1
|
Zhang Y, Cheng J, Jin P, Lv L, Yu H, Yang C, Zhang S. Comprehensive profiling of T-cell exhaustion signatures and establishment of a prognostic model in lung adenocarcinoma through integrated RNA-sequencing analysis. Technol Health Care 2025; 33:848-862. [PMID: 40105167 DOI: 10.1177/09287329241290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundT-cell exhaustion (TEX) in the tumor microenvironment causes immunotherapy resistance and poor prognosis.ObjectiveWe used bioinformatics to identify crucial TEX genes associated with the molecular classification and risk stratification of lung adenocarcinoma (LUAD).MethodsBulk RNA sequencing data of patients with LUAD were acquired from open sources. LUAD samples exhibited abnormal TEX gene expression, compared with normal samples. TEX gene-based prognostic signature was established and validated in both TCGA and GSE50081 datasets. Immune correlation and risk group-related functional analyses were also performed.ResultsEight optimized TEX genes were identified using the LASSO algorithm: ERG, BTK, IKZF3, DCC, EML4, MET, LATS2, and LOX. Several crucial Kyoto encyclopedia of genes and genomes (KEGG) pathways were identified, such as T-cell receptor signaling, toll-like receptor signaling, leukocytes trans-endothelial migration, Fcγ R-mediated phagocytosis, and GnRH signaling. Eight TEX gene-based risk score models were established and validated. Patients with high-risk scores had worse prognosis (P < 0.001). A nomogram model comprising three independent clinical factors showed good predictive efficacy for survival rate in patients with LUAD. Correlation analysis revealed that the TEX signature significantly correlated with immune cell infiltration, tumor purity, stromal cells, estimate, and immunophenotype score.ConclusionTEX-derived risk score is a promising and effective prognostic factor that is closely correlated with the immune microenvironment and estimated score. TEX signature may be a useful clinical diagnostic tool for evaluating pre-immune efficacy in patients with LUAD.
Collapse
Affiliation(s)
- Yingying Zhang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Jiaqi Cheng
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Pingyan Jin
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Lizheng Lv
- Department of Thoracic Surgery, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Haijuan Yu
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Chunxiao Yang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Niese ML, Pajulas AL, Rostron CR, Cheung CCL, Krishnan MS, Zhang J, Cannon AM, Kaplan MH. TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma. Mucosal Immunol 2024; 17:537-553. [PMID: 38493956 PMCID: PMC11354665 DOI: 10.1016/j.mucimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.
Collapse
Affiliation(s)
- Michelle L Niese
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail L Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cameron R Rostron
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maya S Krishnan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony M Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Son A, Baral I, Falduto GH, Schwartz DM. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp Mol Med 2024; 56:1331-1339. [PMID: 38825637 PMCID: PMC11263352 DOI: 10.1038/s12276-024-01241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease.
Collapse
Affiliation(s)
- Aran Son
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Ishita Baral
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|