1
|
Fan Y, Sun L, He J, Chen Y, Ma H, Ding H. Siglec15 in blood system diseases: from bench to bedside. Front Immunol 2024; 15:1490505. [PMID: 39697338 PMCID: PMC11652361 DOI: 10.3389/fimmu.2024.1490505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting the PD-1/PD-L1 pathway using immunomodulators has demonstrated promising outcomes in clinics. Immunomodulators can effectively target immune checkpoints with a strong preference for the tumor microenvironment (TME). Besides, immunomodulators specifically target the recently discovered inhibitory immune checkpoint, sialic acid-binding immunoglobulin-like lectin (Siglec-15). Distinctive in its molecular composition, Siglec-15 has a unique molecular composition and been shown to be highly prevalent in numerous solid tumor tissues and tumor-associated macrophages (TAMs) in human subjects. Notably, Siglec-15 is up-regulated across various cancer types. As a result, Siglec-15 has attracted significant attention due to its exclusive nature concerning PD-L1 expression, suggesting its role in immune evasion in patients lacking PD-L1. Siglec-15 predominantly appears in certain populations and can promote tumor development by repressing T lymphocyte activation and proliferation, thereby facilitating tumor cell immune escape. Furthermore, Siglec-15 is implicated in osteoclast differentiation and bone remodeling, indicating that it is a promising target for next-generation cancer immunotherapies. Additionally, Siglec-15 can modulate immune responses to microbial infections. The current treatment strategies for hematological conditions predominantly include conventional intensive chemotherapy and transplantation methods. However, emerging immunotherapeutic approaches are increasingly recognized for their overall effectiveness, indicating that specific molecular targets should be identified. The expression of Siglec-15 within tumor cells may indicate a novel pathway for treating hematological malignancies. In this study, the biological attributes, expression patterns, and pathogenic mechanisms of Siglec-15 across various diseases were reviewed. The role of Siglec-15 in the pathogenesis and laboratory diagnosis of hematological disorders was also evaluated.
Collapse
Affiliation(s)
- Yujia Fan
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liangliang Sun
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuetong Chen
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Hongli Ma
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Haitao Ding
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Lu J, Zhang Y, Wen H, Li J, Chen C, Xiao L. Siglec-15 as a potential molecule involved in osteoclast differentiation and bone metabolism. Heliyon 2024; 10:e38537. [PMID: 39524871 PMCID: PMC11550040 DOI: 10.1016/j.heliyon.2024.e38537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is a well-conserved type I transmembrane protein of the Siglecs family, distributed in macrophages and dendritic cells in the human spleen and lymph nodes. As an immune receptor, Siglec-15 is expressed in almost all branches of the spinal cord. Siglec-15 participates in the metabolism of the skeleton by regulating osteoclast activity and differentiation and has an influential role in dynamic bone remodelling. The binding of DNAX activation protein of 12 kDa (DAP12), which contains the immunoreceptor tyrosine-based activation motif (ITAM) activation domain, to the Siglec-15 receptor provides a positive stimulatory signal for osteoclast growth, with the involvement of the receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL) signalling. Recently, Siglec-15 antibodies have been shown to effectively prevent bone resorption in mouse models of osteoporosis and accelerate fracture healing to some extent. Therefore, exploring the molecular characteristics and functions of Siglec-15 may lead to new therapeutic strategies for common clinical skeletal diseases.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Yinyin Zhang
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Huiyu Wen
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Junlin Li
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Chen Chen
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Liwei Xiao
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| |
Collapse
|
3
|
Yang S, He Z, Wu T, Wang S, Dai H. Glycobiology in osteoclast differentiation and function. Bone Res 2023; 11:55. [PMID: 37884496 PMCID: PMC10603120 DOI: 10.1038/s41413-023-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Glycans, either alone or in complex with glycan-binding proteins, are essential structures that can regulate cell biology by mediating protein stability or receptor dimerization under physiological and pathological conditions. Certain glycans are ligands for lectins, which are carbohydrate-specific receptors. Bone is a complex tissue that provides mechanical support for muscles and joints, and the regulation of bone mass in mammals is governed by complex interplay between bone-forming cells, called osteoblasts, and bone-resorbing cells, called osteoclasts. Bone erosion occurs when bone resorption notably exceeds bone formation. Osteoclasts may be activated during cancer, leading to a range of symptoms, including bone pain, fracture, and spinal cord compression. Our understanding of the role of protein glycosylation in cells and tissues involved in osteoclastogenesis suggests that glycosylation-based treatments can be used in the management of diseases. The aims of this review are to clarify the process of bone resorption and investigate the signaling pathways mediated by glycosylation and their roles in osteoclast biology. Moreover, we aim to outline how the lessons learned about these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Shufa Yang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ziyi He
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Tuo Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shunlei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Li B, Guo Y, Yi Y, Huang Z, Ren Y, Wang H, Yang L. Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas. J Transl Med 2023; 21:599. [PMID: 37674198 PMCID: PMC10483852 DOI: 10.1186/s12967-023-04489-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has emerged as a novel immunotherapy candidate, which deserves a comprehensive investigation in lung adenocarcinoma (LUAD). METHODS Multiplex fluorescence-based immunohistochemistry was conducted to assess Siglec-15 expression and tumor-infiltrating immune cells in LUAD from Tianjin cohort, with validation cohorts Xinchao 04 and 07. RESULTS This study revealed that Siglec-15 was positively correlated with CD8+ T cells and tumor-associated macrophages (TAMs) infiltration, but CD8+ T cells were mostly infiltrated in the stroma area, not in the tumor area. Spatially, fewer CD8+ T cells surrounded Siglec-15+ tumor cells in PD-L1- cells, and more TAMs surrounded Siglec-15+ tumor cells in PD-L1-/+ cells. Siglec-15+ TAMs infiltrated with more CD8+ T cells, and were closer to CD8+ T cells than Siglec-15- TAMs and Siglec-15+ tumor cells. Siglec-15+ TAMs infiltrated with more Tregs and were closer to Tregs than Siglec-15+ tumor cells. Siglec-15+ tumor cells or TAMs reversed CD8+ T cells prognosis value, and enhanced the prognosis value of Tregs and TAMs. The immunotyping based on Siglec-15 and CD8A / CD8+ T cells revealed that patients with high CD8A and Siglec-15 expression exhibited immune activation. Patients with low CD8A expression / CD8+ T cells infiltration and Siglec-15 overexpression were related to the activation of immunosuppressive signature and metabolism-related pathway, and infiltrated with more TAMs. CONCLUSIONS We revealed the distinct characteristics between Siglec-15+ tumor cells and TAMs in relation to CD8+ T cells, and a unique relationship between Siglec-15 and immunosuppressive TIME in LUAD, which may provide potential value for anti-Siglec-15 therapy.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yan Guo
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yulin Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hao Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
5
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Royzman D, Andreev D, Stich L, Peckert-Maier K, Wild AB, Zinser E, Mühl-Zürbes P, Jones E, Adam S, Frey S, Fuchs M, Kunz M, Bäuerle T, Nagel L, Schett G, Bozec A, Steinkasserer A. The soluble CD83 protein prevents bone destruction by inhibiting the formation of osteoclasts and inducing resolution of inflammation in arthritis. Front Immunol 2022; 13:936995. [PMID: 36003376 PMCID: PMC9393726 DOI: 10.3389/fimmu.2022.936995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Here we show that soluble CD83 induces the resolution of inflammation in an antigen-induced arthritis (AIA) model. Joint swelling and the arthritis-related expression levels of IL-1β, IL-6, RANKL, MMP9, and OC-Stamp were strongly reduced, while Foxp3 was induced. In addition, we observed a significant inhibition of TRAP+ osteoclast formation, correlating with the reduced arthritic disease score. In contrast, cell-specific deletion of CD83 in human and murine precursor cells resulted in an enhanced formation of mature osteoclasts. RNA sequencing analyses, comparing sCD83- with mock treated cells, revealed a strong downregulation of osteoclastogenic factors, such as Oc-Stamp, Mmp9 and Nfatc1, Ctsk, and Trap. Concomitantly, transcripts typical for pro-resolving macrophages, e.g., Mrc1/2, Marco, Klf4, and Mertk, were upregulated. Interestingly, members of the metallothionein (MT) family, which have been associated with a reduced arthritic disease severity, were also highly induced by sCD83 in samples derived from RA patients. Finally, we elucidated the sCD83-induced signaling cascade downstream to its binding to the Toll-like receptor 4/(TLR4/MD2) receptor complex using CRISPR/Cas9-induced knockdowns of TLR4/MyD88/TRIF and MTs, revealing that sCD83 acts via the TRIF-signaling cascade. In conclusion, sCD83 represents a promising therapeutic approach to induce the resolution of inflammation and to prevent bone erosion in autoimmune arthritis.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Evan Jones
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Adam
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Frey
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Nagel
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
7
|
Deloch L, Hehlgans S, Rückert M, Maier A, Hinrichs A, Flohr AS, Eckert D, Weissmann T, Seeling M, Nimmerjahn F, Fietkau R, Rödel F, Fournier C, Frey B, Gaipl US. Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells 2022; 11:689. [PMID: 35203348 PMCID: PMC8870723 DOI: 10.3390/cells11040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Annika Hinrichs
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
- Department of Physics, Goethe Universität Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Ann-Sophie Flohr
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Eckert
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Weissmann T, Rückert M, Zhou JG, Seeling M, Lettmaier S, Donaubauer AJ, Nimmerjahn F, Ott OJ, Hecht M, Putz F, Fietkau R, Frey B, Gaipl US, Deloch L. Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Front Immunol 2022; 12:777792. [PMID: 35046940 PMCID: PMC8763318 DOI: 10.3389/fimmu.2021.777792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the leading degenerative joint disease in the western world and leads, if left untreated, to a progressive deterioration of joint functionality, ultimately reducing quality of life. Recent data has shown, that especially OA of the ankle and foot are among the most frequently affected regions. Current research in OA points towards a complex involvement of various cell and tissue types, often accompanied by inflammation. Low-dose radiotherapy (LDRT) is widely used for the treatment of degenerative and inflammatory diseases. While the reported analgesic effects are well known, the underlying molecular mechanisms are only poorly understood. We therefore correlated a clinical approach, looking at pain reduction in 196 patients treated with LDRT with a pre-clinical approach, utilizing the K/BxN serum transfer mouse model using flow cytometry and multiplex ELISA for analysis. While an improvement of symptoms in the majority of patients was found, patients suffering from symptoms within the tarsi transversa show a significantly lower level of improvement. Further, a significant impact of therapy success was detected depending on whether only one or both feet were affected. Further, patients of younger age showed a significantly better outcome than older ones while needing fewer treatment series. When looking on a cellular level within the mouse model, a systemic alteration of immune cells namely a shift from CD8+ to CD4+ T cells and reduced numbers of DCs was observed. A general reduction of inflammatory cytokines was detected, with significant alterations in IL-4 and IL-17 levels, all of which could potentially be responsible for the highly effective clinical improvement in patients. Taken together our data indicate that LDRT can be regarded as a highly effective treatment option for patients suffering from OA of the foot and ankle, in terms of analgesic effects, especially in younger patients. Furthermore, the observed effects are mediated by an interplay of cellular and soluble immune factors, as observed in the K/BxN serum transfer model. With this interdisciplinary approach we aim to encourage the usage of LDRT as an additive treatment strategy not only as a last resort, but also earlier in the course of disease.
Collapse
Affiliation(s)
- Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Rashid S, Song D, Yuan J, Mullin BH, Xu J. Molecular structure, expression, and the emerging role of Siglec-15 in skeletal biology and cancer. J Cell Physiol 2021; 237:1711-1719. [PMID: 34893976 DOI: 10.1002/jcp.30654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Siglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor. It exerts diverse functions on osteoclast physiology as well as the tumor microenvironment. Siglec-15 interacts with adapter protein DAP12 - Syk signaling pathway to regulate the RANKL/RANK-mediated PI3K, AKT, and ERK signaling pathways during osteoclast formation in vitro. Consistently, the lack of the Siglec-15 gene in mice leads to impaired osteoclast activity and osteopetrosis in vivo. In addition, Siglec-15 is expressed by tumor-associated macrophages (TAMs) and regulates the tumor microenvironment by activating the SYK/MAPK signaling pathway. Interestingly, Siglec-15 shares sequence homology to programmed death-ligand 1 (PD-L1) and has a potential immune-regulatory role in cancer immunology. Thus, Siglec-15 might also represent an alternative target for the treatment of cancers that do not respond to anti-PD-L1/PD-1 immunotherapy. Understanding the role of Siglec-15 in osteoclastogenesis and the tumor microenvironment will help us to develop new treatments for bone disorders and cancer.
Collapse
Affiliation(s)
- Sarah Rashid
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|