1
|
Fan X, Brunetti TM, Jackson K, Roop DR. Single-Cell Profiling Reveals Global Immune Responses During the Progression of Murine Epidermal Neoplasms. Cancers (Basel) 2025; 17:1379. [PMID: 40282557 PMCID: PMC12025564 DOI: 10.3390/cancers17081379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. This study aimed to fully characterize immune cell responses during skin tumor progression. METHODS Using single-cell RNA sequencing, we analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. RESULTS We identified 15 CD45+ immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.1 and Prolif.2). Skin tumor progression reprogramed immune cells and led to a marked increase in the relative percentages of macrophages, cDC2, mDC, Tregs, and Neu. Macrophages, the largest cell cluster of immune cells in skin tumors. In addition, macrophages emerged as the predominant communication 'hub' in skin tumors, highlighting the importance of macrophages during skin tumor progression. In contrast, other immune cell clusters decreased during skin tumor progression, including DETC, γδT, ILC2, and LC. In addition, skin tumor progression dramatically upregulated Jak2/Stat3 expression and the interferon response across various immune cell clusters. Further, skin tumor progression activated T cells and NK cells indicated by elevated expression of IFN-γ and Granzyme B in skin tumors. Meanwhile, a pronounced infiltration of M2-macrophages and Tregs in skin tumors created an immunosuppressive microenvironment, consistent with the elevated expression of the Stat3 pathway in skin tumors. CONCLUSIONS Our study elucidates the immune cell landscape of epidermal neoplasms, offering a comprehensive understanding of the immune response during skin tumor progression and providing new insights into cancer immune evasion mechanisms.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya M. Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Kelsey Jackson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dennis R. Roop
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Fan X, Brunetti TM, Jackson K, Roop DR. Single-Cell Profiling Reveals Global Immune Responses during the Progression of Murine Epidermal Neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630251. [PMID: 39763798 PMCID: PMC11703249 DOI: 10.1101/2024.12.24.630251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. We analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. We identified 15 CD45 + immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.1 and Prolif.2). Skin tumor progression reprogramed immune cells and led to a marked increase in the relative percentages of macrophages, cDC2, mDC, Tregs, and Neu. Macrophages, the largest cell cluster of immune cells in skin tumors. In addition, macrophages emerged as the predominant communication 'hub' in skin tumors, highlighting the importance of macrophages during skin tumor progression. In contrast, other immune cell clusters decreased during skin tumor progression, including DETC, γδT, ILC2, and LC. In addition, skin tumor progression dramatically upregulated Jak2/Stat3 expression and the interferon response across various immune cell clusters. Further, skin tumor progression activated T cells and NK cells indicated by elevated expression of IFN-γ and Granzyme B in skin tumors. Meanwhile, a pronounced infiltration of M2-macrophages and Tregs in skin tumors created an immunosuppressive microenvironment, consistent with the elevated expression of the Stat3 pathway in skin tumors. In summary, our study elucidates the immune cell landscape of epidermal neoplasms, offering a comprehensive understanding of the immune response during skin tumor progression and providing new insights into cancer immune evasion mechanisms.
Collapse
|
3
|
Yang PJ, Zhao XY, Kou YH, Liu J, Ren XY, Zhang YY, Wang ZD, Ge Z, Yuan WX, Qiu C, Tan B, Liu Q, Shi YN, Jiang YQ, Qiu C, Guo LH, Li JY, Huang XJ, Yu LY. Human amniotic epithelial stem cell is a cell therapy candidate for preventing acute graft-versus-host disease. Acta Pharmacol Sin 2024; 45:2339-2353. [PMID: 38802569 PMCID: PMC11489431 DOI: 10.1038/s41401-024-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFβ and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.
Collapse
Affiliation(s)
- Peng-Jie Yang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Yu Zhao
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Yao-Hui Kou
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Xiang-Yi Ren
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Zhi-Dong Wang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wei-Xin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
| | - Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Bing Tan
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Qin Liu
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
| | - Yan-Na Shi
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Yuan-Qing Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Li-He Guo
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Ying Li
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China.
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100084, China.
| | - Lu-Yang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China.
| |
Collapse
|
4
|
Gioia L, Holt M, Costanzo A, Sharma S, Abe B, Kain L, Nakayama M, Wan X, Su A, Mathews C, Chen YG, Unanue E, Teyton L. Position β57 of I-A g7 controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci Immunol 2019; 4:eaaw6329. [PMID: 31471352 PMCID: PMC6816460 DOI: 10.1126/sciimmunol.aaw6329] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQβ chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαβ pairs in vitro. Genetic correction of the I-Aβ57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3β of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.
Collapse
Affiliation(s)
- Louis Gioia
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maki Nakayama
- Department of Pediatrics and Department of Immunology and Microbiology, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clayton Mathews
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Guang Chen
- University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Cassady K, Martin PJ, Zeng D. Regulation of GVHD and GVL Activity via PD-L1 Interaction With PD-1 and CD80. Front Immunol 2018; 9:3061. [PMID: 30622541 PMCID: PMC6308317 DOI: 10.3389/fimmu.2018.03061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematological malignancies (i.e. leukemia and lymphoma), because graft-versus-leukemia (GVL) activity mediated by alloreactive T cells can eliminate residual malignant cells and prevent relapse. However, the same alloreactive T cells also mediate a severe side effect, graft-versus-host disease (GVHD), and prevention of GVHD while preserving GVL activity remains an elusive goal. The immune checkpoint molecule PD-L1 and its interaction with PD-1 receptor in regulating cancer immunity is under intensive and wide-spread study, but knowledge about this interaction in regulating GVHD and GVL activity is very limited. In this review, we summarize the literature exploring how PD-L1 interaction with its receptors PD-1 and CD80 regulate GVHD and GVL activities, how PD-L1 signaling regulates T cell metabolic profiles, and how a differential role of PD-L1 interaction with PD-1, CD80 or both may provide a novel avenue to prevent GVHD while preserving strong GVL effects.
Collapse
Affiliation(s)
- Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Department of Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA, United States.,Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Department of Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA, United States.,Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
6
|
Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 2017; 108:159-172. [PMID: 28844788 DOI: 10.1016/j.nbd.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by active immunization of C57BL/6 mice with peptide from myelin oligodendrocyte protein (MOG35-55), is a neuroinflammatory, demyelinating disease widely recognized as an animal model of multiple sclerosis (MS). Typically, EAE presents with an ascending course of paralysis, and inflammation that is predominantly localized to the spinal cord. Recent studies have further indicated that inflammation - in both MS and EAE - might initiate within the meninges and propagate from there to the underlying parenchyma. However, the patterns of inflammation within the respective meningeal and parenchymal compartments along the length of the spinal cord, and the progression with which these patterns develop during EAE, have yet to be detailed. Such analysis could hold key to identifying factors critical for spreading, as well as constraining, inflammation along the neuraxis. To address this issue, high-resolution 3-dimensional (3D) confocal microscopy was performed to visualize, in detail, the sequence of leukocyte infiltration at distinct regions of the spinal cord. High quality virtual slide scanning for imaging the entire spinal cord using epifluorescence was further conducted to highlight the directionality and relative degree of inflammation. Meningeal inflammation was found to precede parenchymal inflammation at all levels of the spinal cord, but did not develop equally or simultaneously throughout the subarachnoid space (SAS) of the meninges. Instead, meningeal inflammation was initially most obvious in the caudal SAS, from which it progressed to the immediate underlying parenchyma, paralleling the first signs of clinical disease in the tail and hind limbs. Meningeal inflammation could then be seen to extend in the caudal-to-rostral direction, followed by a similar, but delayed, trajectory of parenchymal inflammation. To additionally determine whether the course of ascending paralysis and leukocyte infiltration during EAE is reflected in differences in inflammatory gene expression by meningeal and parenchymal microvessels along the spinal cord, laser capture microdissection (LCM) coupled with gene expression profiling was performed. Expression profiles varied between these respective vessel populations at both the cervical and caudal levels of the spinal cord during disease progression, and within each vessel population at different levels of the cord at a given time during disease. These results reinforce a significant role for the meninges in the development and propagation of central nervous system inflammation associated with MS and EAE.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Peter Chianchiano
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
7
|
Sung SSJ, Ge Y, Dai C, Wang H, Fu SM, Sharma R, Hahn YS, Yu J, Le TH, Okusa MD, Bolton WK, Lawler JR. Dependence of Glomerulonephritis Induction on Novel Intraglomerular Alternatively Activated Bone Marrow-Derived Macrophages and Mac-1 and PD-L1 in Lupus-Prone NZM2328 Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:2589-2601. [PMID: 28219886 DOI: 10.4049/jimmunol.1601565] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
Abstract
Glomerular damage mediated by glomerulus-infiltrating myeloid-derived cells is a key pathogenic event in lupus nephritis (LN), but the process is poorly understood. Confocal microscopy of kidney sections and flow cytometry analysis of glomerular cells from magnetic bead-purified glomeruli have identified glomerulus-infiltrating leukocyte populations in NZM2328 (NZM) lupus-prone mice with spontaneous chronic glomerulonephritis (GN) and anti-glomerular basement membrane-induced nephritis. The occurrence of a major glomerulus-infiltrating CD11b+F4/80-I-A- macrophage population exhibiting the markers programmed death ligand-1 (PD-L1), Mac-2, and macrophage mannose receptor (CD206) and producing Klf4, Il10, Retnla, Tnf, and Il6 mRNA, which are known to be expressed by alternatively activated (M2b) macrophages, correlated with proteinuria status. In NZM mice with spontaneous LN, glomerular macrophage infiltration is predominant. CD11b+F4/80-I-A- intraglomerular macrophages and polymorphonuclear neutrophils (PMN) are important in inducing GN, as anti-CD11b and -ICAM-1 mAb inhibited both proteinuria and macrophage and PMN infiltration. The predominant and high expression of PD-L1 by CD11b+F4/80-I-A- glomerular macrophages in kidneys of mice with GN and the inhibition of proteinuria by anti-PD-L1 mAb supported the pathogenic role of these macrophages but not the PD-L1- PMN in GN development and in inducing podocyte damage. In NZM mice with spontaneous chronic GN and severe proteinuria, few glomerulus-infiltrating PMN were found, leaving macrophages and, to a less extent, dendritic cells as the major infiltrating leukocytes. Taken together, these data support the important pathogenic effect of CD11b+F4/80-I-A- M2b-like glomerulus-infiltrating macrophages in LN and reinforce macrophages as a promising target for GN treatment.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908; .,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yan Ge
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Chao Dai
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hongyang Wang
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Shu Man Fu
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Rahul Sharma
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Young S Hahn
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Jing Yu
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Thu H Le
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mark D Okusa
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Warren K Bolton
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jessica R Lawler
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908.,Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
8
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 632] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
El-Far M, Ancuta P, Routy JP, Zhang Y, Bakeman W, Bordi R, DaFonseca S, Said EA, Gosselin A, Tep TS, Eichbaum Q, van Grevenynghe J, Schwartz O, Freeman GJ, Haddad EK, Chomont N, Sékaly RP. Nef promotes evasion of human immunodeficiency virus type 1-infected cells from the CTLA-4-mediated inhibition of T-cell activation. J Gen Virol 2015; 96:1463-1477. [PMID: 25626682 DOI: 10.1099/vir.0.000065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/19/2015] [Indexed: 01/28/2023] Open
Abstract
CTLA-4 is a negative regulator of T-cell receptor-mediated CD4(+) T-cell activation and function. Upregulation of CTLA-4 during human immunodeficiency virus type 1 (HIV-1) infection on activated T cells, particularly on HIV-specific CD4(+) T cells, correlates with immune dysfunction and disease progression. As HIV-1 infects and replicates in activated CD4(+) T cells, we investigated mechanisms by which HIV-1 modulates CTLA-4 expression to establish productive viral infection in these cells. Here, we demonstrate that HIV-1 infection in activated CD4(+) T cells was followed by Nef-mediated downregulation of CTLA-4. This was associated with a decreased T-cell activation threshold and significant resistance to CTLA-4 triggering. In line with these in vitro results, quantification of pro-viral HIV DNA from treatment-naive HIV-infected subjects demonstrated a preferential infection of memory CD4(+)CTLA-4(+) T cells, thus identifying CTLA-4 as a biomarker for HIV-infected cells in vivo. As transcriptionally active HIV-1 and Nef expression in vivo were previously shown to take place mainly in the CD3(+)CD4(-)CD8(-) [double-negative (DN)] cells, we further quantified HIV DNA in the CTLA-4(+) and CTLA-4(-) subpopulations of these cells. Our results showed that DN T cells lacking CTLA-4 expression were enriched in HIV DNA compared with DN CTLA-4(+) cells. Together, these results suggested that HIV-1 preferential infection of CD4(+)CTLA-4(+) T cells in vivo was followed by Nef-mediated concomitant downregulation of both CD4 and CTLA-4 upon transition to productive infection. This also highlights the propensity of HIV-1 to evade restriction of the key negative immune regulator CTLA-4 on cell activation and viral replication, and therefore contributes to the overall HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Mohamed El-Far
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Petronela Ancuta
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Yuwei Zhang
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Wendy Bakeman
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA
| | - Rebeka Bordi
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Sandrina DaFonseca
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Elias A Said
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Annie Gosselin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Tévy-Suzy Tep
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | - Julien van Grevenynghe
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Olivier Schwartz
- Virus and Immunity Group, Department of Virology, Institut Pasteur, Paris, France
| | - Gordon J Freeman
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elias K Haddad
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Chomont
- Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Case Western Reserve University, Cleveland, OH, USA.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Québec, Canada.,Vaccine & Gene Therapy Institute Florida, Port St Lucie, FL, USA
| |
Collapse
|
10
|
Podojil JR, Miller SD. Targeting the B7 family of co-stimulatory molecules: successes and challenges. BioDrugs 2013; 27:1-13. [PMID: 23329394 DOI: 10.1007/s40259-012-0001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As more patient data is cross-referenced with animal models of disease, the primary focus on T(h)1 autoreactive effector cell function in autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis, has shifted towards the role of T(h)17 autoreactive effector cells and the ability of regulatory T cells (T(reg)) to modulate the pro-inflammatory autoimmune response. Therefore, the currently favored hypothesis is that a delicate balance between T(h)1/17 effector cells and T(reg) cell function is critical in the regulation of inflammatory autoimmune disease. An intensive area of research with regard to the T(h)1/17:T(reg) cell balance is the utilization of blockade and/or ligation of various co-stimulatory or co-inhibitory molecules, respectively, during ongoing disease to skew the immune response toward a more tolerogenic/regulatory state. Currently, FDA-approved therapies for multiple sclerosis patients are all aimed at the suppression of immune cell function. The other favored method of treatment is a modulation or deletion of autoreactive immune cells via short-term blockade of activating co-stimulatory receptors via treatment with fusion proteins such as CTLA4-Ig and CTLA4-FasL. Based on the initial success of CTLA4-Ig, there are additional fusion proteins that are currently under development. Examples of the more recently identified B7/CD28 family members are PD-L1, PD-L2, inducible co-stimulatory molecule-ligand (ICOS-L), B7-H3, and B7-H4, all of which may emerge as potential fusion protein therapeutics, each with unique, yet often overlapping functions. The expression of both stimulatory and inhibitory B7 molecules seems to play an essential role in modulating immune cell function through a variety of mechanisms, which is supported by findings that suggest each B7 molecule has developed its own indispensable niche in the immune system. As more data are generated, the diagnostic and therapeutic potential of the above B7 family-member-derived fusion proteins becomes ever more apparent. Besides defining the biology of these B7/CD28 family members in vivo, additional difficulty in the development of these therapies lies in maintaining the normal immune functions of recognition and reaction to non-self-antigens following viral or bacterial infection in the patient. Further complicating the clinical translation of these therapies, the mechanism of action identified for a particular reagent may depend upon the method of immune-cell activation and the subset of immune cells targeted in the study.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Tarry 6-718, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | | |
Collapse
|
11
|
Yi T, Li X, Yao S, Wang L, Chen Y, Zhao D, Johnston HF, Young JS, Liu H, Todorov I, Forman SJ, Chen L, Zeng D. Host APCs augment in vivo expansion of donor natural regulatory T cells via B7H1/B7.1 in allogeneic recipients. THE JOURNAL OF IMMUNOLOGY 2011; 186:2739-49. [PMID: 21263067 DOI: 10.4049/jimmunol.1002939] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foxp3(+) regulatory T (Treg) cells include thymic-derived natural Treg and conventional T-derived adaptive Treg cells. Both are proposed to play important roles in downregulating inflammatory immune responses. However, the mechanisms of Treg expansion in inflammatory environments remain unclear. In this study, we report that, in an autoimmune-like graft-versus-host disease model of DBA/2 (H-2(d)) donor to BALB/c (H-2(d)) recipients, donor Treg cells in the recipients predominantly originated from expansion of natural Treg cells and few originated from adaptive Treg cells. In vivo neutralization of IFN-γ resulted in a marked reduction of donor natural Treg expansion and exacerbation of graft-versus-host disease, which was associated with downregulation of host APC expression of B7H1. Furthermore, host APC expression of B7H1 was shown to augment donor Treg survival and expansion. Finally, donor Treg interactions with host APCs via B7.1/B7H1 but not PD-1/B7H1 were demonstrated to be critical in augmenting donor Treg survival and expansion. These studies have revealed a new immune regulation loop consisting of T cell-derived IFN-γ, B7H1 expression by APCs, and B7.1 expression by Treg cells.
Collapse
Affiliation(s)
- Tangsheng Yi
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229:337-55. [PMID: 19426232 PMCID: PMC2845642 DOI: 10.1111/j.1600-065x.2009.00773.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY Pro-inflammatory CD4(+) T-cell-mediated autoimmune diseases, such as multiple sclerosis and type 1 diabetes, are hypothesized to be initiated and maintained by activated antigen-presenting cells presenting self antigen to self-reactive interferon-gamma and interleukin-17-producing CD4(+) T-helper (Th) type 1/Th17 cells. To date, the majority of Food and Drug Administration-approved therapies for autoimmune disease primarily focus on the global inhibition of immune inflammatory activity. The goal of ongoing research in this field is to develop both therapies that inhibit/eliminate activated autoreactive cells as well as antigen-specific treatments, which allow for the directed blockade of the deleterious effects of self-reactive immune cell function. According to the two-signal hypothesis, activation of a naive antigen-specific CD4(+) T cell requires both stimulation of the T-cell receptor (TCR) (signal 1) and stimulation of costimulatory molecules (signal 2). There also exists a balance between pro-inflammatory and anti-inflammatory immune cell activity, which is regulated by the type and strength of the activating signal as well as the local cytokine milieu in which the naive CD4(+) T cell is activated. To this end, the majority of ongoing research is focused on the delivery of suboptimal TCR stimulation in the absence of costimulatory molecule stimulation, or potential blockade of stimulatory accessory molecules. Therefore, the signaling pathways involved in the induction of CD4(+) T-cell anergy, as apposed to activation, are topics of intense interest.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|