1
|
Kerwin AH, Ohdera A, Bier J, Goodman D, Mammone M, Sharp V, Echeandía A, Medina M. Cassiopea xamachana microbiome across anatomy, development, and geography. PLoS One 2025; 20:e0319944. [PMID: 40215444 PMCID: PMC11991732 DOI: 10.1371/journal.pone.0319944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/10/2025] [Indexed: 04/14/2025] Open
Abstract
The upside-down jellyfish holobiont, Cassiopea xamachana, is a useful model system for tri-partite interactions between the cnidarian host, the photosymbiont, and the bacterial microbiome. While the interaction between the host and photosymbiont has been well studied, less is understood of the associated bacterial community. To date, the bacterial microbiome of wild C. xamachana has remained largely uncharacterized. Thus, wild medusae (n=6) and larvae (n=3) were collected from two sites in the Florida Keys. Bacterial community composition was characterized via amplicon sequencing of the 16S rRNA gene V4 region. The medusa bacterial community was dominated by members of the Alphaproteobacteria and Gammaproteobacteria, while Planctomycetota, Actinomycetota, Bacteroidota, and Bacillota were also present, among others. Community composition was consistent between locations and across medusa structures (oral arm, bell, and gonad). The larval bacterial community clustered apart from the medusa community in beta diversity analysis and was characterized by the presence of several Pseudomonadota taxa that were not present in the medusa, including the Alteromonas, Pseudoalteromonas, and Thalassobius genera. A bacterial isolate library encompassing much of the amplicon sequencing diversity was also developed and tested via metabolic assays in a separate culture-dependent analysis of isolates from medusa bells, oral arms, and laplets. Most characteristics were not correlated with host sex or medusa structure, but gelatinase production was more common in laplet isolates, while lactose fermentation was more common in female oral arm isolates. The Endozoicomonas genus was dominant in both amplicon sequencing and in our isolate library, and was equally prevalent across all medusa structures and in both sexes. Understanding the bacterial component of the C. xamachana holobiont will allow us to further develop this important model cnidarian holobiont.
Collapse
Affiliation(s)
- Allison H. Kerwin
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aki Ohdera
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Juliet Bier
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
| | - Devon Goodman
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
| | - Marta Mammone
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Victoria Sharp
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alesandra Echeandía
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Das BK, Kumar V, Roy S, Mohanty D, Jana AK, Gadnayak A. Whole-genome sequencing of novel pathogenic and multidrug-resistant Kytococcus sedentarius, causing mortality in fish species ( Labeo rohita). Microbiol Resour Announc 2025; 14:e0112724. [PMID: 39679794 PMCID: PMC11737163 DOI: 10.1128/mra.01127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
We present a novel pathogenic and multidrug-resistant Kytococcus sedentarius isolated from Labeo rohita. The bacterium belongs to the Micrococcales order and has a genome consisting of 2.59 Mb in length and 71.7% GC content. K. sedentarius contains 2,393 coding gene sequences, 6 rRNA, 51 tRNA, 1 tmRNA, and 2,173 antimicrobial resistance genes.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Vikash Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Suvra Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Debasmita Mohanty
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Asim Kumar Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Ayushman Gadnayak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| |
Collapse
|
3
|
Yue K, Sheng D, Xue X, Zhao L, Zhao G, Jin C, Zhang L. Bidirectional Mediation Effects between Intratumoral Microbiome and Host DNA Methylation Changes Contribute to Stomach Adenocarcinoma. Microbiol Spectr 2023; 11:e0090423. [PMID: 37260411 PMCID: PMC10434028 DOI: 10.1128/spectrum.00904-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
The induction of aberrant DNA methylation is the major pathway by which Helicobacter pylori infection induces stomach adenocarcinoma (STAD). The involvement of the non-H. pylori gastric microbiota in this mechanism remains to be examined. RNA sequencing data, clinical information, and DNA methylation data were obtained from The Cancer Genome Atlas (TCGA) STAD project. The Kraken 2 pipeline was employed to explore the microbiome profiles. The microbiome was associated with occurrence, distal metastasis, and prognosis, and differential methylation changes related to distal metastasis and prognosis were analyzed. Bi-directional mediation effects of the intratumoral microbiome and host DNA methylation changes on the metastasis and prognosis of STAD were identified by mediation analysis. The expression of the ZNF215 gene was verified by real-time quantitative PCR (RT-qPCR). A cell counting kit 8 (CCK8) cell proliferation experiment and a cell clone formation experiment were used to evaluate the proliferation and invasion abilities of gastric cells. Our analysis revealed that H. pylori and other cancer-related microorganisms were related to the occurrence, progression, or prognosis of STAD. The related methylated genes were particularly enriched in related cancer pathways. Kytococcus sedentarius and Actinomyces oris, which interacted strongly with methylation changes in immune genes, were associated with prognosis. Cell experiments verified that Staphylococcus saccharolyticus could promote the proliferation and cloning of gastric cells by regulating the gene expression level of the ZNF215 gene. Our study suggested that the bi-directional mediation effect between intratumoral microorganisms and host epigenetics was key to the distal metastasis of cancer cells and survival deterioration in the tumor microenvironment of stomach tissues of patients with STAD. IMPORTANCE The burgeoning field of oncobiome research declared that members of the intratumoral microbiome besides Helicobacter pylori existed in tumor tissues and participated in the occurrence and development of gastric cancer, and the methylation of host DNA may be a potential target of microbes and their metabolites. Current research focuses mostly on species composition, but the functional genes of the members of the microbiota are also key to their interaction with the host. Therefore, we focused on characterizing the species composition and functional gene composition of microbes in gastric cancer, and we suggest that microbes may further participate in the occurrence and development of cancer by influencing abnormal epigenetic changes in the host. Some key bioinformatics analysis results were verified by in vitro experiments. Thus, we consider that the tumor microbiota-host epigenetic axis of gastric cancer microorganisms and the host explains the mechanism of the microbiota participating in cancer occurrence and development, and we make some verifiable experimental predictions.
Collapse
Affiliation(s)
- Kaile Yue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuandi Jin
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Biotechnological approaches in agriculture and environmental management - bacterium Kocuria rhizophila 14ASP as heavy metal and salt- tolerant plant growth- promoting strain. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00826-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 2021; 401:1443-1468. [PMID: 32755967 DOI: 10.1515/hsz-2020-0223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.
Collapse
Affiliation(s)
- Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch Str. 10, D-35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
6
|
Smith MD, Robinson SL, Molomjamts M, Wackett LP. In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and β-Lactone Biosynthesis. mBio 2020; 11:e00111-20. [PMID: 32156808 PMCID: PMC7064751 DOI: 10.1128/mbio.00111-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization.IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla.
Collapse
Affiliation(s)
- Megan D Smith
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Serina L Robinson
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mandkhai Molomjamts
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lawrence P Wackett
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
Kim YA, Kang EW, Moon HS, Kim D, Yong D. Application of 16S rRNA Gene-Targeted Next-Generation Sequencing for Bacterial Pathogen Detection in Continuous Ambulatory Peritoneal Dialysis Peritonitis. ANNALS OF CLINICAL MICROBIOLOGY 2020. [DOI: 10.5145/acm.2020.23.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Ea Wha Kang
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hye Su Moon
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Daewon Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM, Mattei LM, Bittinger K, Elovitz MA, Leite R, Parry S, Bushman FD. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. MICROBIOME 2018; 6:196. [PMID: 30376898 PMCID: PMC6208038 DOI: 10.1186/s40168-018-0575-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/10/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Historically, the human womb has been thought to be sterile in healthy pregnancies, but this idea has been challenged by recent studies using DNA sequence-based methods, which have suggested that the womb is colonized with bacteria. For example, analysis of DNA from placenta samples yielded small proportions of microbial sequences which were proposed to represent normal bacterial colonization. However, an analysis by our group showed no distinction between background negative controls and placenta samples. Also supporting the idea that the womb is sterile is the observation that germ-free mammals can be generated by sterile delivery of neonates into a sterile isolator, after which neonates remain germ-free, which would seem to provide strong data in support of sterility of the womb. RESULTS To probe this further and to investigate possible placental colonization associated with spontaneous preterm birth, we carried out another study comparing microbiota in placenta samples from 20 term and 20 spontaneous preterm deliveries. Both 16S rRNA marker gene sequencing and shotgun metagenomic sequencing were used to characterize placenta and control samples. We first quantified absolute amounts of bacterial 16S rRNA gene sequences using 16S rRNA gene quantitative PCR (qPCR). As in our previous study, levels were found to be low in the placenta samples and indistinguishable from negative controls. Analysis by DNA sequencing did not yield a placenta microbiome distinct from negative controls, either using marker gene sequencing as in our previous work, or with shotgun metagenomic sequencing. Several types of artifacts, including erroneous read classifications and barcode misattribution, needed to be identified and removed from the data to clarify this point. CONCLUSIONS Our findings do not support the existence of a consistent placental microbiome, in either placenta from term deliveries or spontaneous preterm births.
Collapse
Affiliation(s)
- Jacob S Leiby
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Erik L Clarke
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Lyanna R Kessler
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Louis J Taylor
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Casey E Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Rita Leite
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Samuel Parry
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
9
|
Melton ED, Sorokin DY, Overmars L, Lapidus AL, Pillay M, Ivanova N, Del Rio TG, Kyrpides NC, Woyke T, Muyzer G. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1 T, a gram-positive sulfidogenic polyextremophile. Stand Genomic Sci 2017; 12:57. [PMID: 28943998 PMCID: PMC5609068 DOI: 10.1186/s40793-017-0268-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/08/2017] [Indexed: 12/01/2022] Open
Abstract
Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.
Collapse
Affiliation(s)
- Emily Denise Melton
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State, University, St. Petersburg, Russia
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA.,Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Stand Genomic Sci 2016; 11:67. [PMID: 27617057 PMCID: PMC5016858 DOI: 10.1186/s40793-016-0184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.
Collapse
Affiliation(s)
- Emily Denise Melton
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Chertkov
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Alicia Clum
- Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Juboi H, Basik AA, Shamsul SSG, Arnold P, Schmitt EK, Sanglier JJ, Yeo TC. Luteipulveratus halotolerans sp. nov., an actinobacterium (Dermacoccaceae) from forest soil. Int J Syst Evol Microbiol 2015; 65:4113-4120. [DOI: 10.1099/ijsem.0.000548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T was closely associated with the genus Luteipulveratus and formed a distinct monophyletic clade with the only described species, Luteipulveratus mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis was 98.7 %. DNA–DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5 %. The DNA G+C content of strain C296001T was 71.7 mol%. Using a PacBio RS II system, whole genome sequences for strains C296001T and NBRC 105296T were obtained. The genome sizes of 4.5 Mbp and 5.4 Mbp determined were similar to those of other members of the family Dermacoccaceae. The cell-wall peptidoglycan contained lysine, alanine, aspartic acid, glutamic acid and serine, representing the peptidoglycan type A4α l-Lys-l-Ser-d-Asp. The major menaquinones were MK-8(H4), MK-8 and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid were the polar lipids, while the whole-cell sugars were glucose, fucose and lesser amounts of ribose and galactose. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, iso-C18 : 0 and 10-methyl C17 : 0. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. On the basis of the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a representative of a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T ( = ATCC TSD-4T = JCM 30660T).
Collapse
Affiliation(s)
- Holed Juboi
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia
| | - Ann Anni Basik
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia
| | - Sunita Sara Gill Shamsul
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia
| | - Phil Arnold
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4058 Basel, Switzerland
| | - Esther K. Schmitt
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4058 Basel, Switzerland
| | - Jean-Jacques Sanglier
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia
| | - Tiong Chia Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, 93250 Kuching, Sarawak, Malaysia
| |
Collapse
|
12
|
Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Huntemann M, Liolios K, Pagani I, Mavromatis K, Ivanova N, Pati A, Chen A, Palaniappan K, Jeffries CD, Hauser L, Land M, Mwirichia R, Rohde M, Abt B, Detter JC, Woyke T, Eisen JA, Markowitz V, Hugenholtz P, Göker M, Kyrpides NC, Klenk HP. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305(T)), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae. Stand Genomic Sci 2014; 9:10. [PMID: 25780503 PMCID: PMC4334474 DOI: 10.1186/1944-3277-9-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
Collapse
Affiliation(s)
- Carmen Scheuner
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Brian J Tindall
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Megan Lu
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cynthia D Jeffries
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Romano Mwirichia
- Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Birte Abt
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - John C Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jonathan A Eisen
- DOE Joint Genome Institute, Walnut Creek, California, USA
- University of California Davis Genome Center, Davis, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Markus Göker
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Peter Klenk
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| |
Collapse
|
13
|
Widderich N, Höppner A, Pittelkow M, Heider J, Smits SHJ, Bremer E. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PLoS One 2014; 9:e93809. [PMID: 24714029 PMCID: PMC3979721 DOI: 10.1371/journal.pone.0093809] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/06/2014] [Indexed: 11/19/2022] Open
Abstract
Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo-form, thereby revealing that the iron-free structure exists already in a pre-set configuration to incorporate the iron catalyst. Collectively, our work defines the taxonomic distribution and salient biochemical properties of the ectoine hydroxylase protein family and contributes to the understanding of its structure.
Collapse
Affiliation(s)
- Nils Widderich
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Emeritus Group R.K. Thauer, Marburg, Germany
| | - Astrid Höppner
- X-Ray Facility and Crystal Farm, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marco Pittelkow
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail: (SHGS); (EB)
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- * E-mail: (SHGS); (EB)
| |
Collapse
|
14
|
James AG, Cox D, Worrall K. Microbiological and biochemical origins of human foot malodour. FLAVOUR FRAG J 2012. [DOI: 10.1002/ffj.3136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gordon James
- Unilever Discover; Colworth Science Park, Sharnbrook; Bedford; MK44 1LQ; UK
| | - Diana Cox
- Unilever Discover; Colworth Science Park, Sharnbrook; Bedford; MK44 1LQ; UK
| | | |
Collapse
|
15
|
Dainese L, Saccu C, Zoli S, Trabattoni P, Guarino A, Cavallero A, Spirito R. Vascular Homograft Use in a Femoropopliteal Rare Bacterial Infection Bypass. Int J Artif Organs 2012. [DOI: 10.1177/039139881203501206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on a patient with a femoropopliteal bypass infected by Kytococcus sedentarius. Treatment consisted of resection of the infected prosthesis with homograft substitution and antibiotic therapy started postoperatively At 6 months followup, the patient showed no signs of infection and results of laboratory findings were normal.
Collapse
Affiliation(s)
- Luca Dainese
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
- Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino, IRCCS, Milano - Italy
| | - Claudio Saccu
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
| | - Stefano Zoli
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
| | - Piero Trabattoni
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino, IRCCS, Milano - Italy
| | - Annalisa Cavallero
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
| | - Rita Spirito
- Department of Cardiovascular Surgery, University of Milan, Centro Cardiologico Monzino IRCCS, Milan - Italy
| |
Collapse
|
16
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
17
|
Yan P, Hou S, Chen T, Ma X, Zhang S. Culturable bacteria isolated from snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica. Extremophiles 2012; 16:345-354. [PMID: 22297697 DOI: 10.1007/s00792-012-0434-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
Abstract
The abundance and community composition of culturable bacteria in four snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica, were investigated through the combination of liquid and solid media and small subunit 16S rRNA sequences. Under aerobic cultivation conditions, the average concentrations of bacterial colonies from each snow core varied from 0.008 to 0.32 CFU mL(-1). A total of 37 and 15 isolates with different morphologic characteristics were recovered from solid and liquid media PYGV, respectively. The phylogenetic analysis of 14 representatives with different ARDRA patterns from RFLP showed that all the isolates were affiliated with five phylogenetic groups: Firmicutes, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Actinobacteria represented the largest cluster with 43% of strains, and these strains exhibited unique phenotypic properties. The community compositions of culturable bacteria in the four snow cores were distinctly different from each other and the concentrations and community sizes of culturable bacteria along the traverse decreased with increases of latitude, altitude and distance from coast, which likely reflected the different bacterial sources and biogeographies under the different regional climate conditions in the snow cover of East Antarctica.
Collapse
Affiliation(s)
- Peiying Yan
- State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | | | | | | | | |
Collapse
|
18
|
Copeland A, O’Connor K, Lucas S, Lapidus A, Berry KW, Detter JC, Del Rio TG, Hammon N, Dalin E, Tice H, Pitluck S, Bruce D, Goodwin L, Han C, Tapia R, Saunders E, Schmutz J, Brettin T, Larimer F, Land M, Hauser L, Vargas C, Nieto JJ, Kyrpides NC, Ivanova N, Göker M, Klenk HP, Csonka LN, Woyke T. Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11(T)). Stand Genomic Sci 2011; 5:379-88. [PMID: 22675587 PMCID: PMC3368415 DOI: 10.4056/sigs.2285059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chromohalobacter salexigens is one of nine currently known species of the genus Chromohalobacter in the family Halomonadaceae. It is the most halotolerant of the so-called 'moderately halophilic bacteria' currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11(T) and Halomonas elongata are the first and the second members of the family Halomonadaceae with a completely sequenced genome. The 3,696,649 bp long chromosome with a total of 3,319 protein-coding and 93 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2004.
Collapse
Affiliation(s)
- Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Kathleen O’Connor
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | - Nancy Hammon
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Eileen Dalin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hope Tice
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - David Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jeremy Schmutz
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Thomas Brettin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank Larimer
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Carmen Vargas
- Department of Microbiology and Parasitology, University of Seville, Spain
| | - Joaquin J. Nieto
- Department of Microbiology and Parasitology, University of Seville, Spain
| | | | | | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|
19
|
|
20
|
Affiliation(s)
- George M Garrity
- Department of Microbiology and Molecular Genetics, Michigan State University
| |
Collapse
|
21
|
Chang YJ, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, Copeland A, Tice H, Cheng JF, Lucas S, Han C, Goodwin L, Pitluck S, Ivanova N, Ovchinikova G, Pati A, Chen A, Palaniappan K, Mavromatis K, Liolios K, Brettin T, Fiebig A, Rohde M, Abt B, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand Genomic Sci 2011; 5:97-111. [PMID: 22180814 PMCID: PMC3236041 DOI: 10.4056/sigs.2114901] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum 'Chloroflexi'. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum 'Chloroflexi'. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
22
|
Chertkov O, Copeland A, Lucas S, Lapidus A, Berry KW, Detter JC, Del Rio TG, Hammon N, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin L, Han C, Tapia R, Saunders E, Schmutz J, Brettin T, Larimer F, Land M, Hauser L, Spring S, Rohde M, Kyrpides NC, Ivanova N, Göker M, Beller HR, Klenk HP, Woyke T. Complete genome sequence of Tolumonas auensis type strain (TA 4). Stand Genomic Sci 2011; 5:112-20. [PMID: 22180815 PMCID: PMC3236046 DOI: 10.4056/sigs.2184986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4(T) is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.
Collapse
|
23
|
Klenk HP, Lapidus A, Chertkov O, Copeland A, Del Rio TG, Nolan M, Lucas S, Chen F, Tice H, Cheng JF, Han C, Bruce D, Goodwin L, Pitluck S, Pati A, Ivanova N, Mavromatis K, Daum C, Chen A, Palaniappan K, Chang YJ, Land M, Hauser L, Jeffries CD, Detter JC, Rohde M, Abt B, Pukall R, Göker M, Bristow J, Markowitz V, Hugenholtz P, Eisen JA. Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. Stand Genomic Sci 2011; 5:121-34. [PMID: 22180816 PMCID: PMC3236038 DOI: 10.4056/sigs.2144922] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S sequence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2 as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analysis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassification as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
24
|
Pagani I, Chertkov O, Lapidus A, Lucas S, Del Rio TG, Tice H, Copeland A, Cheng JF, Nolan M, Saunders E, Pitluck S, Held B, Goodwin L, Liolios K, Ovchinikova G, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Han C, Tapia R, Ngatchou-Djao OD, Rohde M, Göker M, Spring S, Sikorski J, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Marivirga tractuosa type strain (H-43). Stand Genomic Sci 2011; 4:154-62. [PMID: 21677852 PMCID: PMC3111994 DOI: 10.4056/sigs.1623941] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
25
|
Zeytun A, Sikorski J, Nolan M, Lapidus A, Lucas S, Han J, Tice H, Cheng JF, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Ngatchou-Djao OD, Land M, Hauser L, Jeffries CD, Han C, Detter JC, Ubler S, Rohde M, Tindall BJ, Göker M, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6). Stand Genomic Sci 2011; 4:131-43. [PMID: 21677850 PMCID: PMC3111988 DOI: 10.4056/sigs.1463589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6(T) is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO(2)via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
26
|
Land M, Held B, Gronow S, Abt B, Lucas S, Del Rio TG, Nolan M, Tice H, Cheng JF, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Tapia R, Han C, Goodwin L, Chen A, Palaniappan K, Hauser L, Brambilla EM, Rohde M, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Non-contiguous finished genome sequence of Bacteroides coprosuis type strain (PC139). Stand Genomic Sci 2011; 4:233-43. [PMID: 21677860 PMCID: PMC3111995 DOI: 10.4056/sigs.1784330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacteroides coprosuis Whitehead et al. 2005 belongs to the genus Bacteroides, which is a member of the family Bacteroidaceae. Members of the genus Bacteroides in general are known as beneficial protectors of animal guts against pathogenic microorganisms, and as contributors to the degradation of complex molecules such as polysaccharides. B. coprosuis itself was isolated from a manure storage pit of a swine facility, but has not yet been found in an animal host. The species is of interest solely because of its isolated phylogenetic location. The genome of B. coprosuis is already the 5th sequenced type strain genome from the genus Bacteroides. The 2,991,798 bp long genome with its 2,461 protein-coding and 78 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
27
|
Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Kyrpides NC, Mavromatis K, Richardson P, Rohde M, Göker M, Klenk HP, Zhang Y, Roberts GP, Reslewic S, Schwartz DC. Complete genome sequence of Rhodospirillum rubrum type strain (S1). Stand Genomic Sci 2011; 4:293-302. [PMID: 21886856 PMCID: PMC3156396 DOI: 10.4056/sigs.1804360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.
Collapse
|
28
|
Han C, Mwirichia R, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin L, Pitluck S, Huntemann M, Liolios K, Ivanova N, Pagani I, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT). Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2004648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cliff Han
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Olga Chertkov
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Brittany Held
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Susan Lucas
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nancy Hammon
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Jan-Fang Cheng
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Roxanne Tapia
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- 3Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Sam Pitluck
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | | | - Ioanna Pagani
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amy Chen
- 4Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- 4Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Miriam Land
- 5Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- 5Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Manfred Rohde
- 7HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Spring
- 6DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Johannes Sikorski
- 6DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Markus Göker
- 6DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Tanja Woyke
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - James Bristow
- 1DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jonathan A. Eisen
- 8University of California Davis Genome Center, Davis, California, USA
| | - Victor Markowitz
- 4Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- 9Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Hans-Peter Klenk
- 6DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - John C. Detter
- 2Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| |
Collapse
|
29
|
Han C, Mwirichia R, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin L, Pitluck S, Huntemann M, Liolios K, Ivanova N, Pagani I, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyR). Stand Genomic Sci 2011; 4:371-80. [PMID: 21886864 PMCID: PMC3156405 DOI: 10.4056/sigs.2004684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Syntrophobotulus glycolicus Friedrich et al. 1996 is currently the only member of the genus Syntrophobotulus within the family Peptococcaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of tree of life. When grown in pure culture with glyoxylate as carbon source the organism utilizes glyoxylate through fermentative oxidation, whereas, when grown in syntrophic co-culture with homoacetogenic or methanogenic bacteria, it is able to oxidize glycolate to carbon dioxide and hydrogen. No other organic or inorganic carbon source is utilized by S. glycolicus. The subdivision of the family Peptococcaceae into genera does not reflect the natural relationships, particularly regarding the genera most closely related to Syntrophobotulus. Both Desulfotomaculum and Pelotomaculum are paraphyletic assemblages, and the taxonomic classification is in significant conflict with the 16S rRNA data. S. glycolicus is already the ninth member of the family Peptococcaceae with a completely sequenced and publicly available genome. The 3,406,739 bp long genome with its 3,370 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
30
|
Munk AC, Lapidus A, Lucas S, Nolan M, Tice H, Cheng JF, Del Rio TG, Goodwin L, Pitluck S, Liolios K, Huntemann M, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Tapia R, Han C, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Yasawong M, Brambilla EM, Rohde M, Sikorski J, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33). Stand Genomic Sci 2011; 4:342-51. [PMID: 21886861 PMCID: PMC3156402 DOI: 10.4056/sigs.1894556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
31
|
Göker M, Gronow S, Zeytun A, Nolan M, Lucas S, Lapidus A, Hammon N, Deshpande S, Cheng JF, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Ovchinikova G, Pati A, Tapia R, Han C, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Brambilla EM, Rohde M, Detter JC, Woyke T, Bristow J, Markowitz V, Hugenholtz P, Eisen JA, Kyrpides NC, Klenk HP. Complete genome sequence of Odoribacter splanchnicus type strain (1651/6). Stand Genomic Sci 2011; 4:200-9. [PMID: 21677857 PMCID: PMC3111987 DOI: 10.4056/sigs.1714269] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Odoribacter splanchnicus (Werner et al. 1975) Hardham et al. 2008 is the type species of the genus Odoribacter, which belongs to the family Porphyromonadaceae in the order 'Bacteroidales'. The species is of interest because members of the Odoribacter form an isolated cluster within the Porphyromonadaceae. This is the first completed genome sequence of a member of the genus Odoribacter and the fourth sequence from the family Porphyromonadaceae. The 4,392,288 bp long genome with its 3,672 protein-coding and 74 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
32
|
Pati A, Zhang X, Lapidus A, Nolan M, Lucas S, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Hauser L, Jeffries CD, Brambilla EM, Röhl A, Mwirichia R, Rohde M, Tindall BJ, Sikorski J, Wirth R, Göker M, Woyke T, Detter JC, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Land M. Complete genome sequence of Oceanithermus profundus type strain (506). Stand Genomic Sci 2011; 4:210-20. [PMID: 21677858 PMCID: PMC3111992 DOI: 10.4056/sigs.1734292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
33
|
Ivanova N, Rohde C, Munk C, Nolan M, Lucas S, Del Rio TG, Tice H, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla E, Rohde M, Göker M, Tindall BJ, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Truepera radiovictrix type strain (RQ-24). Stand Genomic Sci 2011; 4:91-9. [PMID: 21475591 PMCID: PMC3072082 DOI: 10.4056/sigs.1563919] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum “Deinococcus/Thermus”. T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
34
|
Sikorski J, Chertkov O, Lapidus A, Nolan M, Lucas S, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla E, Yasawong M, Rohde M, Pukall R, Spring S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Ilyobacter polytropus type strain (CuHbu1). Stand Genomic Sci 2010; 3:304-14. [PMID: 21304735 PMCID: PMC3035301 DOI: 10.4056/sigs.1273360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ilyobacter polytropus Stieb and Schink 1984 is the type species of the genus Ilyobacter, which belongs to the fusobacterial family Fusobacteriaceae. The species is of interest because its members are able to ferment quite a number of sugars and organic acids. I. polytropus has a broad versatility in using various fermentation pathways. Also, its members do not degrade poly-β-hydroxybutyrate but only the monomeric 3-hydroxybutyrate. This is the first completed genome sequence of a member of the genus Ilyobacter and the second sequence from the family Fusobacteriaceae. The 3,132,314 bp long genome with its 2,934 protein-coding and 108 RNA genes consists of two chromosomes (2 and 1 Mbp long) and one plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
35
|
Han C, Gu W, Zhang X, Lapidus A, Nolan M, Copeland A, Lucas S, Del Rio TG, Tice H, Cheng JF, Tapia R, Goodwin L, Pitluck S, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Schneider S, Rohde M, Göker M, Pukall R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of Thermaerobacter marianensis type strain (7p75a). Stand Genomic Sci 2010; 3:337-45. [PMID: 21304738 PMCID: PMC3035304 DOI: 10.4056/sigs.1373474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thermaerobacter marianensis Takai et al. 1999 is the type species of the genus Thermaerobacter, which belongs to the Clostridiales family Incertae Sedis XVII. The species is of special interest because T. marianensis is an aerobic, thermophilic marine bacterium, originally isolated from the deepest part in the western Pacific Ocean (Mariana Trench) at the depth of 10.897m. Interestingly, the taxonomic status of the genus has not been clarified until now. The genus Thermaerobacter may represent a very deep group within the Firmicutes or potentially a novel phylum. The 2,844,696 bp long genome with its 2,375 protein-coding and 60 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
36
|
Djao ODN, Zhang X, Lucas S, Lapidus A, Del Rio TG, Nolan M, Tice H, Cheng JF, Han C, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Ovchinnikova G, Pati A, Brambilla E, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Sikorski J, Spring S, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1). Stand Genomic Sci 2010; 3:268-75. [PMID: 21304731 PMCID: PMC3035303 DOI: 10.4056/sigs.1233249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Syntrophothermus lipocalidus Sekiguchi et al. 2000 is the type species of the genus Syntrophothermus. The species is of interest because of its strictly anaerobic lifestyle, its participation in the primary step of the degradation of organic maters, and for releasing products which serve as substrates for other microorganisms. It also contributes significantly to maintain a regular pH in its environment by removing the fatty acids through β-oxidation. The strain is able to metabolize isobutyrate and butyrate, which are the substrate and the product of degradation of the substrate, respectively. This is the first complete genome sequence of a member of the genus Syntrophothermus and the second in the family Syntrophomonadaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,405,559 bp long genome with its 2,385 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
37
|
Anderson I, Djao ODN, Misra M, Chertkov O, Nolan M, Lucas S, Lapidus A, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Brambilla E, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Sikorski J, Spring S, Rohde M, Eichinger K, Huber H, Wirth R, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Methanothermus fervidus type strain (V24S). Stand Genomic Sci 2010; 3:315-24. [PMID: 21304736 PMCID: PMC3035299 DOI: 10.4056/sigs.1283367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97°C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24S(T) is of interest because of its very low substrate ranges, it grows only on H(2) + CO(2). This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
38
|
Pitluck S, Yasawong M, Held B, Lapidus A, Nolan M, Copeland A, Lucas S, Del Rio TG, Tice H, Cheng JF, Chertkov O, Goodwin L, Tapia R, Han C, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Pukall R, Spring S, Rohde M, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Non-contiguous finished genome sequence of Aminomonas paucivorans type strain (GLU-3). Stand Genomic Sci 2010; 3:285-93. [PMID: 21304733 PMCID: PMC3035310 DOI: 10.4056/sigs.1253298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aminomonas paucivorans Baena et al. 1999 is the type species of the genus Aminomonas, which belongs to the family Synergistaceae. The species is of interest because it is an asaccharolytic chemoorganotrophic bacterium which ferments quite a number of amino acids. This is the first finished genome sequence (with one gap in a rDNA region) of a member of the genus Aminomonas and the third sequence from the family Synergistaceae. The 2,630,120 bp long genome with its 2,433 protein-coding and 61 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.
Collapse
|
39
|
Sun H, Spring S, Lapidus A, Davenport K, Del Rio TG, Tice H, Nolan M, Copeland A, Cheng JF, Lucas S, Tapia R, Goodwin L, Pitluck S, Ivanova N, Pagani I, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Hauser L, Chang YJ, Jeffries CD, Detter JC, Han C, Rohde M, Brambilla E, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Land M. Complete genome sequence of Desulfarculus baarsii type strain (2st14). Stand Genomic Sci 2010; 3:276-84. [PMID: 21304732 PMCID: PMC3035298 DOI: 10.4056/sigs.1243258] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Desulfarculus baarsii (Widdel 1981) Kuever et al. 2006 is the type and only species of the genus Desulfarculus, which represents the family Desulfarculaceae and the order Desulfarculales. This species is a mesophilic sulfate-reducing bacterium with the capability to oxidize acetate and fatty acids of up to 18 carbon atoms completely to CO(2). The acetyl-CoA/CODH (Wood-Ljungdahl) pathway is used by this species for the complete oxidation of carbon sources and autotrophic growth on formate. The type strain 2st14(T) was isolated from a ditch sediment collected near the University of Konstanz, Germany. This is the first completed genome sequence of a member of the order Desulfarculales. The 3,655,731 bp long single replicon genome with its 3,303 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
40
|
Del Rio TG, Chertkov O, Yasawong M, Lucas S, Deshpande S, Cheng JF, Detter C, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Pukall R, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Intrasporangium calvum type strain (7 KIP). Stand Genomic Sci 2010; 3:294-303. [PMID: 21304734 PMCID: PMC3035309 DOI: 10.4056/sigs.1263355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
41
|
Sikorski J, Munk C, Lapidus A, Ngatchou Djao OD, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Han C, Cheng JF, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Sims D, Meincke L, Brettin T, Detter JC, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Lang E, Spring S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Sulfurimonas autotrophica type strain (OK10). Stand Genomic Sci 2010; 3:194-202. [PMID: 21304749 PMCID: PMC3035374 DOI: 10.4056/sigs.1173118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sulfurimonas autotrophica Inagaki et al. 2003 is the type species of the genus Sulfurimonas. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habitation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second complete genome sequence of the genus Sulfurimonas and the 15th genome in the family Helicobacteraceae. The 2,153,198 bp long genome with its 2,165 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
42
|
Brambilla E, Djao ODN, Daligault H, Lapidus A, Lucas S, Hammon N, Nolan M, Tice H, Cheng JF, Han C, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847). Stand Genomic Sci 2010; 3:203-11. [PMID: 21304750 PMCID: PMC3035365 DOI: 10.4056/sigs.1183143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Methanoplanus petrolearius Ollivier et al. 1998 is the type strain of the genus Methanoplanus. The strain was originally isolated from an offshore oil field from the Gulf of Guinea. Members of the genus Methanoplanus are of interest because they play an important role in the carbon cycle and also because of their significant contribution to the global warming by methane emission in the atmosphere. Like other archaea of the family Methanomicrobiales, the members of the genus Methanoplanus are able to use CO(2) and H(2) as a source of carbon and energy; acetate is required for growth and probably also serves as carbon source. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Methanomicrobiaceae and the sixth complete genome sequence from the order Methanomicrobiales. The 2,843,290 bp long genome with its 2,824 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
43
|
Nolan M, Sikorski J, Davenport K, Lucas S, Del Rio TG, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tapia R, Brettin T, Detter JC, Han C, Yasawong M, Rohde M, Tindall BJ, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Ferrimonas balearica type strain (PAT). Stand Genomic Sci 2010; 3:174-82. [PMID: 21304747 PMCID: PMC3035368 DOI: 10.4056/sigs.1161239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ferrimonas balearica Rossello-Mora et al. 1996 is the type species of the genus Ferrimonas, which belongs to the family Ferrimonadaceae within the Gammaproteobacteria. The species is a Gram-negative, motile, facultatively anaerobic, non spore-forming bacterium, which is of special interest because it is a chemoorganotroph and has a strictly respiratory metabolism with oxygen, nitrate, Fe(III)-oxyhydroxide, Fe(III)-citrate, MnO(2), selenate, selenite and thiosulfate as electron acceptors. This is the first completed genome sequence of a member of the genus Ferrimonas and also the first sequence from a member of the family Ferrimonadaceae. The 4,279,159 bp long genome with its 3,803 protein-coding and 144 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
44
|
Kiss H, Cleland D, Lapidus A, Lucas S, Del Rio TG, Nolan M, Tice H, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Lu M, Brettin T, Detter JC, Göker M, Tindall BJ, Beck B, McDermott TR, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Cheng JF. Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1). Stand Genomic Sci 2010; 3:153-62. [PMID: 21304745 PMCID: PMC3035366 DOI: 10.4056/sigs.1153107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
45
|
Mavromatis K, Yasawong M, Chertkov O, Lapidus A, Lucas S, Nolan M, Del Rio TG, Tice H, Cheng JF, Pitluck S, Liolios K, Ivanova N, Tapia R, Han C, Bruce D, Goodwin L, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Rohde M, Brambilla E, Spring S, Göker M, Sikorski J, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Spirochaeta smaragdinae type strain (SEBR 4228). Stand Genomic Sci 2010; 3:136-44. [PMID: 21304743 PMCID: PMC3035371 DOI: 10.4056/sigs.1143106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spirochaeta smaragdinae Magot et al. 1998 belongs to the family Spirochaetaceae. The species is Gram-negative, motile, obligately halophilic and strictly anaerobic and is of interest because it is able to ferment numerous polysaccharides. S. smaragdinae is the only species of the family Spirochaetaceae known to reduce thiosulfate or element sulfur to sulfide. This is the first complete genome sequence in the family Spirochaetaceae. The 4,653,970 bp long genome with its 4,363 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
46
|
Mavromatis K, Sikorski J, Pabst E, Teshima H, Lapidus A, Lucas S, Nolan M, Glavina Del Rio T, Cheng JF, Bruce D, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Spring S, Göker M, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Vulcanisaeta distributa type strain (IC-017). Stand Genomic Sci 2010; 3:117-25. [PMID: 21304741 PMCID: PMC3035369 DOI: 10.4056/sigs.1113067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vulcanisaeta distributa Itoh et al. 2002 belongs to the family Thermoproteaceae in the phylum Crenarchaeota. The genus Vulcanisaeta is characterized by a global distribution in hot and acidic springs. This is the first genome sequence from a member of the genus Vulcanisaeta and seventh genome sequence in the family Thermoproteaceae. The 2,374,137 bp long genome with its 2,544 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteriaand Archaea project.
Collapse
|
47
|
Yasawong M, Teshima H, Lapidus A, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Bruce D, Detter C, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Sikorski J, Pukall R, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). Stand Genomic Sci 2010; 3:126-35. [PMID: 21304742 PMCID: PMC3035375 DOI: 10.4056/sigs.1123072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arcanobacterium haemolyticum (ex MacLean et al. 1946) Collins et al. 1983 is the type species of the genus Arcanobacterium, which belongs to the family Actinomycetaceae. The strain is of interest because it is an obligate parasite of the pharynx of humans and farm animal; occasionally, it causes pharyngeal or skin lesions. It is a Gram-positive, nonmotile and non-sporulating bacterium. The strain described in this study was isolated from infections amongst American soldiers of certain islands of the North and West Pacific. This is the first completed sequence of a member of the genus Arcanobacterium and the ninth type strain genome from the family Actinomycetaceae. The 1,986,154 bp long genome with its 1,821 protein-coding and 64 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
48
|
Göker M, Held B, Lapidus A, Nolan M, Spring S, Yasawong M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Tapia R, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Brambilla E, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Detter JC, Han C, Rohde M, Sikorski J, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1). Stand Genomic Sci 2010; 3:66-75. [PMID: 21304693 PMCID: PMC3035270 DOI: 10.4056/sigs.1072907] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ignisphaera aggregans Niederberger et al. 2006 is the type and sole species of genus Ignisphaera. This archaeal species is characterized by a coccoid-shape and is strictly anaerobic, moderately acidophilic, heterotrophic hyperthermophilic and fermentative. The type strain AQ1.S1(T) was isolated from a near neutral, boiling spring in Kuirau Park, Rotorua, New Zealand. This is the first completed genome sequence of the genus Ignisphaera and the fifth genome (fourth type strain) sequence in the family Desulfurococcaceae. The 1,875,953 bp long genome with its 2,009 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
49
|
Sikorski J, Lapidus A, Chertkov O, Lucas S, Copeland A, Glavina Del Rio T, Nolan M, Tice H, Cheng JF, Han C, Brambilla E, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Bruce D, Detter C, Tapia R, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Göker M, Spring S, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288). Stand Genomic Sci 2010; 3:57-65. [PMID: 21304692 PMCID: PMC3035264 DOI: 10.4056/sigs.1062906] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetohalobium arabaticum Zhilina and Zavarzin 1990 is of special interest because of its physiology and its participation in the anaerobic C(1)-trophic chain in hypersaline environments. This is the first completed genome sequence of the family Halobacteroidaceae and only the second genome sequence in the order Halanaerobiales. The 2,469,596 bp long genome with its 2,353 protein-coding and 90 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
50
|
Göker M, Held B, Lucas S, Nolan M, Yasawong M, Glavina Del Rio T, Tice H, Cheng JF, Bruce D, Detter JC, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Sikorski J, Pukall R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). Stand Genomic Sci 2010; 3:76-84. [PMID: 21304694 PMCID: PMC3035265 DOI: 10.4056/sigs.1082860] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study was isolated from human gingival crevices. This is the first completed sequence of the genus Olsenella and the fifth sequence from a member of the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|