1
|
Broksø AD, Bendixen L, Fammé S, Mikkelsen K, Jensen TI, Bak RO. Orthogonal transcriptional modulation and gene editing using multiple CRISPR-Cas systems. Mol Ther 2025; 33:71-89. [PMID: 39563029 PMCID: PMC11764084 DOI: 10.1016/j.ymthe.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
CRISPR-Cas-based transcriptional activation (CRISPRa) and interference (CRISPRi) enable transient programmable gene regulation by recruitment or fusion of transcriptional regulators to nuclease-deficient Cas (dCas). Here, we expand on the emerging area of transcriptional engineering and RNA delivery by benchmarking combinations of RNA-delivered dCas and transcriptional modulators. We utilize dCas9 from Staphylococcus aureus and Streptococcus pyogenes for orthogonal transcriptional modulation to upregulate one set of genes while downregulating another. We also establish trimodal genetic engineering by combining orthogonal transcriptional regulation with gene knockout by Cas12a (Acidaminococcus; AsCas12a) ribonucleoprotein delivery. To simplify trimodal engineering, we explore optimal parameters for implementing truncated single guide RNAs (sgRNAs) to make use of SpCas9 for knockout and CRISPRa. We find the Cas9 protein/sgRNA ratio to be crucial for avoiding sgRNA cross-complexation and for balancing knockout and activation efficiencies. We demonstrate high efficiencies of trimodal genetic engineering in primary human T cells while preserving basic T cell health and functionality. This study highlights the versatility and potential of complex genetic engineering using multiple CRISPR-Cas systems in a simple one-step process yielding transient transcriptome modulation and permanent DNA changes. We believe such elaborate engineering can be implemented in regenerative medicine and therapies to facilitate more sophisticated treatments.
Collapse
Affiliation(s)
| | - Louise Bendixen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Simon Fammé
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
2
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
3
|
Podolska MJ, Grützmann R, Pilarsky C, Bénard A. IL-3: key orchestrator of inflammation. Front Immunol 2024; 15:1411047. [PMID: 38938573 PMCID: PMC11208316 DOI: 10.3389/fimmu.2024.1411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Interleukin (IL)-3 has long been known for its hematopoietic properties. However, recent evidence has expanded our understanding of IL-3 function by identifying IL-3 as a critical orchestrator of inflammation in a wide array of diseases. Depending on the type of disease, the course of inflammation, the cell or the tissue involved, IL-3 promotes either pathologic inflammation or its resolution. Here, we describe the cell-specific functions of IL-3 and summarize its role in diseases. We discuss the current treatments targeting IL-3 or its receptor, and highlight the potential and the limitations of targeting IL-3 in clinics.
Collapse
Affiliation(s)
| | | | | | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
5
|
Ullrich KAM, Derdau J, Baltes C, Battistella A, Rosso G, Uderhardt S, Schulze LL, Liu LJ, Dedden M, Spocinska M, Kainka L, Kubánková M, Müller TM, Schmidt NM, Becker E, Ben Brahim O, Atreya I, Finotto S, Prots I, Wirtz S, Weigmann B, López-Posadas R, Atreya R, Ekici AB, Lautenschläger F, Guck J, Neurath MF, Zundler S. IL-3 receptor signalling suppresses chronic intestinal inflammation by controlling mechanobiology and tissue egress of regulatory T cells. Gut 2023; 72:2081-2094. [PMID: 37541770 PMCID: PMC10579496 DOI: 10.1136/gutjnl-2023-329818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023]
Abstract
IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.
Collapse
Affiliation(s)
- Karen Anne-Marie Ullrich
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Derdau
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Baltes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alice Battistella
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marta Spocinska
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucina Kainka
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tanja Martina Müller
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Nina-Maria Schmidt
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oumaima Ben Brahim
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1 - Dental Preservation and Periodontology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Fader KA, Gosink MM, Xia S, Lanz TA, Halsey C, Vaidya VS, Radi ZA. Thymic lymphoma detection in RORγ knockout mice using 5-hydroxymethylcytosine profiling of circulating cell-free DNA. Toxicol Appl Pharmacol 2023; 473:116582. [PMID: 37295732 DOI: 10.1016/j.taap.2023.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
A high incidence of thymic lymphoma has been noted in mice deficient of retinoid-related orphan receptor γ2 (RORγ2), which is required for differentiation of naïve CD4+ T cells into TH17 cells. Using a RORγ homozygous knockout (KO) mouse model of thymic lymphoma, we characterized this tumor progression and investigated the utility of 5-hydroxymethylcytosine (5hmC) signatures as a non-invasive circulating biomarker for early prediction of malignancy. No evidence for malignancy was noted in the wild-type mice, while primary thymic lymphoma with multi-organ metastasis was observed microscopically in 97% of the homozygous RORγ KO mice. The severity of thymic lymphoma was not age-dependent in the KO mice of 2 to 4 months old. Differential enrichment of 5hmC in thymic DNA and plasma cell-free DNA (cfDNA) was compared across different stages of tumor progression. Random forest modeling of plasma cfDNA achieved good predictivity (AUC = 0.74) in distinguishing early non-metastatic thymic lymphoma compared to cancer-free controls, while perfect predictivity was achieved with advanced multi-organ metastatic disease (AUC = 1.00). Lymphoid-specific genes involved in thymocyte selection during T cell development (Themis, Tox) were differentially enriched in both plasma and thymic tissue. This could help in differentiating thymic lymphoma from other tumors commonly detected in rodent carcinogenicity studies used in pharmaceutical drug development to inform human malignancy risk. Overall, these results provide a proof-of-concept for using circulating cfDNA profiles in rodent carcinogenicity studies for early risk assessment of novel pharmaceutical targets.
Collapse
Affiliation(s)
- Kelly A Fader
- Pfizer Worldwide Research, Development and Medical; Early Clinical Development; Groton, CT, USA.
| | - Mark M Gosink
- Boehringer Ingelheim Pharmaceuticals, Inc.; Ridgefield, CT, USA
| | - Shuhua Xia
- Pfizer Worldwide Research, Development and Medical; Drug Safety Research and Development; Groton, CT, USA
| | - Thomas A Lanz
- Pfizer Worldwide Research, Development and Medical; Drug Safety Research and Development; Groton, CT, USA
| | - Charles Halsey
- Pfizer Worldwide Research, Development and Medical; Drug Safety Research and Development; Groton, CT, USA
| | - Vishal S Vaidya
- Pfizer Worldwide Research, Development and Medical; Drug Safety Research and Development; Cambridge, MA, USA
| | - Zaher A Radi
- Pfizer Worldwide Research, Development and Medical; Drug Safety Research and Development; Cambridge, MA, USA
| |
Collapse
|
7
|
Morot J, Del Duca E, Chastagner M, Fernandes M, Estrada Y, Lefevre MA, Kanitakis J, Harou O, Jullien D, Nicolas JF, Krueger JG, Vocanson M, Guttman-Yassky E, Villani AP. Hyperactivation of the JAK2/STAT5 Signaling Pathway and Evaluation of Baricitinib Treatment Among Patients With Eosinophilic Cellulitis. JAMA Dermatol 2023; 159:820-829. [PMID: 37342057 PMCID: PMC10285679 DOI: 10.1001/jamadermatol.2023.1651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/26/2023] [Indexed: 06/22/2023]
Abstract
Importance The pathogenesis of eosinophilic cellulitis (EC) is poorly understood, limiting available treatment options. The current treatment paradigm focuses on delayed type 2 hypersensitivity reaction to various triggers. Objective To gain further insight into the nature of EC inflammation and into the cellular signal transduction pathways that are activated in the context of EC. Design, Setting, and Participants This case series was conducted in Lyon, France, from January 2018 to December 2021. Analysis of archival skin biopsy samples from patients with EC and from healthy control participants was performed using histology, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) immunohistochemistry, and gene profiling. Data analysis was conducted between January 2020 and January 2022. Main Outcomes and Measures Pruritus (visual analog score), percentage of body surface area with lesional skin, and RNA transcripts of inflammatory biomarkers from the skin (threshold cycle) were assessed in 1 index patient with refractory EC who received oral JAK1/JAK2 inhibitor baricitinib (4 mg/d). Results This study included samples from 14 patients with EC (7 men and 7 women) and 8 healthy control participants (4 men and 4 women). The mean (SD) age of patients was 52 (20) years. Marked type 2 inflammation (chemokines CCL17, CCL18, and CCL26 and interleukin 13) with preferential activation of the JAK1/JAK2-STAT5 pathways in EC lesions was observed. In the 1 index patient with refractory EC, complete clinical remission of skin lesions was observed after 1 month of treatment with baricitinib. Conclusions and Relevance These findings suggest that EC is a type 2 inflammatory disease with preferential activation of the JAK1/JAK2-STAT5 pathways. In addition, these results suggest the potential of treatment approaches targeting JAK1/JAK2 for patients with EC.
Collapse
Affiliation(s)
- Johanna Morot
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Marine Chastagner
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Marie Fernandes
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Yeriel Estrada
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Marine-Alexia Lefevre
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Jean Kanitakis
- Department of Dermatology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Department of Pathology, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Olivier Harou
- Department of Pathology, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Denis Jullien
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Jean-Francois Nicolas
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Department of Allergology and Immunology, Hôpital Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - James G. Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Axel P. Villani
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| |
Collapse
|
8
|
Gray N, Limberg MM, Wiebe D, Weihrauch T, Langner A, Brandt N, Bräuer AU, Raap U. Differential Upregulation and Functional Activity of S1PR1 in Human Peripheral Blood Basophils of Atopic Patients. Int J Mol Sci 2022; 23:16117. [PMID: 36555755 PMCID: PMC9785255 DOI: 10.3390/ijms232416117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Basophils are key effector cells in atopic diseases, and the signaling sphingolipid Sphigosine-1-phosphate (S1P) is emerging as an important mediator in these conditions. The possible interaction of S1P and basophils and the resulting biological effects have not yet been studied. We hypothesize that S1P influences the function of basophils in atopy and aim to elucidate the modes of interaction. S1P receptor (S1PR) expression in human peripheral blood basophils from atopic and non-atopic patients was assessed through qRT-PCR and flow cytometry analysis. Functional effects of S1P were assessed through a basophil activation test (BAT), calcium flux, apoptosis, and chemotaxis assays. Immunofluorescence staining was performed to visualize intracellular S1P. Human basophils express S1PR1, S1PR2, S1PR3, and S1PR4 on the mRNA level. 0.1 µM S1P have anti-apoptotic, while 10 µM exhibits apoptotic effects on basophils. Basophils from atopic patients show less chemotactic activity in response to S1P than those from healthy donors. Protein expression of S1PR1 is downregulated in atopic patients, and basophils in lesional AD skin possess intracellular S1P. These findings suggest that the interaction of S1P and basophils might be an important factor in the pathophysiology of atopy.
Collapse
Affiliation(s)
- Natalie Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Maren M. Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Wiebe
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Anna Langner
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Nicola Brandt
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Anja U. Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
9
|
Côrte-Real BF, Arroyo Hornero R, Dyczko A, Hamad I, Kleinewietfeld M. Dissecting the role of CSF2RB expression in human regulatory T cells. Front Immunol 2022; 13:1005965. [PMID: 36532080 PMCID: PMC9755334 DOI: 10.3389/fimmu.2022.1005965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Colony stimulating factor 2 receptor subunit beta (CSF2RB; CD131) is the common subunit of the type I cytokine receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5. Interestingly, FOXP3+ regulatory T cells (Tregs), which play a pivotal role in prevention of autoimmunity have been demonstrated to highly overexpress CSF2RB and genome-wide association studies (GWAS) identified CSF2RB as being linked to autoimmune diseases like multiple sclerosis (MS). However, the exact biological role of CD131 in human Tregs has not been defined yet. Here we investigated CD131 importance on Treg phenotype and function in a broad range of in vitro studies. Although we could not recognize a specific function of CSF2RB; CD131 in human Tregs, our data show that CD131 expression is vastly restricted to Tregs even under stimulatory conditions, indicating that CD131 could aid as a potential marker to identify Treg subpopulations from pools of activated CD4+ T cells. Importantly, our analysis further demonstrate the overexpression of CSF2RB in Tregs of patients with autoimmune diseases like MS and systemic lupus erythematosus (SLE) in comparison to healthy controls, thereby indicating that CSF2RB expression in Tregs could serve as a potential novel biomarker for disease.
Collapse
Affiliation(s)
- Beatriz F. Côrte-Real
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Aleksandra Dyczko
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University Mulpitle Sclerosis Center (UMSC), Hasselt University (UHasselt)/Campus, Diepenbeek, Belgium,*Correspondence: Markus Kleinewietfeld,
| |
Collapse
|
10
|
Yan L, Lihua L, Sha Z, Hongli W, Wu Z, Guijun T, Kai Z, Yahui L. The activity of cytokines in dental pulp. J Gene Med 2022; 24:e3444. [PMID: 35999039 DOI: 10.1002/jgm.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND After binding to their corresponding receptors, cytokines mediate a variety of biological activities. However, the activity of cytokines in dental pulp has not been studied in the single cell level. METHODS The cytokines activity of dental pulp was analyzed through CytoSig with the single cell sequencing data of dental pulp. RESULTS There are 43 cytokine signalling pathways analysed with CytoSig. The activity of TRAIL, NO, IL3, CXCL12 and IL1A was high in the majority of cells in the dental pulp. NO, TRAIL, CXCL12, BMP4 and BMP6 had higher activity in dental pulp stem cells, while CXCL12, BMP4, BMP6, BMP2 and IFN1 were the cytokines with high activity in pulp cells. CONCLUSION Our findings show the landscape of cytokine activity in dental pulp.
Collapse
Affiliation(s)
- Li Yan
- Department of Stomatology, Jingshan People's Hospital
| | - Liu Lihua
- Hanyang Outpatient Clinic, School & Hospital of Stomatology, Wuhan University
| | - Zhang Sha
- Department of Stomatology, Jingshan People's Hospital
| | - Wu Hongli
- Department of Stomatology, Jingshan People's Hospital
| | - Zhong Wu
- Department of Stomatology, Jingshan People's Hospital
| | - Tian Guijun
- Department of Stomatology, Jingshan People's Hospital
| | - Zhang Kai
- Department of Stomatology, Jingshan People's Hospital
| | - Luo Yahui
- Department of Stomatology, Jingshan People's Hospital
| |
Collapse
|
11
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
12
|
Targeted deletion of Interleukin-3 results in asthma exacerbations. iScience 2022; 25:104440. [PMID: 35707726 PMCID: PMC9189047 DOI: 10.1016/j.isci.2022.104440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
|
13
|
Carai P, Ruozi G, Paye A, Debing Y, Bortolotti F, Lecomte J, Zentilin L, Jones EAV, Giacca M, Heymans S. AAV9-mediated functional screening for cardioprotective cytokines in Coxsackievirus-B3-induced myocarditis. Sci Rep 2022; 12:7304. [PMID: 35508525 PMCID: PMC9067557 DOI: 10.1038/s41598-022-11131-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Viral myocarditis (VM) is an important cause of heart failure (HF) in children and adults. However, the molecular determinants involved in cardiac inflammation and cardiomyocyte necrosis remain poorly characterized, and cardioprotective molecules are currently missing. Here, we applied an in vivo method based on the functional selection (FunSel) of cardioprotective factors using AAV vectors for the unbiased identification of novel immunomodulatory molecules in a Coxsackievirus B3 (CVB3)-induced myocarditis mouse model. Two consecutive rounds of in vivo FunSel using an expression library of 60 cytokines were sufficient to identify five cardioprotective factors (IL9, IL3, IL4, IL13, IL15). The screening also revealed three cytokines (IL18, IL17b, and CCL11) that were counter-selected and likely to exert a detrimental effect. The pooled overexpression of the five most enriched cytokines using AAV9 vectors decreased inflammation and reduced cardiac dilatation, persisting at 1 month after treatment. Individual overexpression of IL9, the top ranking in our functional selection, markedly reduced cardiac inflammation and injury, concomitant with an increase of anti-inflammatory Th2-cells and a reduction of pro-inflammatory Th17- and Th22-cells at 14 days post-infection. AAV9-mediated FunSel cardiac screening identified IL9 and other four cytokines (IL3, IL4, IL13, and IL15) as cardioprotective factors in CVB3-induced VM in mice.
Collapse
Affiliation(s)
- Paolo Carai
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Giulia Ruozi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alexandra Paye
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Yannick Debing
- CARIM, Maastricht University, Maastricht, The Netherlands
- Aligos Therapeutics, Leuven, Belgium
| | - Francesca Bortolotti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Julie Lecomte
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, London, UK
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Center for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium.
- CARIM, Maastricht University, Maastricht, The Netherlands.
- Center for Heart Failure Research, CARIM, Department of Cardiology, Maastricht University Medical Center, PO BOX 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
14
|
Fujita H, Fujita T, Fujii H. IL-3-Induced Immediate Expression of c- fos and c- jun Is Modulated by the IKK2-JNK Axis. Cells 2022; 11:cells11091451. [PMID: 35563758 PMCID: PMC9105775 DOI: 10.3390/cells11091451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Interleukin (IL)-3 is a pleiotropic cytokine that regulates the survival, proliferation, and differentiation of hematopoietic cells. The binding of IL-3 to its receptor activates intracellular signaling, inducing transcription of immediate early genes (IEGs) such as c-fos, c-jun, and c-myc; however, transcriptional regulation under IL-3 signaling is not fully understood. This study assessed the role of the inhibitor of nuclear factor-κB kinases (IKKs) in inducing IL-3-mediated expression of IEGs. We show that IKK1 and IKK2 are required for the IL-3-induced immediate expression of c-fos and c-jun in murine hematopoietic Ba/F3 cells. Although IKK2 is well-known for its pivotal role as a regulator of the canonical nuclear factor-κB (NF-κB) pathway, activation of IKKs did not induce the nuclear translocation of the NF-κB transcription factor. We further revealed the important role of IKK2 in the activation of c-Jun N-terminal kinase (JNK), which mediates the IL-3-induced expression of c-fos and c-jun. These findings indicate that the IKK2-JNK axis modulates the IL-3-induced expression of IEGs in a canonical NF-κB-independent manner.
Collapse
|
15
|
Li L, Liao Z, Ye M, Jiang J. Recombinant human IL-37 inhibited endometriosis development in a mouse model through increasing Th1/Th2 ratio by inducing the maturation of dendritic cells. Reprod Biol Endocrinol 2021; 19:128. [PMID: 34429116 PMCID: PMC8383354 DOI: 10.1186/s12958-021-00811-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometriosis is a serious reproductive and general health consequences. Recombinant human IL-37 (rhIL-37) is an inhibitor of inflammation. METHODS ELISA assay was performed to detect the concentration of cytokines. Flow cytometry was used to analyze cell proportion. Besides, qRT-PCR and western blotting assay were used to detect the level of gene and protein, respectively. Transwell co-culture system was used for the co-culture of dendritic cells (DCs) and CD4+T cells. RESULTS Our data showed that rhIL-37 inhibited the development of ectopic lesions in the mice with endometriosis, increased Th1/Th2 ratio and induced DCs maturation. The co-culture system of DCs and CD4+T cells demonstrated that rhIL-37 increased Th1/Th2 cell ratio through promoting DCs maturation. Moreover, the expression of IL-4 in the DCs derived from healthy mice was inhibited by rhIL-37 treatment. rhIL-37 increased Th1/Th2 cell ratio through inhibiting IL-4 in DCs. Subsequently, our results proved that rhIL-37 promoted the maturation of DCs via inhibiting phosphorylation of STAT3. Activation of STAT3 could reverse rhIL-37-induced maturation of DCs. CONCLUSION Overall, rhIL-37 could protect against endometriosis through increasing the ratio of Th1/Th2 cells via inducing DCs maturation and inhibiting IL-4 expression in the DCs. Furthermore, rhIL-37 induced DCs maturation by inhibiting STAT3 phosphorylation. Our data confirmed the protective effect of rhIL-37 in endometriosis. These data may provide a novel idea for the treatment of the disease.
Collapse
Affiliation(s)
- Lijie Li
- Department of Gynecology, The Third Xiangya Hospital of Central South University, NO.138 tongzipo, Yuelu District, Hunan, 410013, Changsha, China
| | - Zhouzhou Liao
- Department of Gynecology, The Third Xiangya Hospital of Central South University, NO.138 tongzipo, Yuelu District, Hunan, 410013, Changsha, China
| | - Mingzhu Ye
- Department of Gynecology, The Third Xiangya Hospital of Central South University, NO.138 tongzipo, Yuelu District, Hunan, 410013, Changsha, China
| | - Jianfa Jiang
- Department of Gynecology, The Third Xiangya Hospital of Central South University, NO.138 tongzipo, Yuelu District, Hunan, 410013, Changsha, China.
| |
Collapse
|
16
|
Guo L, Wei X, Jiang P. The use of gene-modified bone marrow mesenchymal stem cells for cochlear cell therapy. Transpl Immunol 2021; 68:101433. [PMID: 34197926 DOI: 10.1016/j.trim.2021.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the potential of using bone marrow mesenchymal stem cells (BMSCs) for treatment of inflammation and autoimmune sensorineural hearing loss. METHODS Fifty-five immunized guinea pigs were divided into five groups. Group A received BMSCs expressing IL-4, group B received BMSCs expressing an empty carrier vector, group C received recombinant lentivirus expressing IL-4, group D received recombinant lentivirus expressing an empty carrier vector, and group E received phosphate-buffered saline. Auditory function was monitored using brain stem responses (ABRs) to evaluate the auditory changes. The distribution of implanted BMSCs in the inner ear was estimated using fluorescence microscopy. The distribution and expression of IL-4 gene products in the inner ear were detected via immunohistochemistry. RESULTS After transplantation, the ABR III wave threshold decreased significantly in BMSCs expressing exogenous IL-4 group (group A), BMSCs expressing empty carrier vector group (group B), and recombinant lentivirus expressing IL-4 group (group C) (P < 0.001), which means the auditory functions of the experimental guinea pigs were improved. Further statistical analysis revealed that BMSCs expressing exogenous IL-4 group (group A) and BMSCs expressing empty carrier vector group (group B) were able to improve the auditory function more obviously (P < 0.05). Lentivirus-infected BMSCs were able to migrate to the inner ear. Fluorescence-positive BMSCs were scattered in the scala tympani and vestibule. CONCLUSIONS These results demonstrated that BMSCs expressing exogenous IL-4 successfully migrated into the inner ear in an in vitro study. BMSCs expressing exogenous IL-4 and BMSCs can be used to treat inflammatory injury in autoimmune inner ear diseases.
Collapse
Affiliation(s)
- Lang Guo
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xu Wei
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ping Jiang
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
18
|
Li W, Xiang X, Cao N, Chen W, Tian Y, Zhang X, Shen X, Jiang D, Xu D, Xu S. Polysaccharide of atractylodes macrocephala koidz activated T lymphocytes to alleviate cyclophosphamide-induced immunosuppression of geese through novel_mir2/CD28/AP-1 signal pathway. Poult Sci 2021; 100:101129. [PMID: 34058564 PMCID: PMC8170423 DOI: 10.1016/j.psj.2021.101129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Polysaccharide Of Atractylodes Macrocephala Koidz (PAMK) has been proved to have anti-cancer, antitumor, anti-inflammation function and improve the immune level of the organism. The miRNA plays a very important role in regulating the immune function by negatively regulate the expression of target genes. To explore the molecular mechanism of PAMK active the lymphocytes, thirty 61-d-old geese were randomly divided into 4 groups (C, CTX, PAMK, PAMK+CTX). The thymus morphology, the level of serum granulocyte-macrophage colony-stimulating factor (GMC-SF), IL-1β, IL-3, IL-5, the relative mRNA expression of CD25, novel_mir2, CTLA4 and CD28 signal pathway were measured. Further more, the lymphocytes was extracted from thymus to measure the relative mRNA expression of CD28 signal pathway. The results showed that PAMK could significantly maintain normal cell morphology of thymus, alleviate the decrease level of GMC-SF, IL-1β, IL-5, IL-6, TGF-β, the increase level of IL-4, IL-10, and the decrease relative mRNA expression of novel_mir2, CD25 and CD28 signal pathway in thymus and lymphocytes induced by cyclophosphamide (CTX). In conclusion, PAMK alleviated the decreased T lymphocytes activation levels induced by CTX through novel_mir2/CTLA4/CD28/AP-1 signal pathway.
Collapse
Affiliation(s)
- Wanyan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xuelian Xiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Nan Cao
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Wenbin Chen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Yunbo Tian
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xumeng Zhang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xu Shen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danli Jiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danning Xu
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
19
|
Mechanism of Intestinal Flora and Proteomics on Regulating Immune Function of Durio zibethinus Rind Polysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6614028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, cyclophosphamide was injected intraperitoneally to establish an immunosuppressive mouse model to study the immune regulating effects of Durio zibethinus Murr rind polysaccharide (DZMP) through proteomics and intestinal flora. The results showed that the thymus and spleen indexes of the high-dose DZMP (200 mg/kg) group were significantly increased, and the tissue structure of the spleen was improved compared with the model group (
). The contents of IL-2, IL-4, IL-6, and TNF-α in the high-dose group of DZMP were significantly increased (
). Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) were increased in serum (
). In the liver, catalase (CAT) activity was increased (
) while the malondialdehyde (MDA) content was decreased and immune activity was increased (
). Proteomics studies showed that the drug group could significantly increase the low-affinity immunoglobulin gamma Fc receptor III (FcγRIII) protein and protein kinase C-α (PKC-α) compared with the model group (
). In addition, the result showed that those proteins were likely involved in the regulation of the metabolic pathways of autoimmune thyroid disease, Staphylococcus aureus infection, and NF-κB signaling pathway. Intestinal microbial studies showed that short-chain fatty acid (SCFA) content was increased as well as the relative abundance of beneficial bacteria Akkermansia, Bacteroides, and Paraprevotella, while the relative abundance of Ruminococcus and Oscillospira was decreased compared with the model group (
). The results showed that DZMP might play a beneficial role in immune regulation by improving intestinal flora.
Collapse
|
20
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Olesen CM, Pavel AB, Wu J, Mikhaylov D, Del Duca E, Estrada Y, Krueger JG, Zhang N, Clausen ML, Agner T, Guttman-Yassky E. Tape-strips provide a minimally invasive approach to track therapeutic response to topical corticosteroids in atopic dermatitis patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:576-579.e3. [DOI: 10.1016/j.jaip.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
|