1
|
Zhuang Y, Su K, Liu S, Fan W, Lv H, Zhong W. Clinical significances of RPL15 gene expression in circulating tumor cells of patients with breast cancer. Biomed Rep 2025; 22:82. [PMID: 40151798 PMCID: PMC11948298 DOI: 10.3892/br.2025.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
The preferred biomarkers for evaluating the outcomes of patients with breast cancer (BC) remain poorly understood. The present study aimed to investigate the predictive roles of circulating tumor cells (CTCs) and ribosomal protein L 15 (RPL15) expression in the prognosis of patients with BC. A total of 170 patients were included in the present study, all of whom were female. BC was diagnosed by combining clinical features, imaging and pathological findings. CanPatrol™ technology and triple color in situ RNA hybridization were used to detect CTC subtypes and RPL15 gene expression levels. CTCs were classified into epithelial CTCs, mesenchymal CTCs (MCTCs), and hybrid CTCs (HCTCs) according to cellular surface markers. Risk factors for recurrence and metastasis were validated by a multivariate COX regression model. Kaplan-Meier survival curves were used to determine the progression-free survival (PFS) of patients. The results showed that patients with advanced tumor-node-metastasis stage and triple negative BC had high MCTCs, HCTCs and RPL15 levels (P<0.05). Furthermore, the multivariate COX regression analysis revealed that MCTCs, HCTCs, HER2+ and positive RPL15 gene expression were key factors for recurrence and metastasis of patients (P<0.05). The PFS of patients with >2 MCTCs/5 ml blood, >5 HCTCs/5 ml blood, and positive RPL15 gene expression in CTCs were significantly shorter than that of patient with 2 MCTCs, 5 HCTCs, and negative RPL15 gene expression in CTCs (P<0.05). By contrast, the PFS of patients with positive HER2 also was significantly shorter than that of patients with negative HER2. Overall, the present data indicated that the PFS of patients with BC with >2 MCTC or >5 HCTCs, and positive RPL15 gene expression was shorter than that of those with 2 MCTCs or 5 HCTCs, and negative RPL15 gene expression. Additionally, the prognosis of patients with BC with negative HER2 is more favorable than the prognosis of patients with positive HER2 expression.
Collapse
Affiliation(s)
- Ying Zhuang
- Breast Cancer Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
- National Key Clinical Specialty Discipline Construction Program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
- Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
| | - Keli Su
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Shushu Liu
- Breast Cancer Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
- National Key Clinical Specialty Discipline Construction Program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
- Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
| | - Wei Fan
- Breast Cancer Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
- National Key Clinical Specialty Discipline Construction Program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
- Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
| | - Huijuan Lv
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Wei Zhong
- Breast Cancer Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
- National Key Clinical Specialty Discipline Construction Program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
- Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
2
|
Mahin J, Xu X, Li L, Zhang C. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Cell Commun Signal 2024; 22:553. [PMID: 39558334 PMCID: PMC11571982 DOI: 10.1186/s12964-024-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/29/2024] [Indexed: 11/20/2024] Open
Abstract
Melanoma, recognized as the most aggressive type of skin cancer, has experienced a notable increase in cases, especially within populations with fair skin. This highly aggressive cancer is largely driven by UV radiation exposure, resulting in the uncontrolled growth and malignant transformation of melanocytes. The cGAS-STING pathway, an immune signaling mechanism responsible for detecting double-stranded DNA in the cytoplasm, is essential for mediating the immune response against melanoma. This pathway serves a dual purpose: it enhances antitumor immunity by activating immune cells, but it can also promote tumor growth when chronically activated by creating an immunosuppressive environment. This review comprehensively examines the multifaceted implication of the cGAS-STING pathway in melanoma pathogenesis and treatment. We explore its molecular mechanisms, including epigenetic regulation, interaction with signaling pathways such as AR signaling, and modulation by various cellular effectors like TG2 and activin-A. The therapeutic potential of modulating the cGAS-STING pathway is highlighted, with promising results from STING agonists, combination therapies with immune checkpoint inhibitors, and novel drug delivery systems, including nanoparticles and synthetic drugs. Our findings underscore the importance of the cGAS-STING pathway in melanoma, presenting it as a critical target for enhancing anti-tumor immunity. By leveraging this pathway, future therapeutic strategies can potentially convert 'cold' tumors into 'hot' tumors, making them more susceptible to immune responses.
Collapse
Affiliation(s)
- Jafaridarabjerdi Mahin
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Ling Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
3
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
4
|
Fujimoto T, Yamasaki O, Kanehira N, Matsushita H, Sakurai Y, Kenmotsu N, Mizuta R, Kondo N, Takata T, Kitamatsu M, Igawa K, Fujimura A, Otani Y, Shirakawa M, Shigeyasu K, Teraishi F, Togashi Y, Suzuki M, Fujiwara T, Michiue H. Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT). Cancer Sci 2024; 115:3231-3247. [PMID: 39119813 PMCID: PMC11447877 DOI: 10.1111/cas.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8+ T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44+ effector memory T cells and CD69+ early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers.
Collapse
Affiliation(s)
- Takuya Fujimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Noriyuki Kanehira
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Naoya Kenmotsu
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Mizuta
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Natsuko Kondo
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Mizuki Kitamatsu
- Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Atsushi Fujimura
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Shirakawa
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Kikuchi Y, Ando T, Ashizawa T, Iizuka A, Kanematsu A, Maeda C, Hozumi C, Miyata H, Yamashita K, Ikeya T, Yamaguchi K, Akiyama Y. Identification of membrane proteins targeted by small-molecule compounds using nanomagnetic beads. Biomed Res 2024; 45:179-186. [PMID: 39370296 DOI: 10.2220/biomedres.45.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In drug discovery research, it is important to identify target proteins of bioactive small-molecule compounds and analyse their functions. In this study, we examined whether target membrane proteins could be captured by compounds that bind to membrane proteins on the cell surface. For this purpose, we performed affinity purification using the compound-immobilized nanomagnetic beads. Affinity purification with nanomagnetic beads is known to be effective for determining the protein binding partners of small molecules. However, most previous studies have targeted proteins in the cytoplasm. As a model compound, we chose BMS-1166 (a representative small-molecule compound from Bristol Myers Squibb), a PD-1/PD-L1 immune checkpoint inhibitor that binds to PD- L1 and promotes PD-L1 dimerization. BMS-1166-immobilized beads were manufactured and incubated with extracts of cells with high PD-L1 protein expression. The bound protein was confirmed by western blotting and proteomic analysis to be PD-L1. BMS-1166-immobilized nano-magnetic beads were able to specifically bind and capture the membrane protein PD-L1. In addition, high-purity protein could be obtained from cell extracts in a single step. This is the first report of the purification of a membrane protein to high purity with nanobeads. Nanomagnetic beads with immobilized compounds are an effective tool for identifying the protein binding partners of small molecules, especially when the targets are membrane proteins.
Collapse
Affiliation(s)
- Yasufumi Kikuchi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takayuki Ando
- Department of Drug and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Tadashi Ashizawa
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akira Iizuka
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akari Kanematsu
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Chie Maeda
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Chikako Hozumi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Haruo Miyata
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kazue Yamashita
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoatsu Ikeya
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Office of the Honored President, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
6
|
Xu W, Sun Y, Zhao S, Zhao J, Zhang J. Identification and validation of autophagy-related genes in primary open-angle glaucoma. BMC Med Genomics 2023; 16:287. [PMID: 37968618 PMCID: PMC10648356 DOI: 10.1186/s12920-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.
Collapse
Affiliation(s)
- Wanjing Xu
- Ophthalmology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Yuhao Sun
- Otolaryngology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuang Zhao
- Graduate School of Shandong First Medical University, Jinan, China
| | - Jun Zhao
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| |
Collapse
|
7
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
Affiliation(s)
| | - Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| |
Collapse
|
8
|
Wang G, Qin M, Zhang B, Yan Y, Yang F, Chen Q, Liu Y, Qiao F, Ni Y. Decreased expression of RPL15 and RPL18 exacerbated the calcification of valve interstitial cells during aortic valve calcification. Cell Biol Int 2023; 47:1749-1759. [PMID: 37431269 DOI: 10.1002/cbin.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease, with an increasing prevalence due to an aging population. The pathobiology of CAVD is a multifaceted and actively regulated process, but the detailed mechanisms have not been elucidated. The present study aims to identify the differentially expressed genes (DEGs) in calcified aortic valve tissues, and to analyze the correlation between DEGs and clinical features in CAVD patients. The DEGs were screened by microarray in normal and CAVD groups (n = 2 for each group), and confirmed by quantitative real-time polymerase chain reaction in normal (n = 12) and calcified aortic valve tissues (n = 34). A total of 1048 DEGs were identified in calcified aortic valve tissues, including 227 upregulated mRNAs and 821 downregulated mRNAs. Based on multiple bioinformatic analyses, three 60S ribosomal subunit components (RPL15, RPL18, and RPL18A), and two 40S ribosomal subunit components (RPS15 and RPS21) were identified as the top 5 hub genes in the protein-protein interaction network of DEGs. The expression of RPL15 and RPL18 was also found significantly decreased in calcified aortic valve tissues (both p < .01), and negatively correlated with the osteogenic differentiation marker OPN in CAVD patients (both p < .01). Moreover, inhibition of RPL15 or RPL18 exacerbated the calcification of valve interstitial cells under osteogenic induction conditions. The present study proved that decreased expression of RPL15 and RPL18 was closely associated with aortic valve calcification, which provided valuable clues to find therapeutic targets for CAVD.
Collapse
Affiliation(s)
- Guokun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Cardiothoracic Surgery, No.903 Hospital of PLA, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Fan Qiao
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Miller SC, MacDonald CC, Kellogg MK, Karamysheva ZN, Karamyshev AL. Specialized Ribosomes in Health and Disease. Int J Mol Sci 2023; 24:ijms24076334. [PMID: 37047306 PMCID: PMC10093926 DOI: 10.3390/ijms24076334] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Collapse
Affiliation(s)
- Sarah C. Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Morgana K. Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-4102
| |
Collapse
|
10
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
11
|
Kitai Y. [Elucidation of the Mechanism of Topotecan-induced Antitumor Immune Activation]. YAKUGAKU ZASSHI 2022; 142:911-916. [PMID: 36047216 DOI: 10.1248/yakushi.22-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Danger-associated molecular patterns (DAMPs) derived from damaged or dying cells elicit inflammation and potentiate antitumor immune responses. We found that treatment of cancer cells with the antitumor agent topotecan (TPT), an inhibitor of topoisomerase I (TOP1), induces DAMP secretion that triggers dendritic cell activation and cytokine production. TPT administration inhibits tumor growth in tumor-bearing mice, which is accompanied by infiltration of activated DCs and CD8+ T cells. These effects are abrogated in mice lacking stimulator of interferon genes (STING), an essential molecule in cytosolic DNA-mediated innate immune responses. Furthermore, we identified ribosomal protein L15 (RPL15), a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited pre-ribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. RPL15 knockdown induced DAMP secretion and increased the cytotoxic T lymphocyte (CTL) population but decreased the T-regulatory cell (Treg) population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against programmed death receptor-1(PD-1) blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.
Collapse
Affiliation(s)
- Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|