1
|
Ignacio A, Cipelli M, Takiishi T, Favero Aguiar C, Fernandes Terra F, Ghirotto B, Martins Silva E, Castoldi A, Magalhães YT, Antonio T, Nunes Padovani B, Ioshie Hiyane M, Andrade-Oliveira V, Forti FL, Olsen Saraiva Camara N. Lack of mTORC2 signaling in CD11c+ myeloid cells inhibits their migration and ameliorates experimental colitis. J Leukoc Biol 2024; 116:779-792. [PMID: 38652699 DOI: 10.1093/jleuko/qiae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), we investigated the role of mTOR complex 2 (mTORC2) signaling in dendritic cells (DCs) function in mice. We showed that upon dextran sulfate sodium-induced colitis, the lack of mTORC2 signaling CD11c+ cells diminishes the colitis score and abrogates DC migration to the mesenteric lymph nodes, thereby diminishing the infiltration of T helper 17 cells in the lamina propria and subsequent inflammation. These findings corroborate with the abrogation of cytoskeleton organization and the decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis patients revealed increased gene expression of proinflammatory cytokines, which coincided with augmented expression of the mTOR pathway, a positive correlation between the DC marker ITGAX and interleukin-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses, and this way, ameliorates the progression and severity of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Aline Ignacio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Marcella Cipelli
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Tatiane Takiishi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Cristhiane Favero Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Eloisa Martins Silva
- Center for Natural and Human Sciences, Federal University of ABC. Alameda da Universidade (UFABC) 09606045, São Bernardo do Campo, SP, Brazil
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Yuli Thamires Magalhães
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Tiago Antonio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
- Laboratory of Renal Physiology, Department of Medicine, Federal University of São Paulo (UNIFESP). Rua Botucatu 740, 04023-062, São Paulo, Brazil
| |
Collapse
|
2
|
Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol 2022; 63:102191. [PMID: 35276496 PMCID: PMC8995387 DOI: 10.1016/j.coph.2022.102191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Immune cell mobilization and their accumulation in the extravascular space is a key consequence of tissue injury. Maladaptive trafficking and immune activation following reperfusion of ischemic tissue can exacerbate tissue repair. After ischemic injury such as myocardial infarction (MI), PMNs are the first cells to arrive at the sites of insult and their response is critical for the sequential progression of ischemia from inflammation to resolution and finally to tissue repair. However, PMN-induced inflammation can also be detrimental to cardiac function and ultimately lead to heart failure. In this review, we highlight the role of PMNs during key cellular and molecular events of ischemic heart failure. We address new research on PMN metabolism, and how this orchestrates diverse functions such as PMN chemotaxis, degranulation, and phagocytosis. Particular focus is given to PMN metabolism regulation by mitochondrial function and mTOR kinase activity.
Collapse
Affiliation(s)
- Enzo B Piccolo
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| |
Collapse
|