1
|
Linher-Melville K, Zhu YF, Sidhu J, Parzei N, Shahid A, Seesankar G, Ma D, Wang Z, Zacal N, Sharma M, Parihar V, Zacharias R, Singh G. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PLoS One 2020; 15:e0234176. [PMID: 32497151 PMCID: PMC7272035 DOI: 10.1371/journal.pone.0234176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023] Open
Abstract
Chronic neuropathic pain (NP) is a growing clinical problem for which effective treatments, aside from non-steroidal anti-inflammatory drugs and opioids, are lacking. Cannabinoids are emerging as potentially promising agents to manage neuroimmune effects associated with nociception. In particular, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination are being considered as therapeutic alternatives for treatment of NP. This study aimed to examine whether sex affects long-term outcomes on persistent mechanical hypersensitivity 7 weeks after ceasing cannabinoid administration. Clinically relevant low doses of THC, CBD, and a 1:1 combination of THC:CBD extracts, in medium chain triglyceride (MCT) oil, were orally gavaged for 14 consecutive days to age-matched groups of male and female sexually mature Sprague Dawley rats. Treatments commenced one day after surgically inducing a pro-nociceptive state using a peripheral sciatic nerve cuff. The analgesic efficacy of each phytocannabinoid was assessed relative to MCT oil using hind paw mechanical behavioural testing once a week for 9 weeks. In vivo intracellular electrophysiology was recorded at endpoint to characterize soma threshold changes in primary afferent sensory neurons within dorsal root ganglia (DRG) innervated by the affected sciatic nerve. The thymus, spleen, and DRG were collected post-sacrifice and analyzed for long-term effects on markers associated with T lymphocytes at the RNA level using qPCR. Administration of cannabinoids, particularly the 1:1 combination of THC, elicited a sustained mechanical anti-hypersensitive effect in males with persistent peripheral NP, which corresponded to beneficial changes in myelinated Aβ mechanoreceptive fibers. Specific immune cell markers associated with T cell differentiation and pro-inflammatory cytokines, previously implicated in repair processes, were differentially up-regulated by cannabinoids in males treated with cannabinoids, but not in females, warranting further investigation into sexual dimorphisms that may underlie treatment outcomes.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gireesh Seesankar
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Danny Ma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhi Wang
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Zacal
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Vikas Parihar
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Ramesh Zacharias
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
The Sphingosine-1-Phosphate Receptor Modulator Fingolimod Aggravates Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2019; 139:2381-2384.e3. [DOI: 10.1016/j.jid.2019.03.1159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 02/04/2023]
|
3
|
Kunz N, Hauenschild E, Maass S, Kalies KU, Klinger M, Barra M, Hecht L, Helbig F, Soellner S, Caldwell CC, Ludwig RJ, Westermann J, Kalies K. Nanoparticles prepared from porcine cells support the healing of cutaneous inflammation in mice and wound re-epithelialization in human skin. Exp Dermatol 2017; 26:1199-1206. [PMID: 28940860 DOI: 10.1111/exd.13450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Previous reports have demonstrated that cell-derived nanoparticles (CDNPs) composed of bovine or porcine protein complexes exerted therapeutic effects against viral infections and cancer in mice and humans. Based on these observations, we asked whether CDNPs would improve inflammatory skin disorders. To address this, we utilized two distinct mouse models of cutaneous inflammation: the autoimmune skin-blistering disease epidermolysis bullosa acquisita (EBA) as an example of an autoantibody-induced cutaneous inflammation, and Leishmania major (L. major) infection as an example of a pathogen-induced cutaneous inflammation. In both models, we observed that CDNPs increased mRNA expression of the Th2 cytokine IL-4. Clinically, CDNPs decreased inflammation due to EBA and increased L. major-specific IgG1 levels without major effects on infected skin lesions. In addition, CDNPs supported the growth of keratinocytes in human skin cultures. In vitro studies revealed that CDNPs were taken up predominantly by macrophages, leading to a shift towards the expression of anti-inflammatory cytokine genes. Altogether, our data demonstrate that treatment with porcine CDNPs may be a new therapeutic option for the control of autoimmune-mediated inflammatory skin disorders.
Collapse
Affiliation(s)
- Natalia Kunz
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Eva Hauenschild
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Sebastian Maass
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, University of Luebeck, Luebeck, Germany
| | | | - Melanie Barra
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | | | | | | | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ralf J Ludwig
- The Lübeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| |
Collapse
|
4
|
Milićević NM, Nohroudi K, Schmidt F, Schmidt H, Ringer C, Sorensen GL, Milićević Ž, Westermann J. Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues. PLoS One 2016; 11:e0166901. [PMID: 27936003 PMCID: PMC5147843 DOI: 10.1371/journal.pone.0166901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases.
Collapse
Affiliation(s)
- Novica M. Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, Beograd, Serbia
| | - Klaus Nohroudi
- Department I of Anatomy, University of Cologne, Cologne, Germany
| | - Friederike Schmidt
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University Lübeck, Lübeck, Germany
| | - Hendrik Schmidt
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University Lübeck, Lübeck, Germany
| | - Cornelia Ringer
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University Lübeck, Lübeck, Germany
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Živana Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, Beograd, Serbia
| | - Jürgen Westermann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
5
|
Skin microbiota-associated inflammation precedes autoantibody induced tissue damage in experimental epidermolysis bullosa acquisita. J Autoimmun 2016; 68:14-22. [DOI: 10.1016/j.jaut.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022]
|
6
|
Milićević NM, Schmidt F, Kunz N, Kalies K, Milićević Ž, Schlosser A, Holmskov U, Sorensen GL, Westermann J. The role of microfibrillar-associated protein 4 (MFAP4) in the formation and function of splenic compartments during embryonic and adult life. Cell Tissue Res 2016; 365:135-45. [DOI: 10.1007/s00441-016-2374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
7
|
Sadeghi H, Lockmann A, Hund AC, Samavedam UKSRL, Pipi E, Vafia K, Hauenschild E, Kalies K, Pas HH, Jonkman MF, Iwata H, Recke A, Schön MP, Zillikens D, Schmidt E, Ludwig RJ. Caspase-1–Independent IL-1 Release Mediates Blister Formation in Autoantibody-Induced Tissue Injury through Modulation of Endothelial Adhesion Molecules. THE JOURNAL OF IMMUNOLOGY 2015; 194:3656-63. [DOI: 10.4049/jimmunol.1402688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/15/2015] [Indexed: 12/29/2022]
|
8
|
Banczyk D, Kalies K, Nachbar L, Bergmann L, Schmidt P, Bode U, Teegen B, Steven P, Lange T, Textor J, Ludwig RJ, Stöcker W, König P, Bell E, Westermann J. Activated CD4+ T cells enter the splenic T-cell zone and induce autoantibody-producing germinal centers through bystander activation. Eur J Immunol 2013; 44:93-102. [PMID: 24114675 PMCID: PMC4209793 DOI: 10.1002/eji.201343811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/14/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022]
Abstract
CD4(+) T (helper) cells migrate in huge numbers through lymphoid organs. However, little is known about traffic routes and kinetics of CD4(+) T-cell subsets within different organ compartments. Such information is important because there are indications that CD4(+) T cells may influence the function of microenvironments depending on their developmental stage. Therefore, we investigated the migration of resting (naïve), activated, and recently activated (memory) CD4(+) T cells through the different compartments of the spleen. Resting and recently activated CD4(+) T cells were separated from thoracic duct lymph and activated CD4(+) T cells were generated in vitro by cross-linking the T-cell receptor and CD28. The present study shows that all three CD4(+) T-cell subsets selectively accumulate in the T-cell zone of the spleen. However, only activated T cells induce the formation of germinal centers (GCs) and autoantibodies in rats and mice. Our results suggest that in a two-step process they first activate B cells independent of the T-cell receptor repertoire and CD40 ligand (CD154) expression. The activated B cells then form GCs whereby CD154-dependent T-cell help is needed. Thus, activated T cells may contribute to the development of autoimmune diseases by activating autoreactive B cells in an Ag-independent manner.
Collapse
Affiliation(s)
- David Banczyk
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stamm C, Barthelmann J, Kunz N, Toellner KM, Westermann J, Kalies K. Dose-dependent induction of murine Th1/Th2 responses to sheep red blood cells occurs in two steps: antigen presentation during second encounter is decisive. PLoS One 2013; 8:e67746. [PMID: 23840769 PMCID: PMC3695941 DOI: 10.1371/journal.pone.0067746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/22/2013] [Indexed: 12/24/2022] Open
Abstract
The differentiation of CD4 T cells into Th1 and Th2 cells in vivo is difficult to analyze since it is influenced by many factors such as genetic background of the mice, nature of antigen, and adjuvant. In this study, we used a well-established model, which allows inducing Th1 or Th2 cells simply by low (LD, 10(5)) or high dose (HD, 10(9)) injection of sheep red blood cells (SRBC) into C57BL/6 mice. Signature cytokine mRNA expression was determined in specific splenic compartments after isolation by laser-microdissection. LD immunization with SRBC induced T cell proliferation in the splenic T cell zone but no Th1 differentiation. A second administration of SRBC into the skin rapidly generated Th1 cells. In contrast, HD immunization with SRBC induced both T cell proliferation and immediate Th2 differentiation. In addition, splenic marginal zone and B cell zone were activated indicating B cells as antigen presenting cells. Interestingly, disruption of the splenic architecture, in particular of the marginal zone, abolished Th2 differentiation and led to the generation of Th1 cells, confirming that antigen presentation by B cells directs Th2 polarization. Only in its absence Th1 cells develop. Therefore, B cells might be promising targets in order to therapeutically modulate the T cell response.
Collapse
Affiliation(s)
- Claudia Stamm
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Julia Barthelmann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Natalia Kunz
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Kai-Michael Toellner
- MRC Centre for Immune Regulation, Division of Immunity and Infection, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Jürgen Westermann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Kathrin Kalies
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Köchling J, Rott Y, Arndt S, Marschke C, Schmidt M, Wittig B, Kalies K, Westermann J, Henze G. Prevention and synergistic control of Ph+ ALL by a DNA vaccine and 6-mercaptopurine. Vaccine 2012; 30:5949-55. [DOI: 10.1016/j.vaccine.2012.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
|
11
|
Hammers CM, Bieber K, Kalies K, Banczyk D, Ellebrecht CT, Ibrahim SM, Zillikens D, Ludwig RJ, Westermann J. Complement-fixing anti-type VII collagen antibodies are induced in Th1-polarized lymph nodes of epidermolysis bullosa acquisita-susceptible mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:5043-50. [PMID: 21967893 DOI: 10.4049/jimmunol.1100796] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The environment encountered in secondary lymphoid organs (e.g., lymph nodes) influences the outcome of immune responses. Immunization of mice with type VII collagen, an adhesion protein expressed at the cutaneous basement membrane, induces experimental epidermolysis bullosa acquisita (EBA). In this model, clinical disease is associated with the H2s haplotype of the MHC found in SJL/J mice. Most other strains (e.g., BALB/c, C57BL/6, NZM2410/J) are resistant to clinical disease, despite autoantibody production. Comparison of autoantibody response in EBA-resistant and -susceptible mice showed an IgG2-dominated response in the latter. We hypothesized that EBA susceptibility is due to specific cytokine gene expression in draining lymph nodes (dLN). To challenge this hypothesis, EBA-susceptible (SJL/J) and -resistant (BALB/c, C57BL/6) mice were immunized with type VII collagen, followed by analysis of clinical phenotype, subclasses of circulating and tissue-bound autoantibodies, complement activation, and cytokine gene expression in dLN. Disease manifestation was associated with induction of complement-fixing autoantibodies, confirming previous observations. Furthermore, however, IFN-γ/IL-4 ratio in dLN of EBA-susceptible mice was significantly increased compared with EBA-resistant strains, suggesting a Th1 polarization. Immunization of H2s-congenic C57BL/6 mice (B6.SJL-H2s) led to Th1 polarization in dLN and clinical disease. In addition to their cytokine milieu, EBA-susceptible and -resistant mice also differed regarding the expression of FcγR on peripheral leukocytes, in which a higher FcγRIV expression in SJL/J and B6.SJL-H2s mice, compared with C57BL/6, was associated with skin lesions. In summary, blistering in experimental EBA is regulated by both adaptive (divergent class switch recombination due to polarized cytokine expression) and innate (FcγR expression) immune mechanisms.
Collapse
|
12
|
Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J, Ueha S, Tomura M, Sugihara K, Takamura S, Kakimi K, Matsushima K. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration. ACTA ACUST UNITED AC 2011; 208:1605-20. [PMID: 21788406 PMCID: PMC3149224 DOI: 10.1084/jem.20102101] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Strength of inflammatory stimuli during the early expansion phase plays a crucial role in the effector versus memory cell fate decision of CD8(+) T cells. But it is not known how early lymphocyte distribution after infection has an impact on this process. We demonstrate that the chemokine receptor CXCR3 is involved in promoting CD8(+) T cell commitment to an effector fate rather than a memory fate by regulating T cell recruitment to an antigen/inflammation site. After systemic viral or bacterial infection, the contraction of CXCR3(-/-) antigen-specific CD8(+) T cells is significantly attenuated, resulting in massive accumulation of fully functional memory CD8(+) T cells. Early after infection, CXCR3(-/-) antigen-specific CD8(+) T cells fail to cluster at the marginal zone in the spleen where inflammatory cytokines such as IL-12 and IFN-α are abundant, thus receiving relatively weak inflammatory stimuli. Consequently, CXCR3(-/-) CD8(+) T cells exhibit transient expression of CD25 and preferentially differentiate into memory precursor effector cells as compared with wild-type CD8(+) T cells. This series of events has important implications for development of vaccination strategies to generate increased numbers of antigen-specific memory CD8(+) T cells via inhibition of CXCR3-mediated T cell migration to inflamed microenvironments.
Collapse
Affiliation(s)
- Makoto Kurachi
- Department of Molecular Preventive Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Barthelmann J, Nietsch J, Blessenohl M, Laskay T, van Zandbergen G, Westermann J, Kalies K. The protective Th1 response in mice is induced in the T-cell zone only three weeks after infection with Leishmania major and not during early T-cell activation. Med Microbiol Immunol 2011; 201:25-35. [PMID: 21547563 DOI: 10.1007/s00430-011-0201-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 10/18/2022]
Abstract
The protozoan parasite Leishmania spp. causes clinical pictures ranging in severity from spontaneously healing skin ulcers to systemic disease. The immune response associated with healing involves the differentiation of IFNγ-producing Th1 cells, whereas the non-healing phenotype is associated with IL4-producing Th2 cells. The widespread assumption has been that the T-cell differentiation that leads to a healing or non-healing phenotype is established at the time of T-cell activation early after infection. By selectively analyzing the expression of cytokine genes in the T-cell zones of lymph nodes of resistant (Th1) C57BL/6 mice and susceptible (Th2) BALB/c mice during an infection with Leishmania major in vivo, we show that the early T-cell response does not differ between C57BL/6 mice and BALB/c mice. Instead, Th1/Th2 polarization appears suddenly 3 weeks after infection. At the same time point, the number of parasites increases in lymph nodes of both mouse strains, but about 100-fold more in susceptible BALB/c mice. We conclude that the protective Th1 response in C57BL/6 mice is facilitated by the capacity of their innate effector cells to keep parasite numbers at low levels.
Collapse
Affiliation(s)
- Julia Barthelmann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Milićević NM, Klaperski K, Nohroudi K, Milićević Ž, Bieber K, Baraniec B, Blessenohl M, Kalies K, Ware CF, Westermann J. TNF receptor-1 is required for the formation of splenic compartments during adult, but not embryonic life. THE JOURNAL OF IMMUNOLOGY 2010; 186:1486-94. [PMID: 21187446 DOI: 10.4049/jimmunol.1000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphotoxin β-receptor (LTβR) and TNF receptor-1 (TNFR1) are important for the development of secondary lymphoid organs during embryonic life. The significance of LTβR and TNFR1 for the formation of lymphoid tissue during adult life is not well understood. Immunohistochemistry, morphometry, flow cytometry, and laser microdissection were used to compare wild-type, LTβR(-/-), TNFR1(-/-) spleens with splenic tissue that has been newly formed 8 wk after avascular implantation into adult mice. During ontogeny, LTβR is sufficient to induce formation of the marginal zone, similar-sized T and B cell zones, and a mixed T/B cell zone that completely surrounded the T cell zone. Strikingly, in adult mice, the formation of splenic compartments required both LTβR and TNFR1 expression, demonstrating that the molecular requirements for lymphoid tissue formation are different during embryonic and adult life. Thus, interfering with the TNFR1 pathway offers the possibility to selectively block the formation of ectopic lymphoid tissue and at the same time to spare secondary lymphoid organs such as spleen and lymph nodes. This opens a new perspective for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, 11000 Beograd, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Klinger A, Gebert A, Bieber K, Kalies K, Ager A, Bell EB, Westermann J. Cyclical expression of L-selectin (CD62L) by recirculating T cells. Int Immunol 2009; 21:443-55. [DOI: 10.1093/intimm/dxp012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|