1
|
Das PK, Saha J, Pillai S, Lam AKY, Gopalan V, Islam F. Implications of estrogen and its receptors in colorectal carcinoma. Cancer Med 2023; 12:4367-4379. [PMID: 36207986 PMCID: PMC9972078 DOI: 10.1002/cam4.5242] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancer types, including colorectal carcinoma (CRC). Estrogen receptors such as ERα and ERβ activate intracellular signaling cascades followed by binding to estrogen, resulting in important changes in cellular behaviors. The nuclear estrogen receptors, i.e. ERβ and ERα are responsible for the genomic actions of estrogens, whereas the other receptor, such as G protein-coupled estrogen receptor (GPER) regulates rapid non-genomic actions, which lead to secondary gene expression changes in cells. ERβ, the predominant estrogen receptor expressed in both normal and non-malignant colonic epithelium, has protective roles in colon carcinogenesis. ERβ may exert the anti-tumor effect through selective activation of pro-apoptotic signaling, increasing DNA repair, inhibiting expression of oncogenes, regulating cell cycle progression, and also by changing the micro-RNA pool and DNA-methylation. Thus, a better understanding of the underlying mechanisms of estrogen and its receptors in CRC pathogenesis could provide a new horizon for effective therapeutic development. Furthermore, using synthetic or natural compounds as ER agonists may induce estrogen-mediated anti-cancer activities against colon cancer. In this study, we report the most recent pre-clinical and experimental evidences related to ERs in CRC development. Also, we reviewed the actions of naturally occurring and synthetic compounds, which have a protective role against CRC development by acting as ER agonist.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Joti Saha
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Alfred K-Y Lam
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Huang Q, Chen H, Xu F, Liu C, Wang Y, Tang W, Chen L. Relationship of microRNA locus with type 2 diabetes mellitus: a case-control study. Endocr Connect 2021; 10:1393-1402. [PMID: 34596578 PMCID: PMC8630770 DOI: 10.1530/ec-21-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is considered as a metabolic disease with hyperglycemia. Accumulating investigations have explored the important role of hereditary factors for T2DM occurrence. Some functional microRNA (miR) polymorphisms may affect their interactions with target mRNAs and result in an aberrant expression. Thus, miR variants might be considered as a biomarker of the susceptibility of T2DM. In this study, we recruited 502 T2DM cases and 782 healthy subjects. We selected miR-146a rs2910164 C>G, miR-196a2 rs11614913 T>C and miR-499 rs3746444 A>G loci and carried out an investigation to identify whether these miR loci could influence T2DM occurrence. In this investigation, a Bonferroni correction was harnessed. After adjustment, we found that rs2910164 SNP was a protective factor for T2DM (GG vs CC/CG: adjusted P = 0.010), especially in never drinking (GG vs CC/CG: adjusted P = 0.001) and BMI ≥24 kg/m2 (GG vs CC/CG: adjusted P = 0.002) subgroups. We also identified that rs11614913 SNP was a protective factor for T2DM in smoking subjects (CC/TC vs TT: adjusted P = 0.002). When we analyzed an interaction of SNP-SNP with the susceptibility tof T2DM, rs11614913/rs3746444, rs2910164/rs3746444 and rs11614913/rs2910164 combinations were not associated with the risk of T2DM. In summary, this study highlights that rs2910164 SNP decreases the susceptibility of T2DM, especially in BMI ≥24 kg/m2 and never drinking subgroups. In addition, we also identify that rs11614913 C allele decreases the susceptibility of T2DM significantly in smoking subgroup.
Collapse
Affiliation(s)
- Qiuyu Huang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Hanshen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| | - Fan Xu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafeng Wang
- Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Jiangsu Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| |
Collapse
|
3
|
Kou Y, Yang R, Wang Q. Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. J Biosci 2018; 43:1015-1023. [PMID: 30541960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the intestinal tract. Imatinib is used as first-line therapy for GIST patients; however, secondary imatinib resistance poses a significant clinical challenge. Here, we analyzed serum miRNA expression profiles to identify specific serum miRNAs that could be used as early diagnostic markers. Candidate miRNAs were validated using Taqman quantitative PCR with serum samples from secondary imatinibresistant GIST patients (n = 39), imatinib-sensitive GIST patients (n = 37), and healthy controls (n = 28). Serum miR- 518e-5p and miR-548e levels were higher in secondary imatinib-resistant GIST than imatinib-sensitive GIST patients or healthy controls (P less than 0.0001). However, ROC analysis indicated that only miR-518e-5p could distinguish imatinibresistant GIST. To discriminate imatinib-resistant from imatinib-sensitive GIST patients, the AUC for serum miR-518e-5p was 0.9938, with 99.8% sensitivity and 82.1% specificity. Serum miR-518e-5p could also discriminate imatinib-resistant GIST patients from healthy controls with 99.9% sensitivity and 97.4% specificity. These data indicate that serum miR-518e- 5p is a potentially promising non-invasive biomarker for early detection and diagnosis of secondary imatinib-resistant GIST.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Drug Resistance, Neoplasm/genetics
- Early Diagnosis
- Female
- Gastrointestinal Neoplasms/diagnosis
- Gastrointestinal Neoplasms/genetics
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/surgery
- Gastrointestinal Stromal Tumors/diagnosis
- Gastrointestinal Stromal Tumors/genetics
- Gastrointestinal Stromal Tumors/pathology
- Gastrointestinal Stromal Tumors/surgery
- Gene Expression
- Humans
- Imatinib Mesylate/therapeutic use
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/pathology
- Neoplasms, Second Primary/surgery
- Proto-Oncogene Proteins c-kit/blood
- Proto-Oncogene Proteins c-kit/genetics
- ROC Curve
- Receptor, Platelet-Derived Growth Factor alpha/blood
- Receptor, Platelet-Derived Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Youwei Kou
- Department of Gastrointestinal and Nutriology Surgery, Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
4
|
Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. J Biosci 2018. [DOI: 10.1007/s12038-018-9805-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Nedaeinia R, Avan A, Ahmadian M, Nia SN, Ranjbar M, Sharifi M, Goli M, Piroozmand A, Nourmohammadi E, Manian M, Ferns GA, Ghayour-Mobarhan M, Salehi R. Current Status and Perspectives Regarding LNA-Anti-miR Oligonucleotides and microRNA miR-21 Inhibitors as a Potential Therapeutic Option in Treatment of Colorectal Cancer. J Cell Biochem 2017; 118:4129-4140. [PMID: 28401648 DOI: 10.1002/jcb.26047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related death, principally due to its metastatic spread and multifactorial chemoresistance. The therapeutic failure can also be explained by inter- or intra-tumor genetic heterogeneity and tumor stromal content. Thus, the identification of novel prognostic biomarkers and therapeutic options are warranted in the management of CRC patients. There are data showing that microRNA-21 is elevated in different types of cancer, particularly colon adenocarcinoma and that this is association with a poor prognosis. This suggests that microRNA-21 may be of value as a potential therapeutic target. Furthermore, locked nucleic acid (LNA)-modified oligonucleotides have recently emerged as a therapeutic option for targeting dysregulated miRNAs in cancer therapy, through antisense-based gene silencing. Further work is required to identify innovative anticancer drugs that improve the current therapy either through novel combinatorial approaches or with better efficacy than conventional drugs. We aimed to provide an overview of the preclinical and clinical studies targeting key dysregulated signaling pathways in CRC as well as the therapeutic application of LNA-modified oligonucleotides, and miR inhibitors in the treatment of CRC patients. J. Cell. Biochem. 118: 4129-4140, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Ahmadian
- Department of Gastroentrology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sasan Nedaee Nia
- Department of Agricultural engineering and Weed science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Ranjbar
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Ahmad Piroozmand
- School of Medicine, Kashan University of Medical Sciences, Autoimmune Diseases Research Center, Kashan, Iran
| | - Esmail Nourmohammadi
- Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Rong GQ, Zhang XM, Chen B, Yang XD, Wu HR, Gong W. MicroRNA gene polymorphisms and the risk of colorectal cancer. Oncol Lett 2017; 13:3617-3623. [PMID: 28521462 PMCID: PMC5431414 DOI: 10.3892/ol.2017.5885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was carried out to demonstrate the epidemiological value of microRNA (miRNA) in colorectal cancer (CRC) by investigating the association between miRNA gene polymorphisms and the susceptibility to CRC. Multiple meta-analyses of reported data were conducted, and odds ratio values and 95% confidence intervals were used to assess these associations. Stata 11.0 software was used to analyze the data and the modified Jadad quality score was employed to evaluate the quality of the retrieved studies. We retrieved 38 studies on the association between miRNA polymorphisms and risk of CRC, however only 15 met the requirements of the inclusion criteria. In conclusion, we identified a variety of miRNAs (miRNA-let-7, miR-34b/c, miR-146a, miR-603 and miR-149) gene polymorphisms that are associated with susceptibility to CRC. However, some miRNAs (miR-192a, miR-608 and miR-27a) are associated with CRC, but not susceptibility to CRC. The results have limitations given the relatively low number of studies available. Therefore, it is necessary to collect data from large sample-size studies to further validate the results.
Collapse
Affiliation(s)
- Guo-Qiang Rong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Department of Surgery, The Fifth People's Hospital of Changshu, Changshu, Jiangsu 215500, P.R. China
| | - Xin-Mei Zhang
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bo Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiao-Dong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hao-Rong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Gong
- Department of Surgery, The Fifth People's Hospital of Changshu, Changshu, Jiangsu 215500, P.R. China
| |
Collapse
|
7
|
Choo KB, Soon YL, Nguyen PNN, Hiew MSY, Huang CJ. MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. J Biomed Sci 2014; 21:95. [PMID: 25287248 PMCID: PMC4195866 DOI: 10.1186/s12929-014-0095-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/26/2014] [Indexed: 12/11/2022] Open
Abstract
Background Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. In most cases, only one species remains while the complementary species is degraded. However, co-existence of miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate co-expression of miRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of the dysregulated miRNAs and 5p/3p species. Results Four colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation. Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA, which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that 5p/3p miRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade functional abolishment when any one of the crucial factors are inactivated. Conclusions miRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions to cancer pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0095-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Chiu-Jung Huang
- Department of Animal Science, Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 55, Hwa-Kang Road, Yang Ming Shan 111, Taipei, Taiwan.
| |
Collapse
|
8
|
Lee LS, Szafranska-Schwarzbach AE, Wylie D, Doyle LA, Bellizzi AM, Kadiyala V, Suleiman S, Banks PA, Andruss BF, Conwell DL. Investigating MicroRNA Expression Profiles in Pancreatic Cystic Neoplasms. Clin Transl Gastroenterol 2014; 5:e47. [PMID: 24476997 PMCID: PMC3912316 DOI: 10.1038/ctg.2013.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES: Current diagnostic tools for pancreatic cysts fail to reliably differentiate mucinous from nonmucinous cysts. Reliable biomarkers are needed. MicroRNAs (miRNA) may offer insights into pancreatic cysts. Our aims were to (1) identify miRNAs that distinguish benign from both premalignant cysts and malignant pancreatic lesions using formalin-fixed, paraffin-embedded (FFPE) pathology specimens; (2) identify miRNAs that distinguish mucinous cystic neoplasm (MCN) from branch duct-intraductal papillary mucinous neoplasm (BD-IPMN). METHODS: A total of 69 FFPE pancreatic specimens were identified: (1) benign (20 serous cystadenoma (SCA)), (2) premalignant (10 MCN, 10 BD-IPMN, 10 main duct IPMN (MD-IPMN)), and (3) malignant (19 pancreatic ductal adenocarcinoma (PDAC)). Total nucleic acid extraction was performed followed by miRNA expression profiling of 378 miRNAs interrogated using TaqMan MicroRNA Arrays Pool A and verification of candidate miRNAs. Bioinformatics was used to generate classifiers. RESULTS: MiRNA profiling of 69 FFPE specimens yielded 35 differentially expressed miRNA candidates. Four different 4-miRNA panels differentiated among the lesions: one panel separated SCA from MCN, BD-IPMN, MD-IPMN, and PDAC with sensitivity 85% (62, 97), specificity 100% (93, 100), a second panel distinguished MCN from SCA, BD-IPMN, MD-IPMN, and PDAC with sensitivity and specificity 100% (100, 100), a third panel differentiated PDAC from IPMN with sensitivity 95% (76, 100) and specificity 85% (72, 96), and the final panel diagnosed MCN from BD-IPMN with sensitivity and specificity approaching 100%. CONCLUSIONS: MiRNA profiling of surgical pathology specimens differentiates serous cystadenoma from both premalignant pancreatic cystic neoplasms and PDAC and MCN from BD-IPMN.
Collapse
Affiliation(s)
- Linda S Lee
- 1] Center for Pancreatic Disease, Brigham and Women's Hospital, Boston, Massachusetts, USA [2] Interdisciplinary Management of Pancreatic Cystic Tumors (IMPACT) Clinic, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Vivek Kadiyala
- Center for Pancreatic Disease, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shadeah Suleiman
- Center for Pancreatic Disease, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Peter A Banks
- Center for Pancreatic Disease, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Darwin L Conwell
- 1] Center for Pancreatic Disease, Brigham and Women's Hospital, Boston, Massachusetts, USA [2] Interdisciplinary Management of Pancreatic Cystic Tumors (IMPACT) Clinic, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Xu X, Yang X, Xing C, Zhang S, Cao J. miRNA: The nemesis of gastric cancer (Review). Oncol Lett 2013; 6:631-641. [PMID: 24137382 PMCID: PMC3789097 DOI: 10.3892/ol.2013.1428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that are ~22 (18 to 25) nucleotides (nt) long and have been associated with a variety of diseases, including cancer. Increasing evidence indicates that miRNAs are essential in the development, diagnosis, treatment and prognosis of a variety of tumors. The utility of miRNAs as biomarkers for diagnosis and of target molecules for the treatment of cancers is increasingly being recognized. With the discovery of circulating miRNAs, a non-invasive approach for the diagnosis and treatment of cancer has been identified. This review summarizes the role of miRNAs in the development of different tumors, as well as a variety of other biological events. Moreover, this review focuses on analyzing the function and mechanism of gastric cancer-related miRNAs and investigates the importance of circulating miRNAs in gastric cancer, as well as their origin. Finally, this review lists a number of the problems that must be solved prior to miRNAs being used as reliable non-invasive tools for the diagnosis, treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | | | | | | | | |
Collapse
|
10
|
Menéndez P, Villarejo P, Padilla D, Menéndez JM, Rodríguez-Montes JA. Implications of the histological determination of microRNAs in the screening, diagnosis and prognosis of colorectal cancer. J Surg Oncol 2013; 108:70-3. [PMID: 23609475 DOI: 10.1002/jso.23344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/26/2013] [Indexed: 01/17/2023]
Abstract
MicroRNAs are short non-coding RNA molecules that participate in the regulation of gene expression. Several studies have demonstrated the involvement of microRNAs in oncogenesis and a variety of physiological functions. We conducted a literature review of studies that evaluated histological microRNAs in colorectal cancer. Although additional clinical studies are required to substantiate the relationship between microRNAs and colorectal cancer, there is preliminary evidence that microRNAs are related to the diagnosis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Pablo Menéndez
- Department of General Surgery, Gutiérrez Ortega Hospital, Ciudad Real, Spain.
| | | | | | | | | |
Collapse
|
11
|
Edvardsson K, Nguyen-Vu T, Kalasekar SM, Pontén F, Gustafsson JÅ, Williams C. Estrogen receptor β expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis 2013; 34:1431-41. [PMID: 23436804 DOI: 10.1093/carcin/bgt067] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is epidemiological, animal and in vitro evidence that estrogen receptor β (ERβ) can mediate protective effects against colon cancer, but the mechanism is not completely understood. Previous research has indicated critical pathways whereby ERβ acts in an antitumorigenic fashion. In this study, we investigate ERβ's impact on the microRNA (miRNA) pool in colon cancer cells using large-scale genomic approaches, bioinformatics and focused functional studies. We detect and confirm 27 miRNAs to be significantly changed following ERβ expression in SW480 colon cancer cells. Among these, the oncogenic miR-17-92 cluster and miR-200a/b are strongly downregulated. Using target prediction and anticorrelation to gene expression data followed by focused mechanistic studies, we demonstrate that repression of miR-17 is a secondary event following ERβ's downregulatory effect on MYC. We show that re-introduction of miR-17 can reverse the antiproliferative effects of ERβ. The repression of miR-17 also influences cell death upon DNA damage and mediates regulation of NCOA3 (SRC-3) and CLU in colon cancer cells. We further determine that the downregulation of miR-200a/b mediates increased ZEB1 while decreasing E-cadherin levels in ERβ-expressing colon cancer cells. Changes in these genes correspond to significant alterations in morphology and migration. Our work contributes novel data of ERβ and miRNA in the colon. Elucidating the mechanism of ERβ and biomarkers of its activity has significant potential to impact colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Karin Edvardsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | |
Collapse
|
12
|
WANG XINWEI, HEEGAARD NIELSHH, ØRUM HENRIK. MicroRNAs in liver disease. Gastroenterology 2012; 142:1431-43. [PMID: 22504185 PMCID: PMC6311104 DOI: 10.1053/j.gastro.2012.04.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNA molecules that regulate gene expression posttranscriptionally through complementary base pairing with thousands of messenger RNAs. They regulate diverse physiological, developmental, and pathophysiological processes. Recent studies have uncovered the contribution of microRNAs to the pathogenesis of many human diseases, including liver diseases. Moreover, microRNAs have been identified as biomarkers that can often be detected in the systemic circulation. We review the role of microRNAs in liver physiology and pathophysiology, focusing on viral hepatitis, liver fibrosis, and cancer. We also discuss microRNAs as diagnostic and prognostic markers and microRNA-based therapeutic approaches for liver disease.
Collapse
Affiliation(s)
- XIN WEI WANG
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer institute, National Institutes of Health, Bethesda, Maryland
| | - NIELS H. H. HEEGAARD
- Department of Clinical Biochemistry and Immunology Statens Serum Institut, Copenhagen, Denmark
| | - HENRIK ØRUM
- Santaris Pharma, Kogle Allé 6, Hørsholm, Denmark
| |
Collapse
|