2012; 2012:741741. [PMID: 23118782 PMCID: PMC3483679 DOI: 10.1155/2012/741741] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 12/21/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.
Collapse
|
21
|
Ghosh S, Adhikary A, Chakraborty S, Nandi P, Mohanty S, Chakraborty S, Bhattacharjee P, Mukherjee S, Putatunda S, Chakraborty S, Chakraborty A, Sa G, Das T, Sen PC. Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in a tumor microenvironment by maneuvering sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 2012; 287:32881-96. [PMID: 22851172 DOI: 10.1074/jbc.m112.357889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple mechanisms have been proposed by which tumors induce T cell apoptosis to circumvent tumor immune-surveillance. Although sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) have long been known to regulate intracellular Ca(2+) homeostasis, few studies have examined the role of SERCA in processes of T lymphocyte survival and activation. In this context it remains largely unexplored as to how tumors jeopardize SERCA function to disable T cell-mediated anti-tumor immunity. Here, we show that human CD4(+) T cells in the presence of tumor conditions manifested an up-regulation of SERCA3 expression that resulted in development of endoplasmic reticulum stress leading to CD4(+) T cell apoptosis. Prostaglandin E(2) produced by the tumor cell plays a critical role in up-regulating SERCA3 by enhancing the binding of its transcription factor Sp1. Gene manipulation and pharmacological approaches further established that an increase in SERCA expression also resulted in subsequent inhibition of PKCα and -θ and retention of NFκB in the cytosol; however, down-modulation of SERCA3 expression by a dihydropyrimidone derivative, ethyl-4-(3-nitro)-phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (nifetepimine), protected the CD4(+) T cells from tumor-induced apoptosis. In fact, nifetepimine-mediated restoration of PKC activity resulted in nuclear translocation of p65NFκB, thereby ensuring its survival. Studies further undertaken in a tumor-bearing mice model revalidated the immunoprotective role of nifetepimine. Our present study thus strongly suggests that imbalance in cellular calcium homeostasis is an important factor leading to CD4(+) T cell death during cancer and holds promise that nifetepimine may have the potential to be used as an immunorestoring agent in cancer bearers.
Collapse
Affiliation(s)
- Swatilekha Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM Kolkata 700054, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prado-Garcia H, Romero-Garcia S, Morales-Fuentes J, Aguilar-Cazares D, Lopez-Gonzalez JS. Activation-induced cell death of memory CD8+ T cells from pleural effusion of lung cancer patients is mediated by the type II Fas-induced apoptotic pathway. Cancer Immunol Immunother 2012; 61:1065-80. [PMID: 22159518 PMCID: PMC11028981 DOI: 10.1007/s00262-011-1165-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/15/2011] [Indexed: 12/21/2022]
Abstract
Lung cancer is the second most common form of cancer and the leading cause of cancer death worldwide. Pleural effusions, containing high numbers of mononuclear and tumor cells, are frequent in patients with advanced stages of lung cancer. We reported that in pleural effusions from primary lung cancer, the CD8+ T cell subpopulation, and particularly the terminally differentiated subset, is reduced compared to that of non-malignant effusions. We analyzed the participation of activation-induced cell death (AICD) and extrinsic pathways (type I or II) as mechanisms for the decrease in pleural effusion CD8+ T cell subpopulation. Pleural effusion or peripheral blood CD4+ and CD8+ T cells, from lung cancer patients, were stimulated with anti-CD3 antibody and analyzed for (a) apoptosis by annexin-V-binding and TUNEL assay, (b) transcript levels of Fas ligand (FasL) and TRAIL by real-time RT-PCR, (c) expression of FasL and TRAIL, measured as integrated mean fluorescence intensities (iMFI) by flow cytometry, (d) expression of Bcl-2 and BIM molecules, measured as MFI, and (e) apoptosis inhibition using caspase-8 and -9 inhibitors. Pleural effusion CD8+ T cells, but not CD4+ T cells, from cancer patients underwent AICD. Blocking FasL/Fas pathway protected from AICD. Upregulation of FasL and TRAIL expressions was found in pleural effusion CD8+ T cells, which also showed a subset of Bcl-2 low cells. In memory CD8+ T cells, AICD depended on both extrinsic and intrinsic apoptotic pathways. Hence, in the pleural space of lung cancer patients, AICD might compromise the antitumor function of CD8+ T cells.
Collapse
Affiliation(s)
- Heriberto Prado-Garcia
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, Das K, Mukherjee S, Mazumdar M, Lahiri L, Hossain DMS, Sa G, Das T. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 2012; 31:173-86. [PMID: 21765464 DOI: 10.1038/onc.2011.234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 04/05/2011] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
Abstract
Abrogation of functional p53 is responsible for malignant cell transformation and maintenance of human papilloma virus (HPV)-infected cancer cells. Restoration of p53 has, therefore, been regarded as an important strategy for molecular intervention of HPV-associated malignancies. Here we report that differential regulation of pro- and anti-p53 setups not only upregulates p53 transcription but also stabilizes and activates p53 protein to ensure p53-induced apoptosis in HPV-18-infected cervical cancer. Functional restoration of p53 can be achieved by non-steroidal anti-inflammatory drug celecoxib via multiple molecular mechanisms: (i) inhibition of p53 degradation by suppressing viral oncoprotein E6 expression, (ii) promoting p53 transcription by downmodulating cycloxygenase-2 (Cox-2) and simultaneously retrieving p53 from Cox-2 association and (iii) activation of p53 via ataxia telangiectasia mutated-/p38 mitogen-activated protein kinase-mediated phosphorylations at serine-15/-46 residues. That restored p53 is functional has been confirmed by its ability of transactivating Bax and p53-upregulated modulator of apoptosis, which in turn switch on the apoptotic machinery in these cells. Studies undertaken in biopsy samples of cervical carcinoma further validated celecoxib effect. Our approaches involving gene manipulation and pharmacological interference finally highlight that celecoxib alters pro- and anti-p53 networks, not in isolation but in concert, to rejuvenate p53-dependent apoptotic program in HPV-infected cervical cancer cells.
Collapse
Affiliation(s)
- B Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sen GS, Mohanty S, Hossain DMS, Bhattacharyya S, Banerjee S, Chakraborty J, Saha S, Ray P, Bhattacharjee P, Mandal D, Bhattacharya A, Chattopadhyay S, Das T, Sa G. Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem 2011; 286:42232-42247. [PMID: 22013068 DOI: 10.1074/jbc.m111.262295] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer cells often develop multiple mechanisms of drug resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. High constitutive activation of NFκB has been found in different cancers, creating an environment conducive for chemotherapeutic resistance. Here we report that doxorubicin-induced SMAR1-dependent transcriptional repression and SMAR1-independent degradation of IkBα resulted in nuclear translocation of p65NFκB and its association with p300 histone acetylase and subsequent transcription of Bcl-2 to impart protective response in drug-resistant cells. Consistently SMAR1-silenced drug-resistant cells exhibited IkBα-mediated inhibition of p65NFκB and induction of p53-dependent apoptosis. Interestingly, curcumin pretreatment of drug-resistant cells alleviated SMAR1-mediated p65NFκB activation and hence restored doxorubicin sensitivity. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic death cascade. Importantly, promyelocyte leukemia-mediated SMAR1 sequestration that relieved the repression of apoptosis-inducing genes was indispensable for such chemo-sensitizing ability of curcumin. A simultaneous decrease in drug-induced systemic toxicity by curcumin might also have enhanced the efficacy of doxorubicin by improving the intrinsic defense machineries of the tumor-bearer. Overall, the findings of this preclinical study clearly demonstrate the effectiveness of curcumin to combat doxorubicin-resistance. We, therefore, suggest curcumin as a potent chemo-sensitizer to improve the therapeutic index of this widely used anti-cancer drug. Taken together, these results suggest that curcumin can be developed into an adjuvant chemotherapeutic drug.
Collapse
Affiliation(s)
- Gouri Sankar Sen
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Dewan Md Sakib Hossain
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Shuvomoy Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Juni Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Shilpi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Pallab Ray
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Pushpak Bhattacharjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Debaprasad Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Arindam Bhattacharya
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Samit Chattopadhyay
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India; National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
25
|
Liu YY, Sun LC, Wei JJ, Li D, Yuan Y, Yan B, Liang ZH, Zhu HF, Xu Y, Li B, Song CW, Liao SJ, Lei Z, Zhang GM, Feng ZH. Tumor Cell-Released TLR4 Ligands Stimulate Gr-1+CD11b+F4/80+ Cells to Induce Apoptosis of Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:2773-82. [DOI: 10.4049/jimmunol.1000772] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol 2010; 7:306-15. [PMID: 20305684 DOI: 10.1038/cmi.2010.11] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.
Collapse
|
27
|
Matin SF, Sharma P, Gill IS, Tannenbaum C, Hobart MG, Novick AC, Finke JH. Immunological response to renal cryoablation in an in vivo orthotopic renal cell carcinoma murine model. J Urol 2010; 183:333-8. [PMID: 19914660 DOI: 10.1016/j.juro.2009.08.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 01/05/2023]
Abstract
PURPOSE The immunological consequences of cryoablation for renal cell carcinoma are largely unknown. Cryoablation is an attractive therapeutic option for tumors due to its minimally invasive nature. Cryoablation is also potentially immunogenic. We describe the development of an animal model to deliver in vivo renal cryotherapy to orthotopically implanted renal cell carcinoma and the results of multiple immunological interrogations after cryoablation. MATERIALS AND METHODS Four to 6-week-old female Balb/c mice (Jackson Laboratories, Bar Harbor, Maine) underwent renal subcapsular implantation of the syngeneic murine renal cell carcinoma Renca. Two weeks later contact cryoablation was done in tumor bearing kidneys. Another group of animals underwent cryoablation of normal kidneys. Animals were sacrificed 2 weeks after tumor injection or 1 and 2 weeks after cryoablation, respectively. Kidneys, spleens and draining lymph nodes were harvested. Evaluation consisted of immunohistochemistry, immunofluorescence and gene expression profiling using reverse-transcriptase polymerase chain reaction. RESULTS Subcapsular tumor implantation was successful in all cases and confirmed histologically. No significant lymphocytic infiltrate was seen in tumor only animals but those treated with cryoablation (tumor and nontumor bearing) had a significant inflammatory response primarily in sublethal tissue injury and perivascular areas. After cryoablation most infiltrating cells were neutrophils, macrophages and T cells. Polymerase chain reaction showed increased interferon-gamma production in kidneys after cryoablation. CONCLUSIONS This study shows the potential feasibility of this animal model for studying cryo-immunology. We confirm the absence of any significant immune cell infiltration in tumor bearing kidneys and report a significant inflammatory infiltrate after cryoablation, consisting primarily of neutrophils, macrophages, and CD4+ and CD8+ T cells with an increase in the T helper type 1/2 ratio. This orthotopic murine model can form the basis of future studies of additional immunological aspects of renal cryoablation.
Collapse
Affiliation(s)
- Surena F Matin
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Adhikary A, Mohanty S, Lahiry L, Hossain DMS, Chakraborty S, Das T. Theaflavins retard human breast cancer cell migration by inhibiting NF-kappaB via p53-ROS cross-talk. FEBS Lett 2010; 584:7-14. [PMID: 19883646 DOI: 10.1016/j.febslet.2009.10.081] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022]
Abstract
The present study demonstrates that theaflavins exploit p53 to impede metastasis in human breast cancer cells. Our data suggest that p53-dependent reactive oxygen species (ROS) induce p53-phosphorylation via p38MAPK in a feedback loop to inhibit IkappaBalpha-phosphorylation and NF-kappaB/p65 nuclear translocation, thereby down-regulating the metastatic proteins metalloproteinase (MMP)-2 and MMP-9. When wild-type p53-expressing MCF-7 cells are transfected with p53 short-interfering RNA, or treated with a pharmacological inhibitor of ROS, theaflavins fail to inhibit NF-kappaB-mediated cell migration. On the other hand, NF-kappaB over-expression bestows MCF-7 cells with resistance to the anti-migratory effect of theaflavins. These results indicate that inhibition of NF-kappaB via p53-ROS crosstalk is a pre-requisite for theaflavins to accomplish the anti-migratory effect in breast cancer cells.
Collapse
Affiliation(s)
- Arghya Adhikary
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India
| | | | | | | | | | | |
Collapse
|
29
|
Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem 2009; 336:85-95. [DOI: 10.1007/s11010-009-0269-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 09/15/2009] [Indexed: 01/15/2023]
|
30
|
Chattopadhyay S, Bhattacharyya S, Saha B, Chakraborty J, Mohanty S, Sakib Hossain DM, Banerjee S, Das K, Sa G, Das T. Tumor-shed PGE(2) impairs IL2Rgammac-signaling to inhibit CD4 T cell survival: regulation by theaflavins. PLoS One 2009; 4:e7382. [PMID: 19812686 PMCID: PMC2753647 DOI: 10.1371/journal.pone.0007382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 08/28/2009] [Indexed: 01/18/2023] Open
Abstract
Background Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. Methodology/Principal Findings By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor γc (IL2Rγc)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rγc expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1*6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rγc/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. Conclusions/Significance These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer.
Collapse
Affiliation(s)
- Sreya Chattopadhyay
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Baisakhi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Juni Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | - Shuvomoy Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Kaushik Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
31
|
Whiteside TL. Tricks tumors use to escape from immune control. Oral Oncol 2009; 45:e119-23. [PMID: 19467917 DOI: 10.1016/j.oraloncology.2009.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 12/12/2022]
Abstract
Tumor escape from the host immune system has been a major problem in immunotherapy of human malignancies. Human tumors are known to develop escape strategies, which might differ among tumors of the same histology. This suggests that host-tumor interactions create the tumor microenvironment that is unique for every tumor. Recent advances in cancer immunology allow for a better understanding of the mechanisms tumors use to execute immune escape and of the relationship the tumor establishes with immune cells. It is now feasible to obtain an "immune signature" of the tumor, that is to define the genetic, molecular and functional profiles of immune cells in the tumor microenvironment. This knowledge might be critically important for the personalized selection of available therapies and thus for clinical outcome.
Collapse
|
32
|
Sa G, Das T, Moon C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS, Finke JH. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res 2009; 69:3095-104. [PMID: 19276353 DOI: 10.1158/0008-5472.can-08-3776] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously elucidated an important role for gangliosides in renal cell carcinoma-mediated T lymphocyte apoptosis, although the mechanism by which they mediated lymphocyte death remained unclear. Here, we show that when added in purified form, GD3 is internalized by activated T cells, initiating a series of proapoptotic events, including the induction of reactive oxygen species (ROS), an enhancement of p53 and Bax accumulation, an increase in mitochondrial permeability, cytochrome c release, and the activation of caspase-9. GD3-induced apoptosis of activated T cells was dose dependent and inhibitable by pretreating the lymphocytes with N-acetylcysteine, cyclosporin A, or bongkrekic acid, emphasizing the essential role of ROS and mitochondrial permeability to the process. Ganglioside-induced T-cell killing was associated with the caspase-dependent degradation of nuclear factor-kappaB-inducible, antiapoptotic proteins, including RelA; this suggests that their loss is initiated only after the cascade is activated and that their disappearance amplifies but not triggers GD3 susceptibility. Resting T cells did not internalize appreciable levels of GD3 and did not undergo any of the proapoptotic changes that characterize activated T lymphocytes exposed to the ganglioside. RelA overexpression endows Jurkat cells with resistance to GD3-mediated apoptosis, verifying the role of the intact transcription factor in mediating protection from the ganglioside.
Collapse
Affiliation(s)
- Gaurisankar Sa
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br J Cancer 2009; 100:1111-9. [PMID: 19277038 PMCID: PMC2670006 DOI: 10.1038/sj.bjc.6604965] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibits differentiation and maturation of dendritic cells (DC), suggesting a potential immunosuppressive role for this proangiogenic factor. Bevacizumab, sorafenib and sunitinib target VEGF-mediated angiogenesis and are active against several types of cancer, but their effects on the immune system are poorly understood. In this study, VEGF and supernatants of renal carcinoma cell lines cultured under hypoxia were found to alter the differentiation of human monocytes to DC. Resulting DC showed impaired activity, as assessed by the alloreactive mixed T-lymphocyte reaction. Bevacizumab and sorafenib, but not sunitinib, reversed the inhibitory effects of VEGF, but not of those mediated by tumour supernatants. Dendritic cells matured under the influence of VEGF expressed less human leukocyte antigen-DR (HLA-DR) and CD86, and this effect was restored by bevacizumab and sorafenib. Finally, tumour-cell supernatants decreased interleukin-12 (IL-12) production by mature DC, and such inhibition was not restored by any of the tested drugs, delivered either as single agents or in combination. The deleterious effects of tumour-cell supernatants were mainly mediated by thermostable molecules distinct from VEGF. These results indicate that inhibition of the differentiation of monocytes to DC is a multifactorial effect, and that they support the development of combinations of angiogenesis inhibitors with immunological modulators.
Collapse
|
34
|
Does adjuvant vitespen prevent recurrence in patients with locally advanced kidney cancer? ACTA ACUST UNITED AC 2008; 5:644-5. [PMID: 19002125 DOI: 10.1038/ncpuro1256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/21/2008] [Indexed: 11/08/2022]
|