1
|
Xu F, Gao Y, Li T, Jiang T, Wu X, Yu Z, Zhang J, Hu Y, Cao J. Single-Cell Sequencing Reveals the Heterogeneity of Hepatic Natural Killer Cells and Identifies the Cytotoxic Natural Killer Subset in Schistosomiasis Mice. Int J Mol Sci 2025; 26:3211. [PMID: 40244063 PMCID: PMC11989782 DOI: 10.3390/ijms26073211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Schistosoma japonicum eggs in the host liver form granuloma and liver fibrosis and then lead to portal hypertension and cirrhosis, seriously threatening human health. Natural killer (NK) cells can kill activated hepatic stellate cells (HSCs) against hepatic fibrosis. We used single-cell sequencing to screen hepatic NK cell subsets against schistosomiasis liver fibrosis. Hepatic NK cells were isolated from uninfected mice and mice infected for four and six weeks. The NK cells underwent single-cell sequencing. The markers' expression in the NK subsets was detected through Reverse Transcription-Quantitative PCR (RT-qPCR). The proportion and granzyme B (Gzmb) expression of the total NK and Thy1+NK were detected. NK cells overexpressing Thy1 (Thy1-OE) were constructed, and functions were detected. The results revealed that the hepatic NK cells could be divided into mature, immature, regulatory-like, and memory-like NK cells and re-clustered into ten subsets. C3 (Cx3cr1+NK) and C4 (Thy1+NK) increased at week four post-infection, and other subsets decreased continuously. The successfully constructed Thy1-OE NK cells had significantly higher effector molecules and induced greater HSC apoptosis than the control NK cells. It revealed a pattern of hepatic NK cells in a mouse model of schistosomiasis. The Thy1+NK cells could be used as target cells against hepatic fibrosis.
Collapse
Affiliation(s)
- Fangfang Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Zhihao Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Frey HC, Sun X, Oudeif F, Corona DL, He Z, Won T, Schultz TL, Carruthers VB, Laouar A, Laouar Y. A membrane lipid signature unravels the dynamic landscape of group 1 innate lymphoid cells across the health-disease continuum. iScience 2025; 28:112043. [PMID: 40104068 PMCID: PMC11914809 DOI: 10.1016/j.isci.2025.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
In an era where established lines between cell identities are blurred by intra-lineage plasticity, distinguishing stable from transitional states is critical, especially within Group 1 ILCs, where similarity and plasticity between NK cells and ILC1s obscure their unique contributions to immunity. This study leverages AsGM1-a membrane lipid associated with cytotoxic attributes absent in ILC1s-as a definitive criterion to discriminate between these cell types. Employing this glycosphingolipid signature, we achieved precise delineation of Group 1 ILC diversity across tissues. This lipid signature captured the binary classification of NK and ILC1 during acute liver injury and remained stable when tested in established models of NK-to-ILC1 plasticity driven by TGFβ or Toxoplasma gondii. The detection of AsGM1 at the iNK stage, prior to Eomes expression, and its persistence in known transitional states, positions AsGM1 as a pivotal marker for tracing NK-to-ILC1 transitions, effectively transcending the ambiguity inherent to the NK-to-ILC1 continuum.
Collapse
Affiliation(s)
- Halle C. Frey
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Sun
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Graduate Program of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fatima Oudeif
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Darleny L. Corona
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zijun He
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taejoon Won
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracy L. Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amale Laouar
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers University, New Brunswick, NJ 08901, USA
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
He K, Shinzawa Y, Iwabuchi S, Hashimoto S, Sasaki SI, Hayakawa Y. Homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung natural killer cells. Biochem Biophys Res Commun 2024; 738:150906. [PMID: 39527850 DOI: 10.1016/j.bbrc.2024.150906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Natural killer (NK) cells are important innate immune effector cells for controlling tumor growth and metastasis. Differentiated mature NK cells preferentially reside in the peripheral tissues and express higher levels of self-major histocompatibility complex class I (MHC-I)-recognizing inhibitory receptors. MHC-I recognition by NK cells are known to be important for their development and maturation processes, however, the role of homeostatic MHC-I recognition in maintaining effector functions of mature NK cells in the peripheral tissues needs to be elucidated. In this study, we utilized a pan anti-MHC-I blocking monoclonal antibody (anti-MHC-I) to examine the role of homeostatic MHC-I recognition in the response of pulmonary mature NK cells in an experimental lung metastasis model of B16F10 melanoma. Anti-MHC-I treatment showed significant inhibition of the lung metastasis of B16F10 melanoma in NK cell- and IFN-γ-dependent mechanisms. The blockade of homeostatic MHC-I recognition increased mature lung NK cell responsiveness, such as direct cytotoxicity and IFN-γ production, rather than the number of lung NK cells. Mechanistically, the gene expression of activating receptors including DNAX accessory molecule-1 (DNAM-1) was upregulated in NK cells treated with anti-MHC-I, and further the enhanced NK cell cytotoxicity against B16F10 cells was DNAM-1-dependent. Collectively, homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung NK cells by restraining the expression of activating receptors.
Collapse
Affiliation(s)
- Ka He
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Wakayama, Japan.
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Wakayama, Japan.
| | - So-Ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| |
Collapse
|
4
|
Qin J, Zhang Z, Cui H, Yang J, Liu A. Biological characteristics and immune responses of NK Cells in commonly used experimental mouse models. Front Immunol 2024; 15:1478323. [PMID: 39628473 PMCID: PMC11611892 DOI: 10.3389/fimmu.2024.1478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The biology of natural killer (NK) cells in commonly used mouse models is discussed in this review, along with their crucial function in a variety of immunological responses. It has been demonstrated that the formation, maturation, subtype variety, and immunological recognition mechanisms of NK cells from various mice strains exhibit notable differences. These variations shed light on the intricacy of NK cell function and offer crucial information regarding their possible uses in treating human illnesses. The application of flow cytometry in mouse NK cell research is also covered in the article. Improved knowledge of the biology of NK cells across species may facilitate the development of new NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Jingwen Qin
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhaokai Zhang
- Department of General Surgery II, Cenxi People’s Hospital, Wuzhou, Guangxi, China
| | - Haopeng Cui
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinhua Yang
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Aiqun Liu
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
5
|
Frey HC, Sun X, Oudeif F, Corona DL, He Z, Won T, Schultz TL, Carruthers VB, Laouar A, Laouar Y. A Membrane Lipid Signature Unravels the Dynamic Landscape of Group 1 ILCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589821. [PMID: 38659946 PMCID: PMC11042254 DOI: 10.1101/2024.04.17.589821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In an era where the established lines between cell identities are blurred by intra-lineage plasticity, distinguishing between stable and transitional states becomes imperative. This challenge is particularly pronounced within the Group 1 ILC lineage, where the similarity and plasticity between NK cells and ILC1s obscure their classification and the assignment of their unique contributions to immune regulation. This study exploits the unique property of Asialo-GM1 (AsGM1)-a membrane lipid associated with cytotoxic attributes absent in ILC1s-as a definitive criterion to distinguish between these cells. By prioritizing cytotoxic potential as the cardinal differentiator, our strategic use of the AsGM1 signature achieved precise delineation of NK cells and ILC1s across tissues, validated by RNA-seq analysis. This capability extends beyond steady-state classifications, adeptly capturing the binary classification of NK cells and ILC1s during acute liver injury. By leveraging two established models of NK-to-ILC1 plasticity driven by TGFβ and Toxoplasma gondii , we demonstrate the stability of the AsGM1 signature, which sharply contrasts with the loss of Eomes. This signature identified a spectrum of known and novel NK cell derivatives-ILC1-like entities that bridge traditional binary classifications in aging and infection. The early detection of the AsGM1 signature at the immature NK (iNK) stage, preceding Eomes, and its stability, unaffected by transcriptional reprogramming that typically alters Eomes, position AsGM1 as a unique, site-agnostic marker for fate mapping NK-to-ILC1 plasticity. This provides a powerful tool to explore the expanding heterogeneity within the Group 1 ILC landscape, effectively transcending the ambiguity inherent to the NK-to-ILC1 continuum.
Collapse
|
6
|
Chen Y, Huang Y, Huang R, Chen Z, Wang X, Chen F, Huang Y. Interleukin-10 gene intervention ameliorates liver fibrosis by enhancing the immune function of natural killer cells in liver tissue. Int Immunopharmacol 2024; 127:111341. [PMID: 38081103 DOI: 10.1016/j.intimp.2023.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS Interleukin 10 (IL-10) and natural killer (NK) cells have the potential to combat liver fibrosis. However, whether NK cells play an important role in the anti-fibrotic effects of IL-10 is not sufficiently elucidated. In this study, we investigated the regulatory effects of IL-10 on NK cells during liver fibrosis. METHODS Fibrotic mice induced with carbon tetrachloride were treated with or without IL-10 in the presence or absence of NK cells. Liver damage and fibrosis were assessed using hematoxylin and eosin and Sirius Red staining and serum transaminase and liver hydroxyproline assays, respectively. NK cell distribution, quantity, activation, cytotoxicity, development, and origin were analyzed using immunohistochemistry, immunofluorescence, and flow cytometry. Enzyme-linked immunosorbent assay was used to determine chemokine levels. RESULTS In the presence of NK cells, IL-10 gene intervention improved liver fibrosis and enhanced NK cell accumulation and function in the liver, as evidenced by increased NKG2D, interferon-γ, and CD107a expression. Furthermore, IL-10 promoted the migration of circulating NK cells to the fibrotic liver and elevated C-C motif ligand 5 levels. However, depletion of NK cells exacerbated liver fibrosis and impaired the anti-fibrotic effect of IL-10. CONCLUSIONS The anti-fibrotic effect of IL-10 relies on the enhancement of NK cell immune function, including activation, cytotoxicity, development, and migration. These results provide valuable insights into the mechanisms through which IL-10 regulates NK cells to limit the progression of liver fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yixuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Rongfeng Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Fenglin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| |
Collapse
|
7
|
Potempa M, Aguilar OA, Gonzalez-Hinojosa MDR, Tenvooren I, Marquez DM, Spitzer MH, Lanier LL. Influence of Self-MHC Class I Recognition on the Dynamics of NK Cell Responses to Cytomegalovirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1742-1754. [PMID: 35321880 PMCID: PMC8976824 DOI: 10.4049/jimmunol.2100768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
Although interactions between inhibitory Ly49 receptors and their self-MHC class I ligands in C57BL/6 mice are known to limit NK cell proliferation during mouse CMV (MCMV) infection, we created a 36-marker mass cytometry (CyTOF) panel to investigate how these inhibitory receptors impact the NK cell response to MCMV in other phenotypically measurable ways. More than two thirds of licensed NK cells (i.e., those expressing Ly49C, Ly49I, or both) in uninfected mice had already differentiated into NK cells with phenotypes indicative of Ag encounter (KLRG1+Ly6C-) or memory-like status (KLRG1+Ly6C+). These pre-existing KLRG1+Ly6C+ NK cells resembled known Ag-specific memory NK cell populations in being less responsive to IL-18 and IFN-α stimulation in vitro and by selecting for NK cell clones with elevated expression of a Ly49 receptor. During MCMV infection, the significant differences between licensed and unlicensed (Ly49C-Ly49I-) NK cells disappeared within both CMV-specific (Ly49H+) and nonspecific (Ly49H-) responses. This lack of heterogeneity carried into the memory phase, with only a difference in CD16 expression manifesting between licensed and unlicensed MCMV-specific memory NK cell populations. Our results suggest that restricting proliferation is the predominant effect licensing has on the NK cell population during MCMV infection, but the inhibitory Ly49-MHC interactions that take place ahead of infection contribute to their limited expansion by shrinking the pool of licensed NK cells capable of robustly responding to new challenges.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Maria D R Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Iliana Tenvooren
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Diana M Marquez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA;
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| |
Collapse
|
8
|
Middlebrook EA, Stark DL, Cornwall DH, Kubinak JL, Potts WK. Deep Sequencing of MHC-Adapted Viral Lines Reveals Complex Recombinational Exchanges With Endogenous Retroviruses Leading to High-Frequency Variants. Front Genet 2021; 12:716623. [PMID: 34512727 PMCID: PMC8430262 DOI: 10.3389/fgene.2021.716623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
Collapse
Affiliation(s)
- Earl A. Middlebrook
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Derek L. Stark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Douglas H. Cornwall
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|