1
|
Li R, Guan L, Liu Y, Hu Z, Liu J, Li C, Min H. The roles of vitamin C in infectious diseases: A comprehensive review. Nutrition 2025; 134:112733. [PMID: 40154019 DOI: 10.1016/j.nut.2025.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Vitamin C is a versatile nutrient with essential antioxidant properties and roles in amino acid metabolism, collagen promotion, and hormone synthesis. It has long been regarded as benefitting infectious disease management, although its specific roles remain uncertain. The dominant view is that this efficacy not only stems from its redox regulation in the body but also from its profound impact on the immune system. This review provides a comprehensive overview of Vitamin C's effects on redox regulation and shows how the vitamin influences various immune cells and cell-intrinsic innate immunity signaling pathways, thereby updating and expanding our previous perspectives. Clinically, though some studies and case series have suggested potential benefits of Vitamin C in preventing and (or) treating respiratory tract infections and sepsis and septic shock, the evidence remains controversial. The current data is insufficient to support the routine clinical use of Vitamin C in managing these diseases and requires further rigorous evaluation to establish definitive efficacy and safety profiles. This review thoroughly examines current clinical research progress on Vitamin C, summarizes the primary controversies and their underlying causes, and proposes directions for future clinical research. Furthermore, preclinical evidence shows potential roles for Vitamin C in the supplementary treatment of the "Big Three" infectious diseases: acquired immunodeficiency syndrome (AIDS), tuberculosis, and malaria; however, systematic clinical studies in these areas are lacking. We examine related in vitro and animal studies, as well as clinical trials, and discuss potential roles for Vitamin C as a treatment and (or) adjuvant therapy.
Collapse
Affiliation(s)
- Runze Li
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Liangchao Guan
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yue Liu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Zongyi Hu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Junyu Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Cheng Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Kabelitz D, Cierna L, Juraske C, Zarobkiewicz M, Schamel WW, Peters C. Empowering γδ T-cell functionality with vitamin C. Eur J Immunol 2024; 54:e2451028. [PMID: 38616772 DOI: 10.1002/eji.202451028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, UKSH Campus Kiel, Kiel, Germany
| | - Lea Cierna
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Maity J, Majumder S, Pal R, Saha B, Mukhopadhyay PK. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. Bioessays 2023; 45:e2300035. [PMID: 37694689 DOI: 10.1002/bies.202300035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | |
Collapse
|
4
|
Wen W, Chen X, Shen XY, Li HY, Zhang F, Fang FQ, Zhang XB. Enhancing cord blood stem cell-derived NK cell growth and differentiation through hyperosmosis. Stem Cell Res Ther 2023; 14:295. [PMID: 37840146 PMCID: PMC10578005 DOI: 10.1186/s13287-023-03461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells offer an 'off-the-shelf' solution. Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother and are virtually ideal sources for NK cell differentiation. METHODS We developed a modified protocol to differentiate HSPCs to NK cells under serum-free conditions using defined factors. The HSPC-derived NK (HSC-NK) cells could be expanded in a K562 feeder cell-dependent manner. Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)-modified HSPCs could be differentiated into NK cells, leading to the establishment of CAR-NK cells. RESULTS The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis-primed HSC-NK cells exhibited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34-positive cell within a 28-day cycle, which signifies more than a ten-fold increase in efficiency relative to the conventional methods. This optimized protocol was also suitable for generating CAR-NK cells with high yields compared to standard conditions. CONCLUSIONS The results of this study establish high osmotic pressure as a simple yet powerful adjustment that significantly enhances the efficiency and functionality of HSC-NK cells, including CAR-NK cells. This optimized protocol could lead to cost-effective, high-yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiang Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin-Yi Shen
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Hua-Yu Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng-Qi Fang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
5
|
Lordo MR, Stiff AR, Oakes CC, Mundy-Bosse BL. Effects of epigenetic therapy on natural killer cell function and development in hematologic malignancy. J Leukoc Biol 2023; 113:518-524. [PMID: 36860165 PMCID: PMC10443672 DOI: 10.1093/jleuko/qiad026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic therapy is an emerging field in the treatment of human cancer, including hematologic malignancies. This class of therapeutic agents approved by the US Food and Drug Administration for cancer treatment includes DNA hypomethylating agents, histone deacetylase inhibitors, IDH1/2 inhibitors, EZH2 inhibitors, and numerous preclinical targets/agents. Most studies measuring the biological effects of epigenetic therapy focus their attention on either their direct cytotoxic effects on malignant cells or their effects on modifying tumor cell antigen expression, exposing them to immune surveillance mechanisms. However, a growing body of evidence suggests that epigenetic therapy also has effects on the development and function of the immune system, including natural killer cells, which can alter their response to cancer cells. In this review, we summarize the body of literature studying the effects of different classes of epigenetic therapy on the development and/or function of natural killer cells.
Collapse
Affiliation(s)
- Matthew R. Lordo
- Comprehensive Cancer Center, The Ohio State University, 460 W. 10th Avenue, Columbus, OH 43210, USA
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Andrew R. Stiff
- Comprehensive Cancer Center, The Ohio State University, 460 W. 10th Avenue, Columbus, OH 43210, USA
- Physician Scientist Training Program, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Christopher C. Oakes
- Comprehensive Cancer Center, The Ohio State University, 460 W. 10th Avenue, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Bethany L. Mundy-Bosse
- Comprehensive Cancer Center, The Ohio State University, 460 W. 10th Avenue, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Boy M, Bisio V, Zhao LP, Guidez F, Schell B, Lereclus E, Henry G, Villemonteix J, Rodrigues-Lima F, Gagne K, Retiere C, Larcher L, Kim R, Clappier E, Sebert M, Mekinian A, Fain O, Caignard A, Espeli M, Balabanian K, Toubert A, Fenaux P, Ades L, Dulphy N. Myelodysplastic Syndrome associated TET2 mutations affect NK cell function and genome methylation. Nat Commun 2023; 14:588. [PMID: 36737440 PMCID: PMC9898569 DOI: 10.1038/s41467-023-36193-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders, representing high risk of progression to acute myeloid leukaemia, and frequently associated to somatic mutations, notably in the epigenetic regulator TET2. Natural Killer (NK) cells play a role in the anti-leukemic immune response via their cytolytic activity. Here we show that patients with MDS clones harbouring mutations in the TET2 gene are characterised by phenotypic defects in their circulating NK cells. Remarkably, NK cells and MDS clones from the same patient share the TET2 genotype, and the NK cells are characterised by increased methylation of genomic DNA and reduced expression of Killer Immunoglobulin-like receptors (KIR), perforin, and TNF-α. In vitro inhibition of TET2 in NK cells of healthy donors reduces their cytotoxicity, supporting its critical role in NK cell function. Conversely, NK cells from patients treated with azacytidine (#NCT02985190; https://clinicaltrials.gov/ ) show increased KIR and cytolytic protein expression, and IFN-γ production. Altogether, our findings show that, in addition to their oncogenic consequences in the myeloid cell subsets, TET2 mutations contribute to repressing NK-cell function in MDS patients.
Collapse
Affiliation(s)
- Maxime Boy
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Valeria Bisio
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Lin-Pierre Zhao
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Fabien Guidez
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, F-75010, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Emilie Lereclus
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Guylaine Henry
- Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, F-75010, Paris, France
| | - Juliette Villemonteix
- Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, F-75010, Paris, France
| | | | - Katia Gagne
- Etablissement Français du Sang, Centre Pays de la Loire, F-44011, Nantes, France.,Université de Nantes, INSERM UMR1307, CNRS UMR 6075, CRCI2NA team 12, F-44000, Nantes, France.,LabEx IGO « Immunotherapy, Graft, Oncology », F-44000, Nantes, France.,LabEx Transplantex, Université de Strasbourg, 67000, Strasbourg, France
| | - Christelle Retiere
- Etablissement Français du Sang, Centre Pays de la Loire, F-44011, Nantes, France.,Université de Nantes, INSERM UMR1307, CNRS UMR 6075, CRCI2NA team 12, F-44000, Nantes, France.,LabEx IGO « Immunotherapy, Graft, Oncology », F-44000, Nantes, France.,LabEx Transplantex, Université de Strasbourg, 67000, Strasbourg, France
| | - Lise Larcher
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France
| | - Rathana Kim
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France
| | - Emmanuelle Clappier
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France
| | - Marie Sebert
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Department d'Hématologie Sénior, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France.,Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_944, F-75010, Paris, France
| | - Arsène Mekinian
- Service de Medecine Interne, Hôpital Saint-Antoine, AP-HP, F-75012, Paris, France.,Departement Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Olivier Fain
- Service de Medecine Interne, Hôpital Saint-Antoine, AP-HP, F-75012, Paris, France.,Departement Hospitalo-Universitaire Inflammation-Immunopathologie-Biotherapie, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Anne Caignard
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France
| | - Marion Espeli
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France
| | - Antoine Toubert
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France.,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, F-75010, Paris, France
| | - Pierre Fenaux
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Department d'Hématologie Sénior, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France.,Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_944, F-75010, Paris, France
| | - Lionel Ades
- Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France.,Department d'Hématologie Sénior, Hôpital Saint-Louis, AP-HP, F-75010, Paris, France.,Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_944, F-75010, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMR_S1160, F-75010, Paris, France. .,Institut Carnot OPALE, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, F-75010, Paris, France. .,CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, F-75010, Paris, France. .,Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, F-75010, Paris, France.
| |
Collapse
|
7
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
Affiliation(s)
- Philippe Rascle
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
9
|
5mC-Related lncRNAs as Potential Prognostic Biomarkers in Colon Adenocarcinoma. BIOLOGY 2022; 11:biology11020231. [PMID: 35205097 PMCID: PMC8868594 DOI: 10.3390/biology11020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary To identify the prognostic significance of 5mC-related lncRNAs in colon adenocarcinoma (COAD), we examined the expression levels and mutations of 21 5mC-regulated genes of COAD in TCGA. We also identified lncRNAs associated with 5mC regulatory genes using Pearson correlation analysis. After the least absolute shrinkage and selection operator (Lasso) Cox regression, the risk signature of 4 5mC-related lncRNAs was selected. Next, the risk signature’s predictive efficacy was proven. Moreover, the biological mechanism and potential immunotherapeutic response of this risk signature were identified. Collectively, we constructed the 5mC-related lncRNA risk signature, which could provide a novel prognostic prediction of COAD patients. Abstract Globally, colon adenocarcinoma (COAD) is one of the most frequent types of malignant tumors. About 40~50% of patients with advanced colon adenocarcinoma die from recurrence and metastasis. Long non-coding RNAs (lncRNAs) and 5-methylcytosine (5mC) regulatory genes have been demonstrated to involve in the progression and prognosis of COAD. The goal of this study was to explore the biological characteristics and potential predictive value of 5mC-related lncRNA signature in COAD. In this research, The Cancer Genome Atlas (TCGA) was utilized to obtain the expression of genes and somatic mutations in COAD, and Pearson correlation analysis was used to select lncRNAs involved in 5mC-regulated genes. Furthermore, we applied univariate Cox regression and Lasso Cox regression to construct 5mC-related lncRNA signature. Then Kaplan–Meier survival analysis, principal components analysis (PCA), receiver operating characteristic (ROC) curve, and a nomogram were performed to estimate the prognostic effect of the risk signature. GSEA was utilized to predict downstream access of the risk signature. Finally, the immune characteristics and immunotherapeutic signatures targeting this risk signature were analyzed. In the results, we obtained 1652 5mC-related lncRNAs by Pearson correlation analysis in the TCGA database. Next, we selected a risk signature that comprised 4 5mC-related lncRNAs by univariate and Lasso Cox regression. The prognostic value of the risk signature was proven. Finally, the biological mechanism and potential immunotherapeutic response of the risk signature were identified. Collectively, we constructed the 5mC-related lncRNA risk signature, which could provide a novel prognostic prediction of COAD patients.
Collapse
|
10
|
Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol 2021; 12:765906. [PMID: 34899716 PMCID: PMC8663797 DOI: 10.3389/fimmu.2021.765906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Department of Pediatrics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Liu T, Guo L, Liu G, Hu X, Li X, Zhang J, Dai Z, Yu P, Jiang M, Wang J, Zhang J. Molecular Characterization of the Clinical and Tumor Immune Microenvironment Signature of 5-methylcytosine-Related Regulators in non-small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:779367. [PMID: 34858994 PMCID: PMC8632062 DOI: 10.3389/fcell.2021.779367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background: DNA methylation is an important epigenetic modification, among which 5-methylcytosine methylation (5mC) is generally associated with tumorigenesis. Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment (TME) remain unclear. Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were analyzed systematically. The correlation between the 5mC modification and tumor microenvironment cell infiltration was further assessed. The 5mCscore was developed to evaluate tumor mutation burden, immune check-point inhibitor response, and the clinical prognosis of individual tumors. Results: Three 5mC modification patterns were established based on the clinical characteristics of 21 5mC regulators. According to the differential expression of 5mC regulators, three distinct 5mC gene cluster were also identified, which showed distinct TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was constructed to evaluate the tumor mutation burden, immune check-point inhibitor response, and prognosis characteristics. We found that patients with a low 5mCscore had significant immune cell infiltration and increased clinical benefit. Conclusion: This study indicated that the 5mC modification is involved in regulating TME infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to treat lung cancer.
Collapse
Affiliation(s)
- Taisheng Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Liyi Guo
- The Sixth People's Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China
| | - Guihong Liu
- Department of Radiation Oncology, DongGuan Tungwah Hospital, Dongguan, China
| | - Xiaoshan Hu
- Department of Internal Medicine of Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoning Li
- Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinye Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Peng Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Ming Jiang
- Department of Breast Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
12
|
Bruijnesteijn J, van der Wiel M, de Groot NG, Bontrop RE. Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Front Immunol 2021; 12:722181. [PMID: 34594334 PMCID: PMC8476923 DOI: 10.3389/fimmu.2021.722181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Long-read sequencing approaches have considerably improved the quality and contiguity of genome assemblies. Such platforms bear the potential to resolve even extremely complex regions, such as multigenic immune families and repetitive stretches of DNA. Deep sequencing coverage, however, is required to overcome low nucleotide accuracy, especially in regions with high homopolymer density, copy number variation, and sequence similarity, such as the MHC and KIR gene clusters of the immune system. Therefore, we have adapted a targeted enrichment protocol in combination with long-read sequencing to efficiently annotate complex KIR gene regions. Using Cas9 endonuclease activity, segments of the KIR gene cluster were enriched and sequenced on an Oxford Nanopore Technologies platform. This provided sufficient coverage to accurately resolve and phase highly complex KIR haplotypes. Our strategy eliminates PCR-induced amplification errors, facilitates rapid characterization of large and complex multigenic regions, including its epigenetic footprint, and is applicable in multiple species, even in the absence of a reference genome.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Guan Z, Liu Y, Liu C, Wang H, Feng J, Yang G. Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56 bright NK Cells. Front Cell Infect Microbiol 2021; 11:658141. [PMID: 33854984 PMCID: PMC8039520 DOI: 10.3389/fcimb.2021.658141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Zhangchun Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huiting Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|