1
|
Liu F, Wawersik S, Tomlinson S, Thurman JM, Holers VM. Tissue-targeted regulators of complement for amelioration of human disease: rationale and novel therapeutic strategies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf053. [PMID: 40258303 DOI: 10.1093/jimmun/vkaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025]
Abstract
The complement system is an essential part of innate immunity, and dysregulated complement is an underlying driver in many inflammatory and autoimmune diseases. Currently approved complement-focused therapeutics rely on systemic blockade of complement activation, but a major challenge with this approach is that complement components exist in high abundance and undergo rapid systemic turnover, creating a large pharmacologic sink. To improve the arsenal of complement therapies, tissue-targeting has emerged as a strategy to re-regulate complement in diseased tissue, while limiting systemic blockade. This approach, which is based on directing complement modulators to tissues through the recognition of tissue-fixed activated complement fragments, tissue-specific epitopes, or injury-associated neoepitopes, has the potential for enhanced potency and durability and reduced infection risk. In this review, we discuss the rationale for tissue-targeted complement therapies, the strategies taken to achieve local regulation, current state of preclinical and clinical stage tissue-targeted therapeutics, and potential future directions.
Collapse
Affiliation(s)
- Fei Liu
- Q32 Bio Inc., Waltham, MA, United States
| | | | - Stephen Tomlinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
2
|
Khan H, Singh A, Singh Y, Sharma D, Dua K, Grewal AK, Singh TG. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: a mechanistic perspective. Metab Brain Dis 2025; 40:131. [PMID: 40009091 DOI: 10.1007/s11011-025-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemia, also known as ischemia, relates to the reduced blood movement to a cells, muscle group, or organ in the body, culminating in an insufficient amount of oxygen required for cellular metabolism and the maintenance of tissue viability. There are different types of stroke (ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage), and different causes of stroke (e.g., cardioembolic, atherothrombotic, lacunar ischemic strokes, aneurysmal subarachnoid hemorrhage). It also includes other disorders affecting the blood vessels in the brain (e.g., vascular malformations, unruptured aneurysms). Each of these conditions has different characteristics in terms of how common they are and how they are managed. Stroke is the primary and catastrophic clinical presentation of all cerebrovascular diseases. In this review we focused about the importance of PI3K/AKT signaling pathways which are important in the onset of ischemia-reperfusion (I/R) injury. In addition, mTOR, a target that is activated by the PI3K/Akt signaling pathway, is both required and capable of providing enough protection to the heart against harm caused by I/R. Moreover, the signaling pathways that involve PI3K/Akt/Erk/PTEN/mTOR play a crucial role in facilitating the proliferation and maintenance of neurons following an ischemic stroke. The current review summarizes the molecular mechanisms of various signaling pathways in ischemic diseases and suggests targeting its receptors as a preventive approach based on pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Aditi Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Yashvardhan Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India.
| |
Collapse
|
3
|
Nakazawa D. Targeting complement in kidney transplantation: Therapeutic approaches based on preclinical and experimental evidence. Transplant Rev (Orlando) 2025; 39:100887. [PMID: 39612603 DOI: 10.1016/j.trre.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
The complement system is implicated in various facets of kidney transplantation, including ischemia-reperfusion injury (IRI), delayed graft function, allograft rejection, and chronic allograft injury. IRI, prevalent in cadaveric renal transplantation, leads to acute tubular necrosis and engages innate immunity, including neutrophils and the complement system, fostering a cycle of inflammation and necrosis. Experimental and preclinical evidence suggest that targeting the complement system could offer therapeutic benefits in IRI during kidney transplantation. This article explores potential therapeutic approaches targeting complement pathways in kidney transplantation, drawing from experimental and preclinical research findings.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Dreher L, Bode M, Ehnert N, Meyer-Schwesinger C, Wiech T, Köhl J, Huber TB, Freiwald T, Herrnstadt GR, Wenzel UO. Role of the Anaphylatoxin Receptor C5aR2 in Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Am J Hypertens 2024; 37:810-825. [PMID: 38934290 DOI: 10.1093/ajh/hpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKROUND Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown. METHODS For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice. RESULTS Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice. CONCLUSIONS In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Ehnert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Section of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck., Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tilo Freiwald
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
6
|
Li L, Ding P, Dong Y, Shen S, Lv X, Yu J, Li L, Chen J, Wang P, Han B, Xu T, Hu W. CG001, a C3b-targeted complement inhibitor, blocks 3 complement pathways: development and preclinical evaluation. Blood Adv 2024; 8:4181-4193. [PMID: 38865712 PMCID: PMC11334799 DOI: 10.1182/bloodadvances.2024012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
ABSTRACT Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.
Collapse
Affiliation(s)
- Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shupei Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xinyue Lv
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jie Yu
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Luying Li
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pilin Wang
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ting Xu
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Discov 2024; 10:287. [PMID: 38879568 PMCID: PMC11180143 DOI: 10.1038/s41420-024-02064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaohan Su
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Li
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Zeng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
8
|
Golshayan D, Schwotzer N, Fakhouri F, Zuber J. Targeting the Complement Pathway in Kidney Transplantation. J Am Soc Nephrol 2023; 34:1776-1792. [PMID: 37439664 PMCID: PMC10631604 DOI: 10.1681/asn.0000000000000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
The complement system is paramount in the clearance of pathogens and cell debris, yet is increasingly recognized as a key component in several pathways leading to allograft injury. There is thus a growing interest in new biomarkers to assess complement activation and guide tailored therapies after kidney transplantation (KTx). C5 blockade has revolutionized post-transplant management of atypical hemolytic uremic syndrome, a paradigm of complement-driven disease. Similarly, new drugs targeting the complement amplification loop hold much promise in the treatment and prevention of recurrence of C3 glomerulopathy. Although unduly activation of the complement pathway has been described after brain death and ischemia reperfusion, any clinical attempts to mitigate the ensuing renal insults have so far provided mixed results. However, the intervention timing, strategy, and type of complement blocker need to be optimized in these settings. Furthermore, the fast-moving field of ex vivo organ perfusion technology opens new avenues to deliver complement-targeted drugs to kidney allografts with limited iatrogenic risks. Complement plays also a key role in the pathogenesis of donor-specific ABO- and HLA-targeted alloantibodies. However, C5 blockade failed overall to improve outcomes in highly sensitized patients and prevent the progression to chronic antibody-mediated rejection (ABMR). Similarly, well-conducted studies with C1 inhibitors in sensitized recipients yielded disappointing results so far, in part, because of subtherapeutic dosage used in clinical studies. The emergence of new complement blockers raises hope to significantly reduce the negative effect of ischemia reperfusion, ABMR, and nephropathy recurrence on outcomes after KTx.
Collapse
Affiliation(s)
- Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Zuber
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| |
Collapse
|
9
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
10
|
Chen Y, Lin L, Rao S, Tao X, Cui J, Wan J. Complement C3 mediates podocyte injury through TLR4/NFΚB-P65 signaling during ischemia-reperfusion acute kidney injury and post-injury fibrosis. Eur J Med Res 2023; 28:135. [PMID: 36973754 PMCID: PMC10041728 DOI: 10.1186/s40001-023-01054-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the mechanism of complement C3a mediating podocyte injury during ischemia-reperfusion acute kidney injury (IR-AKI) and post-injury fibrosis. METHODS Renal artery clamping was used to establish IR-AKI and post-injury fibrosis model. HE and Masson staining were performed to observe renal fibrosis. The protein abundance levels were measured along with inflammatory markers, renal complement C3. Podocytes were treated with C3a with or without Toll-like receptor 4(TLR4) inhibitor. The effects of TLR4 up-regulation by TLR4 plasmids were examined. RESULTS C3-/- resulted in amelioration of renal dysfunction by reducing podocyte damage and renal fibrosis. Immunoblot with renal tissue homogenates from IR-AKI mice revealed that C3-/- decreased TLR4/Nuclear Factor-κB (NFκB)-P65. CONCLUSION Our results indicate that modulating C3/TLR4/NFκB-P65 signaling pathway is a novel therapeutic target for the IR-AKI and post-injury fibrosis.
Collapse
Affiliation(s)
- Yi Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Liyu Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Siyi Rao
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xuan Tao
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
11
|
Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, Yuan S, Gong T, Huang W. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Lett 2023; 553:215996. [PMID: 36343787 DOI: 10.1016/j.canlet.2022.215996] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Bei Liu
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China
| | - Li Cheng
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Honghao Gao
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02021, USA
| | - Shunzong Yuan
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China.
| | - Wenrong Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
12
|
Augmenter of Liver Regeneration (ALR) Protects Kidney from Ischemia/Reperfusion (I/R) Injury via Regulation of TLR4/MAPK Signaling Pathway. J Immunol Res 2022; 2022:6869730. [PMID: 35983075 PMCID: PMC9381282 DOI: 10.1155/2022/6869730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) can mediate innate activation and inflammation, and it is typically expressed within the ischemic kidney. Augmenter of liver regeneration (ALR) acts as an immunoregulator with a high expression in the kidney induced by renal ischemia/reperfusion (I/R) injury. Exogenous ALR has indicated a role in protecting the kidney from I/R injury. The protective effect of ALR is due to the immune regulatory function which remains to be elucidated. In this study, rats induced by renal I/R were treated with recombinant human ALR (rhALR) and demonstrated that the animals were protected from kidney I/R injury, implying that the rhALR-treated rats had less tubular damage than those untreated rats. Meanwhile, tubular epithelial cell apoptosis, neutrophil (24 h) and macrophage (72 h) infiltration to tubulointerstitium, and levels of inflammatory cytokines were decreased considerably in the rhALR-treated rats as compared to control. Additionally, rhALR could downregulate mRNA expression of TLR4 endogenous ligands and restrain its activation in renal I/R injury rats. It has also been proved that anti-rhALR antibody blocked the inhibition of rhALR of the immune inflammatory response in hypoxia/reoxygenation (H/R) injury in vitro. In rhALR+anti-rhALR antibody-intervened H/R cells, the expression of inflammatory cytokines was upregulated compared with the rhALR-treated cells. Taken together, rhALR could regulate the TLR4 signaling pathway to relieve inflammatory response, thereby protecting renal I/R injury, indicating that ALR is likely to be introduced to develop novel immune therapies for renal I/R injury.
Collapse
|
13
|
de Brito CB, Ascenção FR, Arifa RDN, Lima RL, Menezes Garcia Z, Fagundes M, Resende BG, Bezerra RO, Queiroz-Junior CM, Dos Santos ACPM, Oliveira MAP, Teixeira MM, Fagundes CT, Souza DG. FcᵧRIIb protects from reperfusion injury by controlling antibody and type I IFN-mediated tissue injury and death. Immunol Suppl 2022; 167:428-442. [PMID: 35831251 DOI: 10.1111/imm.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal ischemia and reperfusion (I/R) is accompanied by an exacerbated inflammatory response characterized by deposition of IgG, release of inflammatory mediators, and intense neutrophil influx in the small intestine, resulting in severe tissue injury and death. We hypothesized that FcᵧRIIb activation by deposited IgG could inhibit tissue damage during I/R. Our results showed that I/R induction led to the deposition of IgG in intestinal tissue during the reperfusion phase. Death upon I/R occurred earlier and was more frequent in FcᵧRIIb-/- than WT mice. The higher lethality rate was associated with greater tissue injury and bacterial translocation to other organs. FcᵧRIIb-/- mice presented changes in the amount and repertoire of circulating IgG, leading to increased IgG deposition in intestinal tissue upon reperfusion in these mice. Depletion of intestinal microbiota prevented antibody deposition and tissue damage in FcᵧRIIb-/- mice submitted to I/R. We also observed increased production of ROS on neutrophils harvested from the intestines of FcᵧRIIb-/- mice submitted to I/R. In contrast, FcᵧRIII-/- mice presented reduced tissue damage and neutrophil influx after reperfusion injury, a phenotype reversed by FcᵧRIIb blockade. In addition, we observed reduced IFN-β expression in the intestines of FcᵧRIII-/- mice after I/R, a phenotype that was also reverted by blocking FcᵧRIIb. IFNAR-/- mice submitted to I/R presented reduced lethality and TNF release. Altogether our results demonstrate that antibody deposition triggers FcᵧRIIb to control IFN-β and IFNAR activation and subsequent TNF release, tailoring tissue damage, and death induced by reperfusion injury.
Collapse
Affiliation(s)
- Camila Bernardo de Brito
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Roque Ascenção
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raquel Duque Nascimento Arifa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Lacerda Lima
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Zélia Menezes Garcia
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Micheli Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Brenda Gonçalves Resende
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Oliveira Bezerra
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Clara Paiva Menezes Dos Santos
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton A P Oliveira
- Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caio Tavares Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniele G Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Blasco M, Guillén-Olmos E, Diaz-Ricart M, Palomo M. Complement Mediated Endothelial Damage in Thrombotic Microangiopathies. Front Med (Lausanne) 2022; 9:811504. [PMID: 35547236 PMCID: PMC9082680 DOI: 10.3389/fmed.2022.811504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Thrombotic microangiopathies (TMA) constitute a group of different disorders that have a common underlying mechanism: the endothelial damage. These disorders may exhibit different mechanisms of endothelial injury depending on the pathological trigger. However, over the last decades, the potential role of the complement system (CS) has gained prominence in their pathogenesis. This is partly due to the great efficacy of complement-inhibitors in atypical hemolytic syndrome (aHUS), a TMA form where the primary defect is an alternative complement pathway dysregulation over endothelial cells (genetic and/or adquired). Complement involvement has also been demonstrated in other forms of TMA, such as thrombotic thrombocytopenic purpura (TTP) and in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS), as well as in secondary TMAs, in which complement activation occurs in the context of other diseases. However, at present, there is scarce evidence about the efficacy of complement-targeted therapies in these entities. The relationship between complement dysregulation and endothelial damage as the main causes of TMA will be reviewed here. Moreover, the different clinical trials evaluating the use of complement-inhibitors for the treatment of patients suffering from different TMA-associated disorders are summarized, as a clear example of the entry into a new era of personalized medicine in its management.
Collapse
Affiliation(s)
- Miquel Blasco
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Elena Guillén-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain
| | - Marta Palomo
- Hematopathology Unit, Department of Pathology, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Song J, Zhao R, Yan C, Luo S, Xi J, Ding P, Li L, Hu W, Zhao C. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats via Immune Modulation. Front Immunol 2022; 13:746068. [PMID: 35154091 PMCID: PMC8825366 DOI: 10.3389/fimmu.2022.746068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-induced complement activation may cause injury of the neuromuscular junction (NMJ) and is thus considered as a primary pathogenic factor in human myasthenia gravis (MG) and animal models of experimental autoimmune myasthenia gravis (EAMG). In this study, we tested whether CRIg/FH, a targeted complement inhibitor, could attenuate NMJ injury in rat MG models. We first demonstrated that CRIg/FH could inhibit complement-dependent cytotoxicity on human rhabdomyosarcoma TE671 cells induced by MG patient-derived IgG in vitro. Furthermore, we investigated the therapeutic effect of CRIg/FH in a passive and an active EAMG rodent model. In both models, administration of CRIg/FH could significantly reduce the complement-mediated end-plate damage and suppress the development of EAMG. In the active EAMG model, we also found that CRIg/FH treatment remarkably reduced the serum concentration of autoantibodies and of the cytokines including IFN-γ, IL-2, IL-6, and IL-17, and upregulated the percentage of Treg cells in the spleen, which was further verified in vitro. Therefore, our findings indicate that CRIg/FH may hold the potential for the treatment of MG via immune modulation.
Collapse
Affiliation(s)
- Jie Song
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Rui Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
16
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
17
|
Bongoni AK, Vikstrom IB, McRae JL, Salvaris EJ, Fisicaro N, Pearse MJ, Wymann S, Rowe T, Morelli AB, Hardy MP, Cowan PJ. A potent truncated form of human soluble CR1 is protective in a mouse model of renal ischemia-reperfusion injury. Sci Rep 2021; 11:21873. [PMID: 34750424 PMCID: PMC8575974 DOI: 10.1038/s41598-021-01423-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The complement system is a potent mediator of ischemia–reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule. Here, we compared the capacity of CSL040 and full-length sHuCR1 to suppress complement-mediated organ damage in a mouse model of warm renal IRI. Mice were treated with two doses of CSL040 or sHuCR1, given 1 h prior to 22 min unilateral renal ischemia and again 3 h later. 24 h after reperfusion, mice treated with CSL040 were protected against warm renal IRI in a dose-dependent manner, with the highest dose of 60 mg/kg significantly reducing renal dysfunction, tubular injury, complement activation, endothelial damage, and leukocyte infiltration. In contrast, treatment with sHuCR1 at a molar equivalent dose to 60 mg/kg CSL040 did not confer significant protection. Our results identify CSL040 as a promising therapeutic candidate to attenuate renal IRI and demonstrate its superior efficacy over full-length sHuCR1 in vivo.
Collapse
Affiliation(s)
- Anjan K Bongoni
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia.
| | | | - Jennifer L McRae
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | | | | | - Tony Rowe
- CSL Limited, Melbourne, VIC, 3052, Australia
| | | | | | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
18
|
New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB. Open Med (Wars) 2021; 16:1552-1563. [PMID: 34722891 PMCID: PMC8525660 DOI: 10.1515/med-2021-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background Activation of the complement component 5a (C5a) and nuclear factor κB (NF-κB) signaling is an important feature of myocardial ischemia/reperfusion (I/R) injury and recent studies show that morphine postconditioning (MP) attenuates the myocardial injury. However, the mediating cardioprotective mechanisms remain unclear. The present study explores the role and interaction of heat shock protein 90 (HSP90), Akt, C5a, and NF-κB in MP-induced cardioprotection. Methods Male Sprague Dawley rats (n = 160) were randomized into eight groups (n = 20 per group). Rats in the sham group underwent thoracotomy, passing the ligature through the heart but without tying it (150 min), and the other seven groups were subjected to 30 min of anterior descending coronary artery occlusion followed by 2 h of reperfusion and the following treatments: I/R (30 min of ischemia and followed by 2 h of reperfusion); ischemic postconditioning (IPostC, 30 s of ischemia altered with 30 s of reperfusion, repeated for three cycles, and followed by reperfusion for 2 h); MP (0.3 mg/kg morphine administration 10 min before reperfusion); MP combined with the HSP90 inhibitor geldanamycin (GA, 1 mg/kg); MP combined with the Akt inhibitor GSK-690693 (GSK, 20 mg/kg); and MP combined with the C5a inhibitor PMX205 (PMX, 1 mg/kg/day, administration via drinking water for 28 days) and MP combined with the NF-κB inhibitor EVP4593 (QNZ, 1 mg/kg). All inhibitors were administered 10 min before morphine and followed by 2 h reperfusion. Results MP significantly reduced the I/R-induced infarct size, the apoptosis, and the release of cardiac troponin I, lactate dehydrogenase (LDH), and creatine kinase-MB. These beneficial effects were accompanied by increased expression of HSP90 and p-Akt, and decreased expression of C5a, NF-κB, tumor necrosis factor α, interleukin-1β, and intercellular cell adhesion molecule 1. However, HSP90 inhibitor GA or Akt inhibitor GSK increased the expression of C5a and NF-κB and prevented MP-induced cardioprotection. Furthermore, GA inhibited the MP-induced upregulation of p-Akt, while GSK did not affect HSP90, indicating that p-Akt acts downstream of HSP90 in MP-induced cardioprotection. In addition, C5a inhibitor PMX enhanced the MP-induced downregulation of NF-κB, while NF-κB inhibitor QNZ had no effect on C5a, indicating that the C5a/NF-κB signaling pathway is involved in MP-induced cardioprotection. Conclusion HSP90 is critical for MP-mediated cardioprotection possibly by promoting the phosphorylation of Akt and inhibiting the activation of C5a and NF-κB signaling and the subsequent myocardial inflammation, ultimately attenuating the infarct size and cardiomyocyte apoptosis.
Collapse
|
19
|
Zhang Y, Wu Y, Wang W, Liu F, Zhang Y, Yang C, Liu A, Wu J, Zhu T, Nicholson ML, Fan Y, Yang B. Long-Term Protection of CHBP Against Combinational Renal Injury Induced by Both Ischemia-Reperfusion and Cyclosporine A in Mice. Front Immunol 2021; 12:697751. [PMID: 34381450 PMCID: PMC8350137 DOI: 10.3389/fimmu.2021.697751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia–reperfusion (IR) injury and cyclosporine A (CsA) nephrotoxicity affect allograft function and survival. The prolonged effects and underlying mechanisms of erythropoietin derived cyclic helix B peptide (CHBP) and/or caspase-3 small interfering RNA (CASP-3siRNA) were investigated in mouse kidneys, as well as kidney epithelial cells (TCMK-1), subjected to transplant-related injuries. Bilateral renal pedicles were clamped for 30 min followed by reperfusion for 2 and 8 weeks, with/without 35 mg/kg CsA gavage daily and/or 24 nmol/kg CHBP intraperitoneal injection every 3 days. The ratio of urinary albumin to creatinine was raised by IR injury, further increased by CsA and lowered by CHBP at 2, 4, 6 and 8 weeks, whereas the level of SCr was not significantly affected. Similar change trends were revealed in tubulointerstitial damage and fibrosis, HMGB1 and active CASP-3 protein. Increased apoptotic cells in IR kidneys were decreased by CsA and CHBP at 2 and/or 8 weeks. p70 S6 kinase and mTOR were reduced by CsA with/without CHBP at 2 weeks, so were S6 ribosomal protein and GSK-3β at 8 weeks, with reduced CASP-3 at both time points. CASP-3 was further decreased by CHBP in IR or IR + CsA kidneys at 2 or 8 weeks. Furthermore, in TCMK-1 cells CsA induced apoptosis was decreased by CHBP and/or CASP-3siRNA treatment. Taken together, CHBP predominantly protects kidneys against IR injury at 2 weeks and/or CsA nephrotoxicity at 8 weeks, with different underlying mechanisms. Urinary albumin/creatinine is a good biomarker in monitoring the progression of transplant-related injuries. CsA divergently affects apoptosis in kidneys and cultured kidney epithelial cells, in which CHBP and/or CASP-3siRNA reduces inflammation and apoptosis.
Collapse
Affiliation(s)
- Yufang Zhang
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, China
| | - Yuanyuan Wu
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Wang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Liu
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiwen Zhang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Shanghai Key Laboratory of Organ Transplantation, Fudan University, Shanghai, China
| | - Aifen Liu
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, China
| | - Jing Wu
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Shanghai Key Laboratory of Organ Transplantation, Fudan University, Shanghai, China
| | - Michael L Nicholson
- Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom.,Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yaping Fan
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Wu M, Rowe JM, Fleming SD. Complement Initiation Varies by Sex in Intestinal Ischemia Reperfusion Injury. Front Immunol 2021; 12:649882. [PMID: 33868287 PMCID: PMC8047102 DOI: 10.3389/fimmu.2021.649882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jennifer M. Rowe
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
21
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol 2021; 11:599974. [PMID: 33643288 PMCID: PMC7906018 DOI: 10.3389/fimmu.2020.599974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex-also known as C5b-9-is the end-product of the classical, lectin, and alternative complement pathways. It is thought to play an important role in the pathogenesis of various kidney diseases by causing cellular injury and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are, consequently, targeted in the development of novel therapies that inhibit the formation of C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in the kidney is essential. Because immunohistochemical staining of C5b-9 has not been routinely conducted and never been compared across studies, we provide a review of studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe techniques to stain deposits and compare the occurrence of deposits in healthy kidneys and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3 glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors, and rejection of kidney transplants. We summarize how these deposits are related with other histological lesions and clinical characteristics. We evaluate the prognostic relevance of these deposits in the light of possible treatment with complement inhibitors.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mieke F van Essen
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Helmut G Rennke
- Division of Renal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aiko P J de Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Yang J, Li X, Yang H, Long C. Oleanolic Acid Improves the Symptom of Renal Ischemia Reperfusion Injury via the PI3K/AKT Pathway. Urol Int 2020; 105:215-220. [PMID: 33291121 DOI: 10.1159/000506778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the therapeutic effect of oleanolic acid (OA) on the renal ischemia reperfusion injury (RIRI) and the possible mechanism. METHODS The RIRI model was successfully established in rats. OA, LY294002 (a PI3K inhibitor), and OA combined with LY294002 were dosed to rats in 3 therapeutic groups, respectively. The blood was collected to detect the concentration of Cr and BUN by ELISA. The kidney of each rat was collected to detect the concentration of renal injury factor (Kim-1) and the HE staining was performed. Western blot was used to detect the expression level of PI3K, p-AKT, AKT, PDK1, Skp2, and p27 in the renal tissue homogenate. RESULTS The symptom of vacuolar degeneration and interstitial edema was greatly improved in the rat kidney from the 3 therapeutic groups, compared with that from the RIRI model group. No significant difference was observed among the 3 therapeutic groups. The concentration of Cr in the 3 therapeutic groups was greatly lower than that in the RIRI model group. The expression level of p-AKT/AKT, PI3K, PDK1, Skp2, and p27 in OA group, LY294002 group, and OA combined with LY294002 group was significantly lower than that in the RIRI model group, respectively. CONCLUSION OA could improve the symptom of RIRI, possibly by inhibiting PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- JinRan Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Hua Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Chenmei Long
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China,
| |
Collapse
|
24
|
Iacobas DA, Mgbemena VE, Iacobas S, Menezes KM, Wang H, Saganti PB. Genomic Fabric Remodeling in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC): A New Paradigm and Proposal for a Personalized Gene Therapy Approach. Cancers (Basel) 2020; 12:cancers12123678. [PMID: 33302383 PMCID: PMC7762545 DOI: 10.3390/cancers12123678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary We applied the genomic fabric principles for personalized gene therapy to a case of clear cell renal cell carcinoma (ccRCC). Despite decades of research, the process of finding the molecular mechanisms responsible for the disease and, more importantly, the therapeutic solution is still a work in progress. We analyzed the transcriptomes of the chest wall metastasis, two distinct cancer nodules, and the cancer-free surrounding tissue in the surgically removed right kidney of a Fuhrman grade 3 metastatic ccRCC patient. The studies revealed that even histopathologically equally classified cancer nodules from the same kidney have different transcriptomic topologies, requiring tailored therapeutic solutions not only for each patient but even for each cancer nodule. We identified death-associated protein kinase 3 (DAPK3); transcription activation suppressor (TASOR); family with sequence similarity 27, member C, long non-coding RNA (FAM27C); and UDP-N-acetylglucosaminyltransferase subunit (ALG13) as the gene master regulators of the four profiled regions and proposed molecular mechanisms by which expression manipulation of TASOR and ALG13 may selectively destroy the cancer cells without affecting many of the normal cells. Abstract Published transcriptomic data from surgically removed metastatic clear cell renal cell carcinoma samples were analyzed from the genomic fabric paradigm (GFP) perspective to identify the best targets for gene therapy. GFP considers the transcriptome as a multi-dimensional mathematical object constrained by a dynamic set of expression controls and correlations among genes. Every gene in the chest wall metastasis, two distinct cancer nodules, and the surrounding normal tissue of the right kidney was characterized by three independent measures: average expression level, relative expression variation, and expression correlation with each other gene. The analyses determined the cancer-induced regulation, control, and remodeling of the chemokine and vascular endothelial growth factor (VEGF) signaling, apoptosis, basal transcription factors, cell cycle, oxidative phosphorylation, renal cell carcinoma, and RNA polymerase pathways. Interestingly, the three cancer regions exhibited different transcriptomic organization, suggesting that the gene therapy should not be personalized only for every patient but also for each major cancer nodule. The gene hierarchy was established on the basis of gene commanding height, and the gene master regulators DAPK3,TASOR, FAM27C and ALG13 were identified in each profiled region. We delineated the molecular mechanisms by which TASOR overexpression and ALG13 silencing would selectively affect the cancer cells with little consequences for the normal cells.
Collapse
Affiliation(s)
- Dumitru A. Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| | - Victoria E. Mgbemena
- Department of Biology, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Kareena M. Menezes
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Huichen Wang
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Premkumar B. Saganti
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
- Department of Physics, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| |
Collapse
|
25
|
Aldehyde dehydrogenase 2 regulates autophagy via the Akt-mTOR pathway to mitigate renal ischemia-reperfusion injury in hypothermic machine perfusion. Life Sci 2020; 253:117705. [PMID: 32334008 DOI: 10.1016/j.lfs.2020.117705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 01/15/2023]
Abstract
AIMS Ischemia-reperfusion injury (IRI) is harmful to patients following kidney transplantation. Hypothermic machine perfusion (HMP) can be adopted to preserve grafts and reduce consequential injury. We hypothesized that aldehyde dehydrogenase 2 (ALDH2) partly mitigates kidney IRI via regulating excessive autophagy in HMP. MATERIALS AND METHODS The rabbits were assigned to 5 groups: Normal, HMP, HMP + Alda-1, HMP + CYA and cold storage (CS). After the rabbit autologous kidney transplantation, renal pathology and function were evaluated by histological analysis, glomerular related proteins (desmin, nephrin), tubular injury factors (NGAL, Ki67), serum creatinine (Cr) and blood urea nitrogen (BUN). Oxidative stress molecular Malondialdehyde (MDA) and superoxide dismutase (SOD2) expression, as well as inflammatory cytokines (TNF-α, IL-6, IL-10) were assessed by immunohistochemistry. The expression of LC3, p62, ALDH2, p-Akt, mTOR, PTEN, p-PTEN, and 4-HNE were measured by immunohistochemistry, RT-PCR, Western blot analysis or ELISA. KEY FINDINGS HMP was more effective than CS for kidney preservation, with p- ALDH2 expressed in greater quantities in HMP. The results of kidney pathology and function in HMP + Alda-1 were the best. The MDA & SOD2 and the Vyacheslav score were improved in HMP + CYA. ALDH2 reduced 4-HNE-induced oxidative stress, inflammatory infiltration, the expression of LC3, p62 and inhibited autophagy accompanied by activation of p-Akt and mTOR via p-PTEN/PTEN. SIGNIFICANCE Akt-mTOR autophagy pathway is a novel target for ALDH2 to reduce renal IRI partly by inhibition of 4-HNE in HMP, then protecting the donated kidney received after cardiac death (DCD).
Collapse
|
26
|
Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1138-1150. [PMID: 32194049 DOI: 10.1016/j.ajpath.2020.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block MAC assembly or by rapid removal of MAC through endocytosis or shedding. In the absence of lysis, MAC may induce intracellular signaling and cell activation, responses implicated in a variety of autoimmune, inflammatory, and transplant disease settings. New discoveries into the structure and biophysical properties of MAC revealed heterogeneous MAC precursors and conformations that provide insights into MAC function. In addition, new mechanisms of MAC-mediated signaling and its contribution to disease pathogenesis have recently come to light. MAC-activated cells have been found to express proinflammatory proteins-often through NF-κB-dependent transcription, assemble inflammasomes, enabling processing, and facilitate secretion of IL-1β and IL-18, as well as other signaling pathways. These recent insights into the mechanisms of action of MAC provide an updated framework to therapeutic approaches that can target MAC assembly, signaling, and proinflammatory effects in various complement-mediated diseases.
Collapse
Affiliation(s)
- Catherine B Xie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Dan Jane-Wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
27
|
Jiang W, Yuan X, Zhu H, He C, Ge C, Tang Q, Xu C, Hu B, Huang C, Ma T. Inhibition of Histone H3K27 Acetylation Orchestrates Interleukin-9-Mediated and Plays an Anti-Inflammatory Role in Cisplatin-Induced Acute Kidney Injury. Front Immunol 2020; 11:231. [PMID: 32194547 PMCID: PMC7062682 DOI: 10.3389/fimmu.2020.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nephrotoxicity is a major side effect of cisplatin (CP)- and platinum-related chemotherapy, and inflammation contributes to disease pathogenesis. Interleukin-9 (IL-9) is a pleiotropic cytokine associated with inflammation. Here, we investigated the key role of IL-9 as a regulator of protective mechanisms in CP-induced acute kidney injury (AKI). We observed that IL-9 was decreased not only in a CP-induced AKI mouse model but also in THP-1 and RAW264.7 cell lines. Seventy-two hours post-CP injection, renal dysfunction and tubule injury were significantly attenuated in IL-9 overexpression adeno-associated virus 9 (AAV9)-treated mice. The levels of serum urea, serum creatinine, kidney injury molecule-1 (KIM-1), and histological damage were partially diminished following treatment with IL-9. The renoprotective effects of IL-9 may be attributed to the regulation of cytokines, and we found that IL-9 acted on macrophages in a regulatory manner, promoting an anti-inflammatory phenotype. Furthermore, IL-9 enhanced the suppression of macrophage-driven renal inflammation. Inhibition of H3K27 acetylation orchestrated IL-9-mediated renoprotection in CP-induced AKI. Thus, our findings indicate novel and potent anti-inflammatory properties of IL-9 that confer preservation of kidney function and structure in CP-induced AKI, which may counteract kidney disease procession.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Xinrong Yuan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hong Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Changsheng He
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Caiqiong Ge
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Qing Tang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Chuanting Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Bingfeng Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
28
|
Rezaei M, Figueroa B, Orfahli LM, Ordenana C, Brunengraber H, Dasarathy S, Rampazzo A, Bassiri Gharb B. Composite Vascularized Allograft Machine Preservation: State of the Art. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Zipfel PF, Wiech T, Rudnick R, Afonso S, Person F, Skerka C. Complement Inhibitors in Clinical Trials for Glomerular Diseases. Front Immunol 2019; 10:2166. [PMID: 31611870 PMCID: PMC6776600 DOI: 10.3389/fimmu.2019.02166] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Defective complement action is a cause of several human glomerular diseases including atypical hemolytic uremic syndrome (aHUS), anti-neutrophil cytoplasmic antibody mediated vasculitis (ANCA), C3 glomerulopathy, IgA nephropathy, immune complex membranoproliferative glomerulonephritis, ischemic reperfusion injury, lupus nephritis, membranous nephropathy, and chronic transplant mediated glomerulopathy. Here we summarize ongoing clinical trials of complement inhibitors in nine glomerular diseases and show which inhibitors are used in trials for these renal disorders (http://clinicaltrials.gov).
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ramona Rudnick
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Sara Afonso
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Fermin Person
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|