1
|
Naruse TK, Konishi-Takemura M, Yanagida R, Sharma G, Vajpayee M, Terunuma H, Mehra NK, Kaur G, Kimura A. Killer cell immunoglobulin-like receptor three domains long cytoplasmic tail 1 gene *007 may modulate disease progression of human immunodeficiency virus-1 infection in the Japanese population. Int J Immunogenet 2023; 50:48-52. [PMID: 36807537 DOI: 10.1111/iji.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
One of the KIR allele, KIR3DL1*007, was associated with the progression to acquired immunodeficiency syndrome and not with the susceptibility to HIV-1 infection in the Japanese and Indian populations, implying that KIR3DL1*007-positive NK cells might eliminate HIV-infected cells less effectively than NK cells bearing the other KIR3DL1 alleles or KIR3DS1 alleles.
Collapse
Affiliation(s)
- Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Makiko Konishi-Takemura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Yanagida
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Tang J. Immunogenetic determinants of heterosexual HIV-1 transmission: key findings and lessons from two distinct African cohorts. Genes Immun 2021; 22:65-74. [PMID: 33934119 PMCID: PMC8225584 DOI: 10.1038/s41435-021-00130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Immunogenetic studies in the past three decades have uncovered a broad range of human genetic factors that seem to influence heterosexual HIV-1 transmission in one way or another. In our own work that jointly evaluated both genetic and nongenetic factors in two African cohorts of cohabiting, HIV-1-discordant couples (donor and recipient pairs) at risk of transmission during quarterly follow-up intervals, relatively consistent findings have been seen with three loci (IL19, HLA-A, and HLA-B), although the effect size (i.e., odds ratio or hazards ratio) of each specific variant was quite modest. These studies offered two critical lessons that should benefit future research on sexually transmitted infections. First, in donor partners, immunogenetic factors (e.g., HLA-B*57 and HLA-A*36:01) that operate directly through HIV-1 viral load or indirectly through genital coinfections are equally important. Second, thousands of single-nucleotide polymorphisms previously recognized as "causal" factors for human autoimmune disorders did not appear to make much difference, which is somewhat puzzling as these variants are predicted or known to influence the expression of many immune response genes. Replicating these observations in additional cohorts is no longer feasible as the field has shifted its focus to early diagnosis, universal treatment, and active management of comorbidities.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Connolly S, Wall KM, Tang J, Yu T, Kilembe W, Kijak G, Allen S, Hunter E. Fc-gamma receptor IIA and IIIA variants in two African cohorts: Lack of consistent impact on heterosexual HIV acquisition, viral control, and disease progression. Virology 2018; 525:132-142. [PMID: 30278383 PMCID: PMC6343481 DOI: 10.1016/j.virol.2018.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
Human Fc-gamma receptors (FcγRs) FcγRIIA and FcγRIIIA contain amino acid variants with both high and low affinities for IgG that modulate antibody-mediated effector functions. Recent HIV vaccine trials suggested that these FcγR variants can influence susceptibility to HIV infection, which prompted us to fully assess the role of FcγR variants on HIV acquisition, viral control, and disease progression in two longitudinal heterosexual transmission cohorts with HIV subtypes A and C as the major circulating viruses. For 836 participants, molecular genotyping resolved genetic variations encoding the FcγRIIA (131 H/R) and FcγRIIIA (158 V/F) single nucleotide polymorphisms. Kaplan-Meier curves, Cox proportional hazards models, and linear regression models did not reveal any clear or consistent FcγR association with time to HIV acquisition, viral load in early infection, or extent of CD4 + T-cell decline over time after infection. Overall, previous epidemiological findings on FcγR variants and vaccine efficacy are not readily applicable to heterosexual HIV transmission.
Collapse
Affiliation(s)
- Sarah Connolly
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Kristin M Wall
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, United States
| | | | - Gustavo Kijak
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia; Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
4
|
Wiener HW, Shrestha S, Lu H, Karita E, Kilembe W, Allen S, Hunter E, Goepfert PA, Tang J. Immunogenetic factors in early immune control of human immunodeficiency virus type 1 (HIV-1) infection: Evaluation of HLA class I amino acid variants in two African populations. Hum Immunol 2017; 79:166-171. [PMID: 29289742 DOI: 10.1016/j.humimm.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
Abstract
Immune control of HIV-1 infection depends heavily on cytotoxic T-lymphocyte responses restricted by diverse HLA class I molecules. Recent work has uncovered specific amino acid residues (AARs) that seem to dictate the extent of immune control in African Americans, which prompted us to test these emerging hypotheses in seroconverters (SCs) from southern and eastern Africa. Based on data from 196 Zambians and 76 Rwandans with fully resolved HLA alleles and pre-therapy HIV-1 viral loads (VL) in the first 3- to 36-month of infection (>2300 person-visits), four AARs of primary interest (positions 63, 97, 116 and 245 in the mature HLA-B protein) were found to explain 8.1% and 15.8% of variance in set-point VL for these cohorts (P = .024 and 7.5 × 10-6, respectively). Two AARs not reported previously (167S in HLA-B and 116F in HLA-C) also showed relatively consistent associations with VL (adjusted P = .009-.069), while many population-specific associations were also noted (false discovery rate <0.05). Extensive and often strong linkage disequilibrium among neighboring AAR variants called for more extensive analyses of AAR haplotypes in diverse cohorts before the structural basis of antigen presentation can be fully comprehended.
Collapse
Affiliation(s)
- Howard W Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hailin Lu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, GA, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathog 2016; 12:e1005989. [PMID: 27851829 PMCID: PMC5112890 DOI: 10.1371/journal.ppat.1005989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022] Open
Abstract
A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.
Collapse
|
6
|
Dynamics and Correlates of CD8 T-Cell Counts in Africans with Primary Human Immunodeficiency Virus Type 1 Infection. J Virol 2016; 90:10423-10430. [PMID: 27630231 DOI: 10.1128/jvi.01467-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
In individuals with HIV-1 infection, depletion of CD4+ T cells is often accompanied by a malfunction of CD8+ T cells that are persistently activated and/or exhausted. While the dynamics and correlates of CD4 counts have been well documented, the same does not apply to CD8 counts. Here, we examined the CD8 counts in a cohort of 497 Africans with primary HIV-1 infection evaluated in monthly to quarterly follow-up visits for up to 3 years in the absence of antiretroviral therapy. Statistical models revealed that (i) CD8 counts were relatively steady in the 3- to 36-month period of infection and similar between men and women; (ii) neither geography nor heterogeneity in the HIV-1 set-point viral load could account for the roughly 10-fold range of CD8 counts in the cohort (P > 0.25 in all tests); and (iii) factors independently associated with relatively high CD8 counts included demographics (age ≤ 40 years, adjusted P = 0.010) and several human leukocyte antigen class I (HLA-I) alleles, including HLA-A*03:01 (P = 0.013), B*15:10 (P = 0.007), and B*58:02 (P < 0.001). Multiple sensitivity analyses provided supporting evidence for these novel relationships. Overall, these findings suggest that factors associated with the CD8 count have little overlap with those previously reported for other HIV-1-related outcome measures, including viral load, CD4 count, and CD4/CD8 ratio. IMPORTANCE Longitudinal data from 497 HIV-1 seroconverters allowed us to systematically evaluate the dynamics and correlates of CD8+ T-cell counts during untreated primary HIV-1 infection in eastern and southern Africans. Our findings suggest that individuals with certain HLA-I alleles, including A*03 (exclusively A*03:01), persistently maintain relatively high CD8 counts following HIV-1 infection, a finding which may offer an intriguing explanation for the recently reported, negative association of A*03 with HIV-1-specific, broadly neutralizing antibody responses. In future studies, attention to HLA-I genotyping data may benefit in-depth understanding of both cellular and humoral immunity, as well as the intrinsic balances of these types of immunity, especially in settings where there is emerging evidence of antagonism between the two arms of adaptive immunity.
Collapse
|
7
|
Tang J, Li X, Price MA, Sanders EJ, Anzala O, Karita E, Kamali A, Lakhi S, Allen S, Hunter E, Kaslow RA, Gilmour J. CD4:CD8 lymphocyte ratio as a quantitative measure of immunologic health in HIV-1 infection: findings from an African cohort with prospective data. Front Microbiol 2015; 6:670. [PMID: 26191056 PMCID: PMC4486831 DOI: 10.3389/fmicb.2015.00670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/19/2015] [Indexed: 01/06/2023] Open
Abstract
In individuals with human immunodeficiency virus type 1 (HIV-1) infection, CD4:CD8 lymphocyte ratio is often recognized as a quantitative outcome that reflects the critical role of both CD4(+) and CD8(+) T-cells in HIV-1 pathogenesis or disease progression. Our work aimed to first establish the dynamics and clinical relevance of CD4:CD8 ratio in a cohort of native Africans and then to examine its association with viral and host factors, including: (i) length of infection, (ii) demographics, (iii) HIV-1 viral load (VL), (iv) change in CD4(+) T-lymphocyte count (CD4 slope), (v) HIV-1 subtype, and (vi) host genetics, especially human leukocyte antigen (HLA) variants. Data from 499 HIV-1 seroconverters with frequent (monthly to quarterly) follow-up revealed that CD4:CD8 ratio was stable in the first 3 years of infection, with a modest correlation with VL and CD4 slope. A relatively normal CD4:CD8 ratio (>1.0) in early infection was associated with a substantial delay in disease progression to severe immunodeficiency (<350 CD4 cells/μl), regardless of other correlates of HIV-1 pathogenesis (adjusted hazards ratio (HR) = 0.43, 95% confidence interval (CI) = 0.29-0.63, P < 0.0001). Low VL (<10,000 copies/ml) and HLA-A*74:01 were the main predictors of CD4:CD8 ratio >1.0, but HLA variants (e.g., HLA-B*57 and HLA-B*81) previously associated with VL and/or CD4 trajectories in eastern and southern Africans had no obvious impact on CD4:CD8 ratio. Collectively, these findings suggest that CD4:CD8 ratio is a robust measure of immunologic health with both clinical and epidemiological implications.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Xuelin Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Matthew A Price
- International AIDS Vaccine Initiative, New York, NY USA ; Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA USA
| | - Eduard J Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute, Kilifi Kenya ; Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford UK
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, Nairobi Kenya
| | | | - Anatoli Kamali
- Uganda Virus Research Unit on AIDS, Medical Research Council/Uganda Virus Research Institute, Masaka Uganda
| | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka Zambia
| | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka Zambia ; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA USA
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA USA
| | - Richard A Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London UK
| |
Collapse
|
8
|
Mackelprang RD, Carrington M, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, Fife K, Campbell MS, Kapiga S, Gao X, Mullins JI, Lingappa JR. Host genetic and viral determinants of HIV-1 RNA set point among HIV-1 seroconverters from sub-saharan Africa. J Virol 2015; 89:2104-11. [PMID: 25473042 PMCID: PMC4338863 DOI: 10.1128/jvi.01573-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We quantified the collective impact of source partner HIV-1 RNA levels, human leukocyte antigen (HLA) alleles, and innate responses through Toll-like receptor (TLR) alleles on the HIV-1 set point. Data came from HIV-1 seroconverters in African HIV-1 serodiscordant couple cohorts. Linear regression was used to determine associations with set point and R(2) to estimate variation explained by covariates. The strongest predictors of set point were HLA alleles (B*53:01, B*14:01, and B*27:03) and plasma HIV-1 levels of the transmitting partner, which explained 13% and 10% of variation in set point, respectively. HLA-A concordance between partners and TLR polymorphisms (TLR2 rs3804100 and TLR7 rs179012) also were associated with set point, explaining 6% and 5% of the variation, respectively. Overall, these factors and genital factors of the transmitter (i.e., male circumcision, bacterial vaginosis, and use of acyclovir) explained 46% of variation in set point. We found that both innate and adaptive immune responses, together with plasma HIV-1 levels of the transmitting partner, explain almost half of the variation in viral load set point. IMPORTANCE After HIV-1 infection, uncontrolled virus replication leads to a rapid increase in HIV-1 concentrations. Once host immune responses develop, however, HIV-1 levels reach a peak and subsequently decline until they reach a stable level that may persist for years. This stable HIV-1 set point represents an equilibrium between the virus and host responses and is predictive of later disease progression and transmission potential. Understanding how host and virus factors interact to determine HIV-1 set point may elucidate novel mechanisms or biological pathways for treating HIV-1 infection. We identified host and virus factors that predict HIV-1 set point in people who recently acquired HIV-1, finding that both innate and adaptive immune responses, along with factors that likely influence HIV-1 virulence and inoculum, explain ∼46% of the variation in HIV-1 set point.
Collapse
Affiliation(s)
- Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Katherine K Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kenneth Fife
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA Department of Pathology, Indiana University, Indianapolis, Indiana, USA
| | - Mary S Campbell
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Saida Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - James I Mullins
- Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun 2015; 16:213-20. [PMID: 25633979 PMCID: PMC4409473 DOI: 10.1038/gene.2014.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Numerous reports have suggested that immunogenetic factors may influence HIV-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20, and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single nucleotide polymorphisms (SNPs) passed quality control procedures. When HIV-1-exposed seronegative subjects (n = 486) were compared with newly seroconverted individuals (n = 313) and seroprevalent subjects (n = 478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio = 0.64, P = 1.7 × 10−4, and q = 0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.
Collapse
|
10
|
Vince N, Bashirova AA, Lied A, Gao X, Dorrell L, McLaren PJ, Fellay J, Carrington M. HLA class I and KIR genes do not protect against HIV type 1 infection in highly exposed uninfected individuals with hemophilia A. J Infect Dis 2014; 210:1047-51. [PMID: 24719475 PMCID: PMC4215081 DOI: 10.1093/infdis/jiu214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/26/2014] [Indexed: 01/15/2023] Open
Abstract
A recent genome-wide association study (GWAS) involving patients with hemophilia A who were exposed to but uninfected with human immunodeficiency virus type 1 (HIV-1) did not reveal genetic variants associated with resistance to HIV-1 infection, beyond homozygosity for CCR5-Δ32. Since variation in HLA class I and KIR genes is not well interrogated by standard GWAS techniques, we tested whether these 2 loci were involved in protection from HIV-1 infection in the same hemophilia cohort, using controls from the general population. Our data indicate that HLA class I alleles, presence or absence of KIR genes, and functionally relevant combinations of the HLA/KIR genotypes are not involved in resistance to parenterally transmitted HIV-1 infection.
Collapse
Affiliation(s)
- Nicolas Vince
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Arman A. Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Alexandra Lied
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Paul J. McLaren
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
11
|
Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJR, Allen TM, Allen S, Hunter E. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 2014; 345:1254031. [PMID: 25013080 DOI: 10.1126/science.1254031] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naïve recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.
Collapse
Affiliation(s)
| | - Malinda Schaefer
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Daniela C Monaco
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Batorsky
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Daniel T Claiborne
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Prince
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Martin J Deymier
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Zachary S Ende
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nichole R Klatt
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | - Jian Peng
- Microsoft Research, Redmond, WA 98052, USA
| | - Aaron M Seese
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Roger Shapiro
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John Frater
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 7BN, UK. National Institute of Health Research, Oxford Biomedical Research Centre, Oxford OX3 7LE, UK. Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London SW10 9NH, UK. Imperial College of Science Technology and Medicine, London SW10 9NH, UK
| | - Matt A Price
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94105, USA
| | - William Kilembe
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia
| | | | - Philip J R Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Todd M Allen
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Susan Allen
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Microsoft Research, Los Angeles, CA 98117, USA. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Prentice HA, Pajewski NM, He D, Zhang K, Brown EE, Kilembe W, Allen S, Hunter E, Kaslow RA, Tang J. Host genetics and immune control of HIV-1 infection: fine mapping for the extended human MHC region in an African cohort. Genes Immun 2014; 15:275-81. [PMID: 24784026 PMCID: PMC4111776 DOI: 10.1038/gene.2014.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
Abstract
Multiple MHC loci encoding human leukocyte antigens (HLA) have allelic variants unequivocally associated with differential immune control of HIV-1 infection. Fine mapping based on single nucleotide polymorphisms (SNPs) in the extended MHC (xMHC) region is expected to reveal causal or novel factors and to justify a search for functional mechanisms. We have tested the utility of a custom fine-mapping platform (the ImmunoChip) for 172 HIV-1 seroconverters (SCs) and 449 seroprevalent individuals (SPs) from Lusaka, Zambia, with a focus on more than 6,400 informative xMHC SNPs. When conditioned on HLA and non-genetic factors previously associated with HIV-1 viral load (VL) in the study cohort, penalized approaches (HyperLasso models) identified an intergenic SNP (rs3094626 between RPP21 and HLA-E) and an intronic SNP (rs3134931 in NOTCH4) as novel correlates of early set-point VL in SCs. The minor allele of rs2857114 (downstream from HLA-DOB) was an unfavorable factor in SPs. Joint models based on demographic features, HLA alleles and the newly identified SNP variants could explain 29% and 15% of VL variance in SCs and SPs, respectively. These findings and bioinformatics strongly suggest that both classic and non-classic MHC genes deserve further investigation, especially in Africans with relatively short haplotype blocks.
Collapse
Affiliation(s)
- H A Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - N M Pajewski
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - D He
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E E Brown
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Kilembe
- Zambia-Emory HIV-1 Research Project, Lusaka, Zambia
| | - S Allen
- 1] Zambia-Emory HIV-1 Research Project, Lusaka, Zambia [2] Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - E Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - R A Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Tang
- 1] Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA [2] Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Impact of viral load and the duration of primary infection on HIV transmission: systematic review and meta-analysis. AIDS 2014; 28:1021-9. [PMID: 24691205 DOI: 10.1097/qad.0000000000000135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES HIV 'treatment as prevention' (TasP) describes early treatment of HIV-infected patients intended to reduce viral load and transmission. Crucial assumptions for estimating TasP's effectiveness are the underlying estimates of transmission risk. We aimed to determine transmission risk during primary infection, and describe the relation of HIV transmission risk to viral load. DESIGN A systematic review and meta-analysis. METHODS We searched PubMed and Embase databases for studies that established a relationship between viral load and transmission risk, or primary infection and transmission risk, in serodiscordant couples. We analysed assumptions about the relationship between viral load and transmission risk, and between duration of primary infection and transmission risk. RESULTS We found 36 eligible articles, based on six different study populations. Studies consistently found that higher viral loads lead to higher HIV transmission rates, but assumptions about the shape of this increase varied from exponential increase to saturation. The assumed duration of primary infection ranged from 1.5 to 12 months; for each additional month, the log10 transmission rate ratio between primary and asymptomatic infection decreased by 0.40. CONCLUSION Assumptions and estimates of the relationship between viral load and transmission risk, and the relationship between primary infection and transmission risk, vary substantially and predictions of TasP's effectiveness should take this uncertainty into account.
Collapse
|
14
|
Prentice HA, Price MA, Porter TR, Cormier E, Mugavero MJ, Kamali A, Karita E, Lakhi S, Sanders EJ, Anzala O, Amornkul PN, Allen S, Hunter E, Kaslow RA, Gilmour J, Tang J. Dynamics of viremia in primary HIV-1 infection in Africans: insights from analyses of host and viral correlates. Virology 2013; 449:254-62. [PMID: 24418560 DOI: 10.1016/j.virol.2013.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
Abstract
In HIV-1 infection, plasma viral load (VL) has dual implications for pathogenesis and public health. Based on well-known patterns of HIV-1 evolution and immune escape, we hypothesized that VL is an evolving quantitative trait that depends heavily on duration of infection (DOI), demographic features, human leukocyte antigen (HLA) genotypes and viral characteristics. Prospective data from 421 African seroconverters with at least four eligible visits did show relatively steady VL beyond 3 months of untreated infection, but host and viral factors independently associated with cross-sectional and longitudinal VL often varied by analytical approaches and sliding time windows. Specifically, the effects of age, HLA-B(⁎)53 and infecting HIV-1 subtypes (A1, C and others) on VL were either sporadic or highly sensitive to time windows. These observations were strengthened by the addition of 111 seroconverters with 2-3 eligible VL results, suggesting that DOI should be a critical parameter in epidemiological and clinical studies.
Collapse
Affiliation(s)
- Heather A Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew A Price
- International AIDS Vaccine Initiative, New York City, NY, USA; Department of Epidemiology & Biostatistics, UCSF, San Francisco, CA, USA
| | - Travis R Porter
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emmanuel Cormier
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, UK
| | - Michael J Mugavero
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anatoli Kamali
- MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka Site, Masaka, Uganda
| | | | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya; Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, UK
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | | | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, GA, USA
| | - Richard A Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, UK
| | - Jianming Tang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | |
Collapse
|
15
|
HLA-A*68:02-restricted Gag-specific cytotoxic T lymphocyte responses can drive selection pressure on HIV but are subdominant and ineffective. AIDS 2013; 27:1717-23. [PMID: 23525031 DOI: 10.1097/qad.0b013e32836146cd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human leukocyte allele (HLA) class I polymorphism has the greatest impact of human genetic variation on viral load set point. A substantial part of this effect is due to the action of HLA-B and HLA-C alleles. With few exceptions the role of HLA-A molecules in immune control of HIV is unclear. METHODS We here study HLA-A*68:02, one of the most highly prevalent HLA-A alleles in C-clade infected sub-Saharan African populations, and one that plays a prominent role in the HIV-specific CD8 T-cell responses made against the virus. RESULTS We define eight epitopes restricted by this allele and propose the peptide binding motif for HLA-A*68:02. Although one of these epitopes almost exactly overlaps an HLA-B*57-restricted epitope in Gag linked with immune control of HIV, this HLA-A*68:02-restricted Gag-TA10 response imposed only weak selection pressure on the virus and was not associated with significantly lower viral setpoint. The only HLA-A*68:02-restricted responses imposing strong selection pressure on HIV were in the flanking regions of Pol-EA8 and Pol-EA11 and within the Vpr-EV10 epitope (P = 8 × 10). However, targeting of this latter epitope was associated with significantly higher viral loads (P = 0.003), suggesting lack of efficacy. CONCLUSION This study is consistent with previous data showing that HLA-A-restricted Gag-specific responses can impose selection pressure on HIV. In the case of HLA-A*68:02 the Gag response is subdominant, and apparently has little impact in natural infection. However, these data suggest the potential for high frequency vaccine-induced Gag responses restricted by this allele to have significant antiviral efficacy in vaccine recipients.
Collapse
|
16
|
Prentice HA, Porter TR, Price MA, Cormier E, He D, Farmer PK, Kamali A, Karita E, Lakhi S, Sanders EJ, Anzala O, Amornkul PN, Allen S, Hunter E, Kaslow RA, Gilmour J, Tang J. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race? J Virol 2013; 87:4043-51. [PMID: 23365442 PMCID: PMC3624227 DOI: 10.1128/jvi.03302-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/23/2013] [Indexed: 11/20/2022] Open
Abstract
Two human leukocyte antigen (HLA) variants, HLA-B*57 and -B*81, are consistently known as favorable host factors in human immunodeficiency virus type 1 (HIV-1)-infected Africans and African-Americans. In our analyses of prospective data from 538 recent HIV-1 seroconverters and cross-sectional data from 292 subjects with unknown duration of infection, HLA-B*57 (mostly B*57:03) and -B*81 (exclusively B*81:01) had mostly discordant associations with virologic and immunologic manifestations before antiretroviral therapy. Specifically, relatively low viral load (VL) in HLA-B*57-positive subjects (P ≤ 0.03 in various models) did not translate to early advantage in CD4(+) T-cell (CD4) counts (P ≥ 0.37). In contrast, individuals with HLA-B*81 showed little deviation from the normal set point VL (P > 0.18) while maintaining high CD4 count during early and chronic infection (P = 0.01). These observations suggest that discordance between VL and CD4 count can occur in the presence of certain HLA alleles and that effective control of HIV-1 viremia is not always a prerequisite for favorable prognosis (delayed immunodeficiency). Of note, steady CD4 count associated with HLA-B*81 in HIV-1-infected Africans may depend on the country of origin, as observations differed slightly between subgroups enrolled in southern Africa (Zambia) and eastern Africa (Kenya, Rwanda, and Uganda).
Collapse
Affiliation(s)
| | | | - Matthew A. Price
- International AIDS Vaccine Initiative (IAVI), New York City, New York, USA
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA
| | - Emmanuel Cormier
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | - Anatoli Kamali
- MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka Site, Masaka, Uganda
| | | | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J. Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, United Kingdom
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Pauli N. Amornkul
- International AIDS Vaccine Initiative (IAVI), New York City, New York, USA
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Project San Francisco, Kigali, Rwanda
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | | | - Richard A. Kaslow
- Department of Epidemiology
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
17
|
Abstract
OBJECTIVES To examine the relationship between human leukocyte antigen (HLA) genotype and body composition changes induced by thymidine analogue nucleoside reverse transcriptase inhibitor (NtRTI) use in HIV-positive individuals. DESIGN Data collected during the Simplification with Tenofovir-Emtricitabine (TDF-FTC) or Abacavir-Lamivudine (ABC-3TC) (STEAL) study were analysed to examine the potential association of HLA genotypes with changes in body composition in treatment-experienced HIV-positive individuals. METHODS Demographic, HIV-related, body composition and HLA genotyping data from the STEAL study were used in this analysis. The mean percentage peripheral fat at study baseline was compared in participants with and without prior NtRTI use. Analyses were also carried out for each HLA supertype strata, for five HLA genes, within the thymidine-exposed group. These comparisons were made using Mann-Whitney rank-sum tests. RESULTS Participants with prior NtRTI use had a significantly lower baseline mean peripheral fat percentage compared to those without NtRTI use (31.9 vs. 34.7%; P = 0.0045). However, participants carrying one or more of the three particular HLA supertype alleles, A01, B08 and DQ2, showed no significant difference in mean peripheral fat percentage at baseline by NtRTI use. Among participants with prior NtRTI exposure, there were significant differences in mean peripheral fat by HLA A01, B08 and DQ2 allele expression compared to those without expression of these alleles (A01: 34.91% vs. no A01: 30.3%; P = 0.0087; B08: 36.2% vs. no B08: 31.1%; P = 0.0317; DQ2: 35.16% vs. no DQ2: 30.06%; P = 0.0081). CONCLUSION This analysis suggests that HIV-infected individuals carrying HLA A01, B08 or DQ2 supertype alleles may be resistant to NtRTI-induced peripheral fat loss.
Collapse
|
18
|
Abstract
The dynamics of HIV-1 viremia is a complex and evolving landscape with clinical and epidemiological (public health) implications. Most studies have relied on the use of set-point viral load (VL) as a readily available proxy of viral dynamics to assess host and viral correlates. This review highlights recent findings from population-based studies of set-point VL, focusing primarily on robust data related to host genetics. A comprehensive understanding of viral dynamics will clearly need to consider both host and viral characteristics, with close attention to (i) the timing of VL measurements, (ii) the biology of viral evolution, (iii) compartments of active viral replication, (iv) the transmission source partner as the immediate past microenvironment, and (v) proper application of statistical models.
Collapse
Affiliation(s)
- Heather A. Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama;
- Author to whom correspondence should be addressed; ; Tel.: +1-720-352-3432
| | - Jianming Tang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama;
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
19
|
Merino AM, Song W, He D, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load. J Infect Dis 2012; 205:1797-805. [PMID: 22492862 PMCID: PMC3571229 DOI: 10.1093/infdis/jis275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
Human leukocyte antigen alleles influence the immune response to HIV-1. Signal peptides cleaved from those alleles bind to HLA-E and mediate natural killer cell function. Signal peptides of HLA-A and HLA-C proteins carry methionine (Met) at anchor position 2 (P2); those of HLA-B carry Met or threonine (Thr). Different P2 residues alter HLA-E binding to its cognate receptors and may impact HIV-1 acquisition. Among Zambian couples (N = 566) serodiscordant for HIV-1, P2-Met accelerated acquisition in the HIV-1-negative partner (relative hazard [RH], 1.79). Among seroconverting Zambian (n = 240) and Rwandan (n = 64) partners, P2-Met also accelerated acquisition (RH, 1.47 and RH, 1.83 respectively). HLA-B alleles displaying the reportedly protective Bw4 epitope carry P2-Thr. Bw4/P2-Thr and Bw6/P2-Thr showed similar protective effects compared with Bw6/P2-Met. Neither motif was associated with viral load. The influence of HLA-B alleles on HIV/AIDS may derive from multiple motifs in and beyond the mature proteins.
Collapse
Affiliation(s)
| | | | | | | | - Susan Allen
- Rwanda-Zambia HIV-1 Research Group, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, Georgia
| | | | - Richard A. Kaslow
- Department of Medicine
- Department of Microbiology
- Department of Epidemiology, University of Alabama at Birmingham
| |
Collapse
|
20
|
Kraft CS, Basu D, Hawkins PA, Hraber PT, Chomba E, Mulenga J, Kilembe W, Khu NH, Derdeyn CA, Allen SA, Manigart O, Hunter E. Timing and source of subtype-C HIV-1 superinfection in the newly infected partner of Zambian couples with disparate viruses. Retrovirology 2012; 9:22. [PMID: 22433432 PMCID: PMC3349552 DOI: 10.1186/1742-4690-9-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
Background HIV-1 superinfection occurs at varying frequencies in different at risk populations. Though seroincidence is decreased, in the negative partner of HIV-discordant couples after joint testing and counseling in the Zambia Emory HIV Research Project (ZEHRP) cohort, the annual infection rate remains relatively high at 7-8%. Based on sequencing within the gp41 region of each partner's virus, 24% of new infections between 2004 and 2008 were the result of transmission from a non-spousal partner. Since these seroconvertors and their spouses have disparate epidemiologically-unlinked viruses, there is a risk of superinfection within the marriage. We have, therefore, investigated the incidence and viral origin of superinfection in these couples. Results Superinfection was detected by heteroduplex mobility assay (HMA), degenerate base counting of the gp41 sequence, or by phylogenetic analysis of the longitudinal sequences. It was confirmed by full-length env single genome amplification and phylogenetic analysis. In 22 couples (44 individuals), followed for up to five years, three of the newly infected (initially HIV uninfected) partners became superinfected. In each case superinfection occurred during the first 12 months following initial infection of the negative partner, and in each case the superinfecting virus was derived from a non-spousal partner. In addition, one probable case of intra-couple HIV-1 superinfection was observed in a chronically infected partner at the time of his seroconverting spouse's initial viremia. Extensive recombination within the env gene was observed following superinfection. Conclusions In this subtype-C discordant couple cohort, superinfection, during the first year after HIV-1 infection of the previously negative partner, occurred at a rate similar to primary infection (13.6% [95% CI 5.2-34.8] vs 7.8% [7.1-8.6]). While limited intra-couple superinfection may in part reflect continued condom usage within couples, this and our lack of detecting newly superinfected individuals after one year of primary infection raise the possibility that immunological resistance to intra-subtype superinfection may develop over time in subtype C infected individuals.
Collapse
Affiliation(s)
- Colleen S Kraft
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kloverpris HN, Stryhn A, Harndahl M, van der Stok M, Payne RP, Matthews PC, Chen F, Riddell L, Walker BD, Ndung'u T, Buus S, Goulder P. HLA-B*57 Micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol 2012; 86:919-29. [PMID: 22090105 PMCID: PMC3255844 DOI: 10.1128/jvi.06150-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genetic polymorphism that has the greatest impact on immune control of human immunodeficiency virus (HIV) infection is expression of HLA-B*57. Understanding of the mechanism for this strong effect remains incomplete. HLA-B*57 alleles and the closely related HLA-B*5801 are often grouped together because of their similar peptide-binding motifs and HIV disease outcome associations. However, we show here that the apparently small differences between HLA-B*57 alleles, termed HLA-B*57 micropolymorphisms, have a significant impact on immune control of HIV. In a study cohort of >2,000 HIV C-clade-infected subjects from southern Africa, HLA-B*5703 is associated with a lower viral-load set point than HLA-B*5702 and HLA-B*5801 (medians, 5,980, 15,190, and 19,000 HIV copies/ml plasma; P = 0.24 and P = 0.0005). In order to better understand these observed differences in HLA-B*57/5801-mediated immune control of HIV, we undertook, in a study of >1,000 C-clade-infected subjects, a comprehensive analysis of the epitopes presented by these 3 alleles and of the selection pressure imposed on HIV by each response. In contrast to previous studies, we show that each of these three HLA alleles is characterized both by unique CD8(+) T-cell specificities and by clear-cut differences in selection pressure imposed on the virus by those responses. These studies comprehensively define for the first time the CD8(+) T-cell responses and immune selection pressures for which these protective alleles are responsible. These findings are consistent with HLA class I alleles mediating effective immune control of HIV through the number of p24 Gag-specific CD8(+) T-cell responses generated that can drive significant selection pressure on the virus.
Collapse
Affiliation(s)
- Henrik N Kloverpris
- Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akinsiku OT, Bansal A, Sabbaj S, Heath SL, Goepfert PA. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J Acquir Immune Defic Syndr 2011; 58:132-40. [PMID: 21637109 PMCID: PMC3391567 DOI: 10.1097/qai.0b013e318224d2e9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Assays to measure the induction of HIV-1-specific CD8 T-cell responses often rely on measurements of indirect effector function such as chemokine and cytokine production, which may not reflect direct elimination of an invading pathogen. Assessment of the functional ability of CD8 T cells to suppress HIV-1 replication has been viewed as a surrogate marker of an effectual immune response. To further investigate this, we measured the capacity of virus-specific CD8 T cells to inhibit HIV-1 replication in an in vitro suppression assay. METHODS We expanded 15 epitope-specific CD8 T-cell lines from peripheral blood mononuclear cells of chronically HIV--infected progressors (n = 5) and controllers (n = 4) who were not on antiretroviral therapy. Cell lines were tested for their ability to produce effector molecules (CD107a, IL-2, IFN-γ, TNF-α, perforin) and suppress virus replication in autologous CD4 T cells. RESULTS CD8 T-cell lines from both progressors and controllers had largely similar effector function profiles as determined by intracellular cytokine staining. In contrast, we observed that CD8 T-cell lines derived from controllers show enhanced virus suppression when compared with progressors. Virus suppression was mediated in an major histocompatibility complex-dependent manner and found to correlate with a polyfunctional IL-2 CD8 T-cell response. CONCLUSIONS Using a sensitive in vitro suppression assay, we demonstrate that CD8 T-cell-mediated suppression of HIV-1 replication is a marker of HIV-1 control. Suppressive capacity was found to correlate with polyfunctional IL-2 production. Assessment of CD8 T-cell-mediated suppression may be an important tool to evaluate vaccine-induced responses.
Collapse
Affiliation(s)
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Paul A. Goepfert
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
23
|
Song W, He D, Brill I, Malhotra R, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. Disparate associations of HLA class I markers with HIV-1 acquisition and control of viremia in an African population. PLoS One 2011; 6:e23469. [PMID: 21858133 PMCID: PMC3157381 DOI: 10.1371/journal.pone.0023469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acquisition of human immunodeficiency virus type 1 (HIV-1) infection is mediated by a combination of characteristics of the infectious and the susceptible member of a transmission pair, including human behavioral and genetic factors, as well as viral fitness and tropism. Here we report on the impact of established and potential new HLA class I determinants of heterosexual HIV-1 acquisition in the HIV-1-exposed seronegative (HESN) partners of serodiscordant Zambian couples. METHODOLOGY/PRINCIPAL FINDINGS We assessed the relationships of behavioral and clinically documented risk factors, index partner viral load, and host genetic markers to HIV-1 transmission among 568 cohabiting couples followed for at least nine months. We genotyped subjects for three classical HLA class I genes known to influence immune control of HIV-1 infection. From 1995 to December 2006, 240 HESNs seroconverted and 328 remained seronegative. In Cox proportional hazards models, HLA-A*68:02 and the B*42-C*17 haplotype in HESN partners were significantly and independently associated with faster HIV-1 acquisition (relative hazards = 1.57 and 1.55; p = 0.007 and 0.013, respectively) after controlling for other previously established contributing factors in the index partner (viral load and specific class I alleles), in the HESN partner (age, gender), or in the couple (behavioral and clinical risk score). Few if any previously implicated class I markers were associated here with the rate of acquiring infection. CONCLUSIONS/SIGNIFICANCE A few HLA class I markers showed modest effects on acquisition of HIV-1 subtype C infection in HESN partners of discordant Zambian couples. However, the striking disparity between those few markers and the more numerous, different markers found to determine HIV-1 disease course makes it highly unlikely that, whatever the influence of class I variation on the rate of infection, the mechanism mediating that phenomenon is identical to that involved in disease control.
Collapse
Affiliation(s)
- Wei Song
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dongning He
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ilene Brill
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rakhi Malhotra
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Susan Allen
- Rwanda-Zambia HIV-1 Research Group, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
24
|
Human leukocyte antigen variants B*44 and B*57 are consistently favorable during two distinct phases of primary HIV-1 infection in sub-Saharan Africans with several viral subtypes. J Virol 2011; 85:8894-902. [PMID: 21715491 DOI: 10.1128/jvi.00439-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As part of an ongoing study of early human immunodeficiency virus type 1 (HIV-1) infection in sub-Saharan African countries, we have identified 134 seroconverters (SCs) with distinct acute-phase (peak) and early chronic-phase (set-point) viremias. SCs with class I human leukocyte antigen (HLA) variants B*44 and B*57 had much lower peak viral loads (VLs) than SCs without these variants (adjusted linear regression beta values of -1.08 ± 0.26 log(10) [mean ± standard error] and -0.83 ± 0.27 log(10), respectively; P < 0.005 for both), after accounting for several nongenetic factors, including gender, age at estimated date of infection, duration of infection, and country of origin. These findings were confirmed by alternative models in which major viral subtypes (A1, C, and others) in the same SCs replaced country of origin as a covariate (P ≤ 0.03). Both B*44 and B*57 were also highly favorable (P ≤ 0.03) in analyses of set-point VLs. Moreover, B*44 was associated with relatively high CD4(+) T-cell counts during early chronic infection (P = 0.02). Thus, at least two common HLA-B variants showed strong influences on acute-phase as well as early chronic-phase VL, regardless of the infecting viral subtype. If confirmed, the identification of B*44 as another favorable marker in primary HIV-1 infection should help dissect mechanisms of early immune protection against HIV-1 infection.
Collapse
|
25
|
Matthews PC, Adland E, Listgarten J, Leslie A, Mkhwanazi N, Carlson JM, Harndahl M, Stryhn A, Payne RP, Ogwu A, Huang KHG, Frater J, Paioni P, Kloverpris H, Jooste P, Goedhals D, van Vuuren C, Steyn D, Riddell L, Chen F, Luzzi G, Balachandran T, Ndung'u T, Buus S, Carrington M, Shapiro R, Heckerman D, Goulder PJR. HLA-A*7401-mediated control of HIV viremia is independent of its linkage disequilibrium with HLA-B*5703. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5675-86. [PMID: 21498667 PMCID: PMC3738002 DOI: 10.4049/jimmunol.1003711] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade-infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401-restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401-restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.
Collapse
Affiliation(s)
- Philippa C Matthews
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Association of chemokine receptor gene (CCR2-CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians. Retrovirology 2011; 8:22. [PMID: 21429204 PMCID: PMC3075214 DOI: 10.1186/1742-4690-8-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background Polymorphisms in chemokine (C-C motif) receptors 2 and 5 genes (CCR2 and CCR5) have been associated with HIV-1 infection and disease progression. We investigated the impact of CCR2-CCR5 haplotypes on HIV-1 viral load (VL) and heterosexual transmission in an African cohort. Between 1995 and 2006, cohabiting Zambian couples discordant for HIV-1 (index seropositive and HIV-1 exposed seronegative {HESN}) were monitored prospectively to determine the role of host genetic factors in HIV-1 control and heterosexual transmission. Genotyping for eight CCR2 and CCR5 variants resolved nine previously recognized haplotypes. By regression and survival analytic techniques, controlling for non-genetic factors, we estimated the effects of these haplotypic variants on a) index partner VL, b) seroconverter VL, c) HIV-1 transmission by index partners, d) HIV-1 acquisition by HESN partners. Results Among 567 couples, 240 virologically linked transmission events had occurred through 2006. HHF*2 homozygosity was associated with significantly lower VL in seroconverters (mean beta = -0.58, log10 P = 0.027) and the HHD/HHE diplotype was associated with significantly higher VL in the seroconverters (mean beta = 0.54, log10 P = 0.014) adjusted for age and gender in multivariable model. HHD/HHE was associated with more rapid acquisition of infection by the HESNs (HR = 2.0, 95% CI = 1.20-3.43, P = 0.008), after adjustments for index partner VL and the presence of genital ulcer or inflammation in either partner in Cox multivariable models. The HHD/HHE effect was stronger in exposed females (HR = 2.1, 95% CI = 1.14-3.95, P = 0.018). Conclusions Among Zambian discordant couples, HIV-1 coreceptor gene haplotypes and diplotypes appear to modulate HIV-1 VL in seroconverters and alter the rate of HIV-1 acquisition by HESNs. These associations replicate or resemble findings reported in other African and European populations.
Collapse
|
27
|
Restrepo C, Rallón NI, Benito JM. [Factors involved in resistance to human immunodeficiency virus infection]. Med Clin (Barc) 2011; 137:600-4. [PMID: 21382628 DOI: 10.1016/j.medcli.2010.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Repeated exposure to human immunodeficiency virus (HIV) is not always associated with infection and a subset of individuals remains persistently as HIV-seronegative despite multiple episodes of HIV exposure. These individuals are called HIV-exposed seronegatives (ESN). Several genetic and immunological factors have been involved in this resistance to HIV acquisition. Genetic factors have been linked to genes encoding chemokine receptors and their natural ligands as well as genes of the major histocompatibility complex. Immunological factors include both innate and adaptive immunity. The study of ESN provides a unique opportunity to unveil the mechanisms of natural protection against viral infection. Their better understanding may lead to novel preventive and immune-therapeutic approaches, including vaccines.
Collapse
Affiliation(s)
- Clara Restrepo
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, España
| | | | | |
Collapse
|
28
|
Pajewski NM, Parker SD, Poland GA, Ovsyannikova IG, Song W, Zhang K, McKinney BA, Pankratz VS, Edberg JC, Kimberly RP, Jacobson RM, Tang J, Kaslow RA. The role of HLA-DR-DQ haplotypes in variable antibody responses to anthrax vaccine adsorbed. Genes Immun 2011; 12:457-65. [PMID: 21368772 DOI: 10.1038/gene.2011.15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Host genetic variation, particularly within the human leukocyte antigen (HLA) loci, reportedly mediates heterogeneity in immune response to certain vaccines; however, no large study of genetic determinants of anthrax vaccine response has been described. We searched for associations between the immunoglobulin G antibody to protective antigen (AbPA) response to Anthrax Vaccine Adsorbed (AVA) in humans, and polymorphisms at HLA class I (HLA-A, -B, and -C) and class II (HLA-DRB1, -DQA1, -DQB1, -DPB1) loci. The study included 794 European-Americans and 200 African-Americans participating in a 43-month, double-blind and placebo-controlled clinical trial of AVA (clinicaltrials.gov identifier NCT00119067). Among European-Americans, genes from tightly linked HLA-DRB1, -DQA1, -DQB1 haplotypes displayed significant overall associations with longitudinal variation in AbPA levels at 4, 8, 26 and 30 weeks from baseline in response to vaccination with three or four doses of AVA (global P=6.53 × 10(-4)). In particular, carriage of the DRB1-DQA1-DQB1 haplotypes (*)1501-(*)0102-(*)0602 (P=1.17 × 10(-5)), (*)0101-(*)0101-(*)0501 (P=0.009) and (*)0102-(*)0101-(*)0501 (P=0.006) was associated with significantly lower AbPA levels. In carriers of two copies of these haplotypes, lower AbPA levels persisted following subsequent vaccinations. No significant associations were observed amongst African-Americans or for any HLA class I allele/haplotype. Further studies will be required to replicate these findings and to explore the role of host genetic variation outside of the HLA region.
Collapse
Affiliation(s)
- N M Pajewski
- Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lazaryan A, Song W, Lobashevsky E, Tang J, Shrestha S, Zhang K, McNicholl JM, Gardner LI, Wilson CM, Klein RS, Rompalo A, Mayer K, Sobel J, Kaslow RA. The influence of human leukocyte antigen class I alleles and their population frequencies on human immunodeficiency virus type 1 control among African Americans. Hum Immunol 2011; 72:312-8. [PMID: 21262311 DOI: 10.1016/j.humimm.2011.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
Abstract
Populations of African ancestry continue to account for a disproportionate burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in the United States. We investigated the effects of human leukocyte antigen (HLA) class I markers in association with virologic and immunologic control of HIV-1 infection among 338 HIV-1 subtype B-infected African Americans in 2 cohorts: Reaching for Excellence in Adolescent Care and Health (REACH) and HIV Epidemiology Research Study (HERS). One-year treatment-free interval measurements of HIV-1 RNA viral loads and CD4(+) T cells were examined both separately and combined to represent 3 categories of HIV-1 disease control (76 controllers, 169 intermediates, and 93 noncontrollers). Certain previously or newly implicated HLA class I alleles (A*32, A*36, A*74, B*14, B*1510, B*3501, B*45, B*53, B*57, Cw*04, Cw*08, Cw*12, and Cw*18) were associated with 1 or more of the endpoints in univariate analyses. After multivariable adjustments for other genetic and nongenetic risk factors of HIV-1 progression, the subset of alleles more strongly or consistently associated with HIV-1 disease control included A*32, A*74, B*14, B*45, B*53, B*57, and Cw*08. Carriage of infrequent HLA-B but not HLA-A alleles was associated with more favorable disease outcomes. Certain HLA class I associations with control of HIV-1 infection cross the boundaries of race and viral subtype, whereas others appear confined within one or the other of those boundaries.
Collapse
|
30
|
Merino A, Malhotra R, Morton M, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. Impact of a functional KIR2DS4 allele on heterosexual HIV-1 transmission among discordant Zambian couples. J Infect Dis 2011; 203:487-95. [PMID: 21216870 DOI: 10.1093/infdis/jiq075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands interact to regulate natural killer (NK) cell function. KIR gene content and allelic variations are reported to influence human immunodeficiency virus (HIV)-1 infection and pathogenesis. We investigated the impact of KIR genes on heterosexual HIV-1 transmission among 566 discordant couples from Lusaka, Zambia. KIR2DS4*001, the only allele of KIR2DS4 known to encode a functional activating receptor, was associated with relatively high viral load for HIV-1 in index (HIV-1 seroprevalent) partners (β [standard error (SE)], .17 [.8] log₁₀; P = .04) and with accelerated transmission of HIV-1 to cohabiting seronegative partners (relative hazard [RH], 2.00; P = .004). The latter association was independent of the direction of transmission (male-to-female or female-to-male), genital ulcers, and carriage of the putative ligand (HLA-Cw*04). No KIR-gene variant in the initially seronegative partners was associated with HIV-1 acquisition or early viral load following seroconversion. Further analysis of NK cell function should clarify the role of KIR2DS4*001 in HIV-1 transmission.
Collapse
Affiliation(s)
- Aimee Merino
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The hypervariable HIV-1 capsid protein residues comprise HLA-driven CD8+ T-cell escape mutations and covarying HLA-independent polymorphisms. J Virol 2010; 85:1384-90. [PMID: 21106744 DOI: 10.1128/jvi.01879-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One proposed HIV vaccine strategy is to induce Gag-specific CD8(+) T-cell responses that can corner the virus, through fitness cost of viral escape and unavailability of compensatory mutations. We show here that the most variable capsid residues principally comprise escape mutants driven by protective alleles HLA-B*57, -5801, and -8101 and covarying HLA-independent polymorphisms that arise in conjunction with these escape mutations. These covarying polymorphisms are potentially compensatory and are concentrated around three tropism-determining loops of p24, suggesting structural interdependencies. Our results demonstrate complex patterns of adaptation of HIV under immune selection pressure, the understanding of which should aid vaccine design.
Collapse
|
32
|
Eyawo O, de Walque D, Ford N, Gakii G, Lester RT, Mills EJ. HIV status in discordant couples in sub-Saharan Africa: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2010; 10:770-7. [PMID: 20926347 DOI: 10.1016/s1473-3099(10)70189-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most couples affected by HIV/AIDS in sub-Saharan Africa live in discordant relationships. Men are thought to be the index case in most relationships, and most social marketing and awareness campaigns are focused on men. We investigated serodiscordance in stable relationships to establish the gender balance of index-case infections. METHODS We did a systematic review, random-effects meta-analysis, and meta-regression of published and unpublished studies enrolling discordant couples and assessed the proportion of men and women that were index cases. We repeated the analysis with data from demographic and health surveys (DHS) from the 14 countries that have documented the HIV status of couples. Our primary outcome was the total number of HIV discordant couples, including the proportion of HIV-positive women. FINDINGS We included data from 27 cohorts of 13,061 couples and DHS data from 14 countries of 1145 couples. The proportion of HIV-positive women in stable heterosexual serodiscordant relationships was 47% (95% CI 43-52), which shows that women are as likely as men to be the index partner in a discordant couple. DHS data (46%, 41-51) and our sensitivity analysis (47%, 43-52) showed similar findings. Meta-regression showed that urban versus rural residence (odds ratio 0.31, 95% CI 0.22-0.39), latitude (β coefficient 0.02, 0.023-0.034), gender equality (β coefficient -0.42, -0.56 to -0.27), HIV prevalence (β coefficient -0.037, -0.04 to -0.030), and older age (β coefficient 0.20, 0.08-0.32) were associated with the proportion of female index cases. INTERPRETATION Our study shows the need to focus on both sexes in HIV prevention strategies, such as promotion of condom use and mitigation of risk behaviours. FUNDING None.
Collapse
Affiliation(s)
- Oghenowede Eyawo
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Mackelprang RD, Carrington M, John-Stewart G, Lohman-Payne B, Richardson BA, Wamalwa D, Gao X, Majiwa M, Mbori-Ngacha D, Farquhar C. Maternal human leukocyte antigen A*2301 is associated with increased mother-to-child HIV-1 transmission. J Infect Dis 2010; 202:1273-7. [PMID: 20812845 PMCID: PMC3404885 DOI: 10.1086/656318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We examined associations between maternal human leukocyte antigen (HLA) and vertical human immunodeficiency virus type 1 (HIV-1) transmission in a perinatal cohort of 277 HIV-infected women in Nairobi. HLA class I genes were amplified by using sequence-specific oligonucleotide probes, and analyses were performed using logistic regression. Maternal HLA-A*2301 was associated with increased transmission risk before and after adjusting for maternal viral load (unadjusted: odds ratio [OR], 3.21; 95% confidence interval [CI], 1.42-7.27; P = .005; Pcorr = 0.04; adjusted: OR, 3.07; 95% CI, 1.26-7.51; P =.01; Pcorr is not significant). That maternal HLA-A*2301 was associated with transmission independent of plasma HIV-1 RNA levels suggests that HLA may alter infectivity through mechanisms other than influencing HIV-1 load.
Collapse
Affiliation(s)
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Grace John-Stewart
- Department of Epidemiology, University of Washington, Seattle, USA
- Department of Medicine, University of Washington, Seattle, USA
| | - Barbara Lohman-Payne
- Department of Medicine, University of Washington, Seattle, USA
- Department of Paediatrics, University of Nairobi, Nairobi, Kenya
| | | | - Dalton Wamalwa
- Department of Paediatrics, University of Nairobi, Nairobi, Kenya
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Maxwel Majiwa
- Department of Paediatrics, University of Nairobi, Nairobi, Kenya
| | | | - Carey Farquhar
- Department of Epidemiology, University of Washington, Seattle, USA
- Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
34
|
Gao X, O'Brien TR, Welzel TM, Marti D, Qi Y, Goedert JJ, Phair J, Pfeiffer R, Carrington M. HLA-B alleles associate consistently with HIV heterosexual transmission, viral load, and progression to AIDS, but not susceptibility to infection. AIDS 2010; 24:1835-40. [PMID: 20588164 PMCID: PMC2902625 DOI: 10.1097/qad.0b013e32833c3219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE HLA class I polymorphism is known to affect the rate of progression to AIDS after infection with HIV-1. Here we test the consistency of HLA-B allelic effects on progression to AIDS, heterosexual HIV transmission, and 'set point' viral levels. METHODS We used adjusted Cox proportional hazard models in previously published relative hazard values for the effect of HLA-B alleles on progression to AIDS (n = 1089). The transmission study included 303 HIV-1-infected men with hemophilia and their 323 female sex partners (Multicenter Hemophilia Cohort Study cohort). Among 259 HIV-1 seroconverters (Multicenter AIDS Cohort Study cohort), HIV RNA levels at 'set point' were determined in stored plasma samples by a reverse-transcription polymerase chain reaction assay. HLA-B genotyping was performed by sequence-specific oligonucleotide hybridization and DNA sequencing. RESULTS Several HLA-B alleles showed consistent associations for AIDS risk, infectivity, and 'set point' HIV RNA. HLA-B*35 was associated with more rapid progression to AIDS (relative hazard 1.39; P = 0.008), greater infectivity (odds ratio 3.14; P = 0.002), and higher HIV RNA (P = 0.01), whereas the presence of either B*27 or B*57 associated with slower progression to AIDS (B*27: relative hazard 0.49, P < 0.001; B*57: relative hazard 0.40, P < 0.0001), less infectivity (odds ratio 0.22 and 0.31, respectively, though not significant), and lower viral levels (P < 0.0001). Importantly, HLA-B polymorphism in female partners was not associated with susceptibility to HIV-1 infection. CONCLUSION HLA-B polymorphisms that affect the risk of AIDS may also alter HIV-1 infectivity, probably through the common mechanism of viral control, but they do not appear to protect against infection in our cohort.
Collapse
Affiliation(s)
- Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Thomas R. O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tania M. Welzel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Darlene Marti
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - John Phair
- Northwestern University Medical School, Chicago, IL, USA
| | - Ruth Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
35
|
Tang J, Malhotra R, Song W, Brill I, Hu L, Farmer PK, Mulenga J, Allen S, Hunter E, Kaslow RA. Human leukocyte antigens and HIV type 1 viral load in early and chronic infection: predominance of evolving relationships. PLoS One 2010; 5:e9629. [PMID: 20224785 PMCID: PMC2835758 DOI: 10.1371/journal.pone.0009629] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
Background During untreated, chronic HIV-1 infection, plasma viral load (VL) is a relatively stable quantitative trait that has clinical and epidemiological implications. Immunogenetic research has established various human genetic factors, especially human leukocyte antigen (HLA) variants, as independent determinants of VL set-point. Methodology/Principal Findings To identify and clarify HLA alleles that are associated with either transient or durable immune control of HIV-1 infection, we evaluated the relationships of HLA class I and class II alleles with VL among 563 seroprevalent Zambians (SPs) who were seropositive at enrollment and 221 seroconverters (SCs) who became seropositive during quarterly follow-up visits. After statistical adjustments for non-genetic factors (sex and age), two unfavorable alleles (A*3601 and DRB1*0102) were independently associated with high VL in SPs (p<0.01) but not in SCs. In contrast, favorable HLA variants, mainly A*74, B*13, B*57 (or Cw*18), and one HLA-A and HLA-C combination (A*30+Cw*03), dominated in SCs; their independent associations with low VL were reflected in regression beta estimates that ranged from −0.47±0.23 to −0.92±0.32 log10 in SCs (p<0.05). Except for Cw*18, all favorable variants had diminishing or vanishing association with VL in SPs (p≤0.86). Conclusions/Significance Overall, each of the three HLA class I genes had at least one allele that might contribute to effective immune control, especially during the early course of HIV-1 infection. These observations can provide a useful framework for ongoing analyses of viral mutations induced by protective immune responses.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
An P, Winkler CA. Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet 2010; 26:119-31. [PMID: 20149939 PMCID: PMC3792714 DOI: 10.1016/j.tig.2010.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/31/2009] [Accepted: 01/03/2010] [Indexed: 02/06/2023]
Abstract
Twenty-five years after the discovery of HIV as the cause of AIDS there is still no effective vaccine and no cure for this disease. HIV susceptibility shows a substantial degree of individual heterogeneity, much of which can be conferred by host genetic variation. In an effort to discover host factors required for HIV replication, identify crucial pathogenic pathways, and reveal the full armament of host defenses, there has been a shift from candidate-gene studies to unbiased genome-wide genetic and functional studies. However, the number of securely identified host factors involved in HIV disease remains small, explaining only approximately 15-20% of the observed heterogeneity - most of which is attributable to human lymphocyte antigen (HLA) variants. Multidisciplinary approaches integrating genetic epidemiology to systems biology will be required to fully understand virus-host interactions to effectively combat HIV/AIDS.
Collapse
Affiliation(s)
| | - Cheryl A. Winkler
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., National Cancer Institute- Frederick, Frederick, MD
| |
Collapse
|
37
|
Li Y, Ni R, Song W, Shao W, Shrestha S, Ahmad S, Cunningham CK, Flynn PM, Kapogiannis BG, Wilson CM, Tang J. Clear and independent associations of several HLA-DRB1 alleles with differential antibody responses to hepatitis B vaccination in youth. Hum Genet 2009; 126:685-96. [PMID: 19597844 PMCID: PMC2771141 DOI: 10.1007/s00439-009-0720-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/05/2009] [Indexed: 12/18/2022]
Abstract
To confirm and refine associations of human leukocyte antigen (HLA) genotypes with variable antibody (Ab) responses to hepatitis B vaccination, we have analyzed 255 HIV-1 seropositive (HIV(+)) youth and 80 HIV-1 seronegatives (HIV(-)) enrolled into prospective studies. In univariate analyses that focused on HLA-DRB1, -DQA1, and -DQB1 alleles and haplotypes, the DRB1*03 allele group and DRB1*0701 were negatively associated with the responder phenotype (serum Ab concentration > or = 10 mIU/mL) (P = 0.026 and 0.043, respectively). Collectively, DRB1*03 and DRB1*0701 were found in 42 (53.8%) out of 78 non-responders (serum Ab <10 mIU/mL), 65 (40.6%) out of 160 medium responders (serum Ab 10-1,000 mIU/mL), and 27 (27.8%) out of 97 high responders (serum Ab >1,000 mIU/mL) (P < 0.001 for trend). Meanwhile, DRB1*08 was positively associated with the responder phenotype (P = 0.010), mostly due to DRB1*0804 (P = 0.008). These immunogenetic relationships were all independent of non-genetic factors, including HIV-1 infection status and immunodeficiency. Alternative analyses confined to HIV(+) youth or Hispanic youth led to similar findings. In contrast, analyses of more than 80 non-coding, single nucleotide polymorphisms within and beyond the three HLA class II genes revealed no clear associations. Overall, several HLA-DRB1 alleles were major predictors of differential Ab responses to hepatitis B vaccination in youth, suggesting that T-helper cell-dependent pathways mediated through HLA class II antigen presentation are critical to effective immune response to recombinant vaccines.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Rong Ni
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Wei Song
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Wenshuo Shao
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sushma Ahmad
- Westat, 1650 Research Boulevard, Rockville, MD USA
| | | | - Patricia M. Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Bill G. Kapogiannis
- Pediatric, Adolescent, and Maternal AIDS Branch, National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Craig M. Wilson
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, AL 35294 USA
| |
Collapse
|
38
|
Song W, Ruder AM, Hu L, Li Y, Ni R, Shao W, Kaslow RA, Butler M, Tang J. Genetic epidemiology of glioblastoma multiforme: confirmatory and new findings from analyses of human leukocyte antigen alleles and motifs. PLoS One 2009; 4:e7157. [PMID: 19774073 PMCID: PMC2742900 DOI: 10.1371/journal.pone.0007157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022] Open
Abstract
Background Human leukocyte antigen (HLA) class I genes mediate cytotoxic T-lymphocyte responses and natural killer cell function. In a previous study, several HLA-B and HLA-C alleles and haplotypes were positively or negatively associated with the occurrence and prognosis of glioblastoma multiforme (GBM). Methodology/Principal Findings As an extension of the Upper Midwest Health Study, we have performed HLA genotyping for 149 GBM patients and 149 healthy control subjects from a non-metropolitan population consisting almost exclusively of European Americans. Conditional logistic regression models did not reproduce the association of HLA-B*07 or the B*07-Cw*07 haplotype with GBM. Nonetheless, HLA-A*32, which has previously been shown to predispose GBM patients to a favorable prognosis, was negatively associated with occurrence of GBM (odds ratio = 0.41, p = 0.04 by univariate analysis). Other alleles (A*29, A*30, A*31 and A*33) within the A19 serology group to which A*32 belongs showed inconsistent trends. Sequencing-based HLA-A genotyping established that A*3201 was the single A*32 allele underlying the observed association. Additional evaluation of HLA-A promoter and exon 1 sequences did not detect any unexpected single nucleotide polymorphisms that could suggest differential allelic expression. Further analyses restricted to female GBM cases and controls revealed a second association with a specific HLA-B sequence motif corresponding to Bw4-80Ile (odds ratio = 2.71, p = 0.02). Conclusions/Significance HLA-A allelic product encoded by A*3201 is likely to be functionally important to GBM. The novel, sex-specific association will require further confirmation in other representative study populations.
Collapse
Affiliation(s)
- Wei Song
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Avima M. Ruder
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, United States of America
| | - Liangyuan Hu
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rong Ni
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wenshuo Shao
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - MaryAnn Butler
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kaur G, Mehra N. Genetic determinants of HIV-1 infection and progression to AIDS: immune response genes. ACTA ACUST UNITED AC 2009; 74:373-85. [PMID: 19765261 DOI: 10.1111/j.1399-0039.2009.01337.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic studies involving well-defined multicenter cohorts of HIV-1/AIDS covering multiple populations have led to a greater understanding of the role of host determinants in viral acquisition, disease progression, transmission, and response to anti-retroviral therapy. Similarly, recent knowledge on the virus genetic diversity has helped in elucidating mechanisms leading to the evolution of viral escape mutants and the role played by host immune determinants, in particular the major histocompatibility complex (MHC) associated genes. At least two alleles, HLA-B*27 and B*57, have been identified as 'protective' against HIV-1 while B*35 and B*53 act as susceptibility favoring factors. How human leukocyte antigen (HLA)-mediated selection drives the evolution of HIV-1 and which circulating variants are more likely to evade immune surveillance of the population are now beginning to become clear. Importantly, the rare HLA alleles in a population bear a selective advantage to the host because these can induce immune responses against pre-adapted viruses. It is conceivable that previously established protective HLA associations are shifting with the evolving cytotoxic T lymphocyte (CTL) epitopes and may not remain protective in future. At the same time, this process is unraveling novel sub-dominant epitopes of the virus which could now be incorporated as the dominant target CTL epitopes. An insight into the population-specific correlates of protection is hence necessary for designing future anti-HIV therapeutic and/or prophylactic vaccine formulation(s).
Collapse
Affiliation(s)
- G Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | |
Collapse
|
40
|
Crawford H, Lumm W, Leslie A, Schaefer M, Boeras D, Prado JG, Tang J, Farmer P, Ndung'u T, Lakhi S, Gilmour J, Goepfert P, Walker BD, Kaslow R, Mulenga J, Allen S, Goulder PJR, Hunter E. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. ACTA ACUST UNITED AC 2009; 206:909-21. [PMID: 19307327 PMCID: PMC2715113 DOI: 10.1084/jem.20081984] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
HLA-B*57 is the class I allele most consistently associated with control of human immunodeficiency virus (HIV) replication, which may be linked to the specific HIV peptides that this allele presents to cytotoxic T lymphocytes (CTLs), and the resulting efficacy of these cellular immune responses. In two HIV C clade–infected populations in South Africa and Zambia, we sought to elucidate the role of HLA-B*5703 in HIV disease outcome. HLA-B*5703–restricted CTL responses select for escape mutations in three Gag p24 epitopes, in a predictable order. We show that the accumulation of these mutations sequentially reduces viral replicative capacity in vitro. Despite this, in vivo data demonstrate that there is ultimately an increase in viral load concomitant with evasion of all three HLA-B*5703–restricted CTL responses. In HLA-B*5703–mismatched recipients, the previously described early benefit of transmitted HLA-B*5703–associated escape mutations is abrogated by the increase in viral load coincident with reversion. Rapid disease progression is observed in HLA-matched recipients to whom mutated virus is transmitted. These data demonstrate that, although costly escape from CTL responses can progressively attenuate the virus, high viral loads develop in the absence of adequate, continued CTL responses. These data underline the need for a CTL vaccine against multiple conserved epitopes.
Collapse
|
41
|
Catano G, Kulkarni H, He W, Marconi VC, Agan BK, Landrum M, Anderson S, Delmar J, Telles V, Song L, Castiblanco J, Clark RA, Dolan MJ, Ahuja SK. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS One 2008; 3:e3636. [PMID: 18982067 PMCID: PMC2574440 DOI: 10.1371/journal.pone.0003636] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/01/2008] [Indexed: 11/19/2022] Open
Abstract
A recent genome-wide association study (GWAS) suggested that polymorphisms in or around the genes HCP5, HLA-C and ZNRD1 confer restriction against HIV-1 viral replication or disease progression. Here, we also find that these alleles are associated with different aspects of HIV disease, albeit mainly in European Americans. Additionally, we offer that because the GWAS cohort was a subset of HIV-positive individuals, selected based in part on having a low viral load, the observed associations for viral load are magnified compared with those we detect in a large well-characterized prospective natural history cohort of HIV-1-infected persons. We also find that because of linkage disequilibrium (LD) patterns, the dominant viral load- and disease-influencing associations for the ZNRD1 or HLA-C and HCP5 alleles are apparent mainly when these alleles are present in HLA-A10- or HLA-B*57-containing haplotypes, respectively. ZNRD1 alleles lacking HLA-A10 did not confer disease protection whereas ZNRD1-A10 haplotypes did. When examined in isolation, the HCP5-G allele associates with a slow disease course and lower viral loads. However, in multivariate models, after partitioning out the protective effects of B*57, the HCP5-G allele associates with disease-acceleration and enhanced viral replication; these associations for HCP5-G are otherwise obscured because of the very strong LD between this allele and a subset of protective B*57 alleles. Furthermore, HCP5 and HLA-C alleles stratify B*57-containing genotypes into those that associate with either striking disease retardation or progressive disease, providing one explanation for the long-standing conundrum of why some HLA-B*57-carrying individuals are long-term non-progressors, whereas others exhibit progressive disease. Collectively, these data generally underscore the strong dependence of genotype-phenotype relationships upon cohort design, phenotype selection, LD patterns and populations studied. They specifically demonstrate that the influence of ZNRD1 alleles on disease progression rates are attributable to HLA-A10, help clarify the relationship between the HCP5, HLA-C and HLA-B*57 alleles, and reaffirm a critical role of HLA-B*57 alleles in HIV disease. Furthermore, as the protective B*57-containing genotypes convey striking salutary effects independent of their strong impact on viral control, it is conceivable that T cell-based therapeutic vaccine strategies aimed at reducing viral loads may be inadequate for limiting AIDS progression, raising the potential need for complementary strategies that target viral load-independent determinants of pathogenesis.
Collapse
Affiliation(s)
- Gabriel Catano
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Hemant Kulkarni
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weijing He
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Vincent C. Marconi
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Disease Service, San Antonio Military Medical Center (SAMMC), Ft. Sam Houston, Texas, United States of America
| | - Brian K. Agan
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Disease Service, San Antonio Military Medical Center (SAMMC), Ft. Sam Houston, Texas, United States of America
- Henry M. Jackson Foundation, Wilford Hall United States Air Force Medical Center, Lackland AFB, Texas, United States of America
| | - Michael Landrum
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Disease Service, San Antonio Military Medical Center (SAMMC), Ft. Sam Houston, Texas, United States of America
- Henry M. Jackson Foundation, Wilford Hall United States Air Force Medical Center, Lackland AFB, Texas, United States of America
| | - Stephanie Anderson
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation, Wilford Hall United States Air Force Medical Center, Lackland AFB, Texas, United States of America
| | - Judith Delmar
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Disease Service, San Antonio Military Medical Center (SAMMC), Ft. Sam Houston, Texas, United States of America
| | - Vanessa Telles
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Li Song
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - John Castiblanco
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Robert A. Clark
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Matthew J. Dolan
- Infectious Disease Clinical Research Program (IDCRP), Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Infectious Disease Service, San Antonio Military Medical Center (SAMMC), Ft. Sam Houston, Texas, United States of America
- Henry M. Jackson Foundation, Wilford Hall United States Air Force Medical Center, Lackland AFB, Texas, United States of America
| | - Sunil K. Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| |
Collapse
|