1
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
2
|
Alshevskaya AA, Lopatnikova JA, Zhukova JV, Perik-Zavodskaia OY, Alrhmoun S, Obleukhova IA, Matveeva AK, Savenkova DA, Imatdinov IR, Yudkin DV, Sennikov SV. TNFR1 Absence Is Not Crucial for Different Types of Cell Reaction to TNF: A Study of the TNFR1-Knockout Cell Model. EPIGENOMES 2024; 8:15. [PMID: 38651368 PMCID: PMC11036270 DOI: 10.3390/epigenomes8020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND One of the mechanisms regulating the biological activity of tumor necrosis factor (TNF) in cells is the co-expression of TNFR1/TNFR2 receptors. A model with a differential level of receptor expression is required to evaluate the contribution of these mechanisms. AIM The development of a cellular model to compare the effects of TNF on cells depending on the presence of both receptors and TNFR2 alone. METHODS TNFR1 absence modifications of ZR-75/1 and K-562 cell lines were obtained by TNFR1 knockout. The presence of deletions was confirmed by Sanger sequencing, and the absence of cell membrane receptor expression was confirmed by flow cytometry. The dose-dependent effect of TNF on intact and knockout cells was comparatively evaluated by the effect on the cell cycle, the type of cell death, and the profile of expressed genes. RESULTS Knockout of TNFR1 resulted in a redistribution of TNFR2 receptors with an increased proportion of TNFR2+ cells in both lines and a multidirectional change in the density of expression in the lines (increased in K562 and decreased in ZR75/1). The presence of a large number of cells with high TNFR2 density in the absence of TNFR1 in the K562 cells was associated with greater sensitivity to TNF-stimulating doses and increased proliferation but did not result in a significant change in cell death parameters. A twofold increase in TNFR2+ cell distribution in this cell line at a reduced expression density in ZR75/1 cells was associated with a change in sensitivity to low cytokine concentrations in terms of proliferation; an overall increase in cell death, most pronounced at standard stimulating concentrations; and increased expression of the lymphocyte-activation gene groups, host-pathogen interaction, and innate immunity. CONCLUSIONS The absence of TNFR1 leads to different variants of compensatory redistribution of TNFR2 in cellular models, which affects the type of cell response and the threshold level of sensitivity. The directionality of cytokine action modulation and sensitivity to TNF levels depends not only on the fraction of cells expressing TNFR2 but also on the density of expression.
Collapse
Affiliation(s)
- Alina A. Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
| | - Julia A. Lopatnikova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Julia V. Zhukova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Olga Y. Perik-Zavodskaia
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Irina A. Obleukhova
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Anna K. Matveeva
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Darya A. Savenkova
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Ilnaz R. Imatdinov
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Dmitry V. Yudkin
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Sergey V. Sennikov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| |
Collapse
|
3
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
4
|
Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, Sato H, Machida N, Yamada T, Watanabe Y, Tamaki T, Fujikawa H, Inokuchi Y, Hayase S, Hanayama H, Saze Z, Katoh H, Takahashi F, Oshima T, Goel A, Nardin A, Suzuki Y, Kono K. Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer 2024; 12:e008385. [PMID: 38290769 PMCID: PMC10828861 DOI: 10.1136/jitc-2023-008385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor-associated antigen (TAA)-specific CD8(+) T cells are essential for nivolumab therapy, and irradiation has been reported to have the potential to generate and activate TAA-specific CD8(+) T cells. However, mechanistic insights of T-cell response during combinatorial immunotherapy using radiotherapy and nivolumab are still largely unknown. METHODS Twenty patients included in this study were registered in the CIRCUIT trial (ClinicalTrials.gov, NCT03453164). All patients had multiple distant metastases and were intolerance or had progressed after primary and secondary chemotherapy without any immune checkpoint inhibitor. In the CIRCUIT trial, eligible patients were treated with a total of 22.5 Gy/5 fractions/5 days of radiotherapy to the largest or symptomatic lesion prior to receiving nivolumab every 2 weeks. In these 20 patients, T-cell responses during the combinatorial immunotherapy were monitored longitudinally by high-dimensional flow cytometry-based, multiplexed major histocompatibility complex multimer analysis using a total of 46 TAAs and 10 virus epitopes, repertoire analysis of T-cell receptor β-chain (TCRβ), together with circulating tumor DNA analysis to evaluate tumor mutational burden (TMB). RESULTS Although most TAA-specific CD8(+) T cells could be tracked longitudinally, several TAA-specific CD8(+) T cells were detected de novo after irradiation, but viral-specific CD8(+) T cells did not show obvious changes during treatment, indicating potential irradiation-driven antigen spreading. Irradiation was associated with phenotypical changes of TAA-specific CD8(+) T cells towards higher expression of killer cell lectin-like receptor subfamily G, member 1, human leukocyte antigen D-related antigen, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, CD160, and CD45RO together with lower expression of CD27 and CD127. Of importance, TAA-specific CD8(+) T cells in non-progressors frequently showed a phenotype of CD45RO(+)CD27(+)CD127(+) central memory T cells compared with those in progressors. TCRβ clonality (inverted Pielou's evenness) increased and TCRβ diversity (Pielou's evenness and Diversity Evenness score) decreased during treatment in progressors (p=0.029, p=0.029, p=0.012, respectively). TMB score was significantly lower in non-progressors after irradiation (p=0.023). CONCLUSION Oligo-fractionated irradiation induces an immune-modulating effect with potential antigen spreading and the combination of radiotherapy and nivolumab may be effective in a subset of patients with gastric cancer.
Collapse
Affiliation(s)
- Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | | | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | | | - Yuya Yoshimoto
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Sato
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yasuhiro Inokuchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Fumiaki Takahashi
- Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
5
|
Jing Q, Wan Q, Nie Y, Luo J, Zhang X, Zhu L, Gui H, Li L, Wang C, Chen S, Wang M, Yuan H, Lv H, Pan R, Jing Q, Nie Y. Ansofaxine hydrochloride inhibits tumor growth and enhances Anti-TNFR2 in murine colon cancer model. Front Pharmacol 2023; 14:1286061. [PMID: 38161697 PMCID: PMC10755865 DOI: 10.3389/fphar.2023.1286061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: As psychoneuroimmunology flourishes, there is compelling evidence that depression suppresses the anti-tumor immune response, promotes the progression of cancer, and inhibits the effectiveness of cancer immunotherapy. Recent studies have reported that antidepressants can not only alleviate the depressant condition of cancer patients, but also strengthen the anti-tumor immunity, thus suppressing tumors. Tumor necrosis factor receptor 2 (TNFR2) antagonistic antibodies (Anti-TNFR2) targeting tumor-infiltrating regulatory T cells (Tregs) has achieved great results in preclinical studies, and with a favorable toxicity profile than existing immunotherapies, and is expected to become a new generation of more effective treatment strategies. Understanding the effects of combination therapy with antidepressants and Anti-TNFR2 may help design new strategies for cancer immunotherapy. Methods: We treated CT26, HCT116, MCA38 and SW620 colon cancer cells with fluoxetine (0-50 µM), ansofaxine hydrochloride (0-50 µM) and amitifadine hydrochloride (0-150 µM) to examine their effects on cell proliferation and apoptosis. We explored the antitumor effects of ansofaxine hydrochloride in combination with or without Anti-TNFR in subcutaneously transplanted CT26 cells in tumor-bearing mouse model. Antitumor effects were evaluated by tumor volume. NK cell, M1 macrophage cell, CD4+ T cell, CD8+ T cell, exhausted CD8+ T and regulatory T cell (Tregs) subtypes were measured by flow cytometry. 5-hydroxytryptamine, dopamine and norepinephrine levels were measured by ELISA. Results: Oral antidepression, ansofaxine hydrochloride, enhanced peripheral dopamine levels, promoted CD8+T cell proliferation, promoted intratumoral infiltration of M1 and NK cells, decreased the proportion of tumor-infiltrating exhausted CD8+T cells, and strengthened anti-tumor immunity, thereby inhibiting colon cancer growth. In combination therapy, oral administration of ansofaxine hydrochloride enhanced the efficacy of Anti-TNFR2, and produced long-term tumor control in with syngeneic colorectal tumor-bearing mice, which was attributable to the reduction in tumor-infiltrating Treg quantity and the recovery of CD8+ T cells function. Discussion: In summary, our data reveal the role of ansofaxine hydrochloride in modulating the anti-tumor immunity. Our results support that exhausted CD8+T is an important potential mechanism by which ansofaxine hydrochloride activates anti-tumor immunity and enhances anti-tumor effects of anti-TNFR2.
Collapse
Affiliation(s)
- Qianyu Jing
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Quan Wan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junqian Luo
- The First People’s Hospital of Jinzhong, Jinzhong, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang, China
| | - Huan Gui
- School of Medicine, Guizhou University, Guiyang, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang, China
| | - Chenglv Wang
- School of Medicine, Guizhou University, Guiyang, China
| | | | - Mengjiao Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Haohua Yuan
- School of Medicine, Guizhou University, Guiyang, China
| | - Hang Lv
- School of Medicine, Guizhou University, Guiyang, China
| | | | | | - Yingjie Nie
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
6
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|
7
|
Ghosh S, Leavenworth JW. Current Advances in Follicular Regulatory T-Cell Biology. Crit Rev Immunol 2022; 42:35-47. [PMID: 37017287 PMCID: PMC11034780 DOI: 10.1615/critrevimmunol.2022045746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Follicular regulatory T (TFR) cells are a population of CD4+ T-cells that concomitantly express markers for regulatory T-cells and follicular helper T (TFH) cells, and have been predominantly implicated in the regulation of humoral immunity via their suppressive functions. Rapid and robust progress has been made in the field of TFR cell research since the discovery of this subset over a decade ago. However, there is still a significant gap in our understanding of the mechanisms underlying the phenotypic and functional heterogeneity of TFR cells under various physiologic and pathologic settings. In this review article, we aim to highlight the most up-to-date concepts and investigations in both experimental animal models and human studies to provide a perspective on our understanding of TFR biology with particular emphasis on these cells in the context of disease settings.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|