1
|
Mahnoor, Jahan S, Elahi L, Zakria M, Rabia, Ikram M, Ullah N. Alpha-Linolenic Acid for Mitigating Neuroinflammation and Dopaminergic Neuronal Loss in Parkinson's Disease: Insights From In Vivo and In Silico Studies. Clin Exp Pharmacol Physiol 2025; 52:e70043. [PMID: 40269665 DOI: 10.1111/1440-1681.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterised by dopaminergic neuronal loss and chronic neuroinflammation, leading to significant motor and non-motor deficits. This study explores the therapeutic potential of alpha-linolenic acid (ALA), a known antioxidant and anti-inflammatory agent, in a lipopolysaccharide (LPS)-induced murine model of PD. Male Balb-C mice were divided into control, LPS-treated, LPS + ALA-treated and ALA-only groups. Behavioural assessments, including the pole test, rotarod test and open field test, revealed significant motor impairments in LPS-treated mice. Co-treatment with ALA partially ameliorated motor deficits in LPS-treated mice compared to the healthy control group. However, no direct comparison was made with standard PD treatments such as levodopa. Immunohistochemistry analysis showed a 68% reduction in tyrosine hydroxylase-positive (TH+) neurons in the substantia nigra pars compacta (SNpc) of LPS-treated mice. Notably, ALA co-treatment preserved dopaminergic neurons, demonstrating its neuroprotective effects. Western blotting and ELISA revealed heightened expression of inflammatory mediators, including TNF-α, IL-1β and NF-κB, in LPS-treated mice. ALA treatment significantly reduced these markers, indicating its capacity to mitigate neuroinflammation. Molecular docking analysis revealed moderate binding affinities of ALA to NF-κB (-5.1 kcal/mol), TNF-α (-5.7 kcal/mol) and IL-1β (-3.9 kcal/mol), suggesting possible interactions with key inflammatory pathways. These interactions were comparable to known inhibitors, indicating ALA's potential for neuroprotection. This study highlights the neuroprotective and anti-inflammatory effects of ALA in reducing dopaminergic neuronal loss and mitigating neuroinflammation in an LPS-induced PD model. Although behavioural improvements were moderate, these findings underscore ALA's potential as an adjunct therapeutic candidate for PD and other neurodegenerative diseases. Further research is warranted to explore its translational applications in clinical settings.
Collapse
Affiliation(s)
- Mahnoor
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Sarwat Jahan
- Institute of Pharmaceutical Sciences (IPS), Khyber Medical University, Peshawar, Pakistan
- Department of Pharmacology, Northwest School of Medicine, Hayatabad, Pakistan
| | - Laila Elahi
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Zakria
- Institute of Pharmaceutical Sciences (IPS), Khyber Medical University, Peshawar, Pakistan
| | - Rabia
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences (IPS), Khyber Medical University, Peshawar, Pakistan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Najeeb Ullah
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
2
|
Abdelmissih S, Ahmed Rashed L, Sharif Ismail Negm M, Mohamed Sayed W, Mahmoud HM, Elmorsy S. Dabigatran Combined With Benztropine Ameliorates Cobalt Chloride-Induced Parkinsonism in Rats, Restores Protease-Activated Receptor 1 (PAR1), and Mitigates Oxidative Stress. Cureus 2025; 17:e80486. [PMID: 40225545 PMCID: PMC11991752 DOI: 10.7759/cureus.80486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The presumed implication of thromboembolic and oxidative stress pathways in parkinsonism guided the current research toward the exploration of the anticoagulant dabigatran etexilate (DE) as a thrombin inhibitor in the cobalt chloride (CoCl2)-induced parkinsonism (CIP) model, a model of significance to industrial toxins-related health issues. METHODS Oral CoCl2 (12.5 mg/kg) was administered daily for 60 days, with the introduction of benztropine mesylate (BM) (10 mg/kg) and/or DE (3 mg/kg) on day 31. Rearing, postural instability, and pasta handling were evaluated, followed by histopathologic examination of the substantia nigra (SN) and striatum (STR). The expressions of brain dopamine receptor 2 (D2 ), adenosine receptor 1 (A1) and 2A (A2A), and protease-activated receptor 1 (PAR1), as well as the brain levels of dopamine (DA), endothelin 1 (ET1), malondialdehyde (MDA), and glutathione (GSH), were assessed. RESULTS BM+DE restored the number of rears to the control level, compared to being reduced in the CIP model. BM+DE restored the first, second, third, and average displacement distances to the control level, compared to being reduced in the CIP model. BM+DE was superior to either BM or DE in restoring the time to finish eating pasta and the number of adjustments of forepaws while eating to control levels after being affected in the CIP model. BM+DE restored DA to the control level and was superior to DE in restoring D2 to the control level. BM+DE was superior to BM in restoring A1 and A2A , increasing A1/A2A beyond the control level. BM+DE was superior to BM in restoring PAR1 and ET1 to control levels. BM+DE was superior to BM in restoring MDA to the control level and was superior to both BM and DE in increasing GSH beyond the control level. BM+DE exhibited the highest percentage of preserved neurons in SN, which was negatively correlated with MDA. CONCLUSION BM+DE offers a therapeutic potential for parkinsonism triggered by chronic exposure to CoCl2. The implication of thrombin-related factors and oxidative stress in the modulation of the dopaminergic-adenosinergic crosstalk is plausible.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | | | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| | - Soha Elmorsy
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
| |
Collapse
|
3
|
Goldeck D, Oettinger L, Fülöp T, Schulte C, Hamprecht K, Berg D, Maetzler W, Pawelec G. Frequencies of Circulating Immune Cells in Patients with Parkinson's Disease: Correlation with MDS-UPDRS Scores. J Integr Neurosci 2025; 24:26393. [PMID: 40018777 DOI: 10.31083/jin26393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is associated with dysregulated/chronic inflammation. The immune system has multiple roles including beneficial effects such as clearing alpha synuclein aggregates. However, peripheral immune cells entering the brain may also contribute to inflammation and neurodegeneration. To identify which cells might have a negative impact and could be potential therapeutic targets, we compared immune signatures of patients and healthy controls. METHODS Multicolor flow cytometry was used to determine the frequencies of major immune cell subsets in peripheral blood mononuclear cells (PBMCs) of PD patients and controls. Because of the major impact of Cytomegalovirus (CMV) infection on the distribution of immune cell subsets, particularly cluster of differentiation (CD)8+ T-cells, all participants were tested for CMV seropositivity. RESULTS Although the cohort of 35 PD patients exhibited the well-established T-cell differentiation signature driven by CMV infection, there were no differences in the frequencies of differentiated or pro-inflammatory T-cells, B-cells or natural killer cells (NK-cells) attributable to the disease. However, percentages of myeloid-derived suppressor cells (MDSCs) were higher in PD patients than controls. Moreover, percentages of CD14+CD16+ (intermediate) monocytes expressing the C-C chemokine receptor type 5 (CCR5) correlated with disease severity assessed by the Movement Disorder Society's revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) score and disease duration. CONCLUSIONS A comprehensive evaluation of the major subsets of circulating immune cells in PD patients revealed differences in myeloid cells between PD and healthy controls and some correlation of monocyte abundance with disease severity.
Collapse
Affiliation(s)
| | - Lilly Oettinger
- Department of Psychiatry and Psychotherapy, Section for Dementia Research, University of Tübingen, 72076 Tübingen, Germany
| | - Tamas Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC H3A 0B8, Canada
| | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tübingen and German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology and Epidemiology of Viral Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON P3E 3B7, Canada
| |
Collapse
|
4
|
Crine V, Papenberg G, Johansson J, Boraxbekk CJ, Wåhlin A, Lindenberger U, Lövdén M, Riklund K, Bäckman L, Nyberg L, Karalija N. Associations between inflammation and striatal dopamine D2-receptor availability in aging. J Neuroinflammation 2025; 22:24. [PMID: 39885603 PMCID: PMC11783874 DOI: 10.1186/s12974-025-03355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability. METHODS Analyses were performed in a sample of healthy adults > 60 years assessed at two measurement occasions separated by 5 years. At both occasions, DRD2 availability was estimated by 11C-raclopride PET, and white-matter lesions by MRI. Inflammation was assessed by two C-reactive protein-associated DNA methylation scores at study baseline. RESULTS Individuals with higher DNA methylation scores at baseline showed reduced striatal DRD2 availability. An interaction was found between DNA methylation scores and sex in relation to striatal DRD2 availability, such that associations were found in men but not in women. DNA methylation scores at study entrance were not significantly associated with 5-year striatal DRD2 decline rates. No significant association was found between DNA methylation scores and white-matter lesions, but higher scores as well as higher lesion burden were independently associated with reduced striatal DRD2 availability in men. CONCLUSIONS These findings suggest negative associations between one proxy of inflammation and DRD2 availability in older adults, selectively for men who had higher DNA methylation scores. Future studies should investigate other inflammatory markers in relation to dopamine integrity.
Collapse
Affiliation(s)
- Vanessa Crine
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen (ISMC), Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifeorgdivision Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, UK
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Kwon D, Zhang K, Paul KC, Folle AD, Del Rosario I, Jacobs JP, Keener AM, Bronstein JM, Ritz B. Diet and the gut microbiome in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:89. [PMID: 38649365 PMCID: PMC11035608 DOI: 10.1038/s41531-024-00681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
It has been suggested that gut microbiota influence Parkinson's disease (PD) via the gut-brain axis. Here, we examine associations between diet and gut microbiome composition and its predicted functional pathways in patients with PD. We assessed gut microbiota in fecal samples from 85 PD patients in central California using 16S rRNA gene sequencing. Diet quality was assessed by calculating the Healthy Eating Index 2015 (HEI-2015) based on the Diet History Questionnaire II. We examined associations of diet quality, fiber, and added sugar intake with microbial diversity, composition, taxon abundance, and predicted metagenomic profiles, adjusting for age, sex, race/ethnicity, and sequencing platform. Higher HEI scores and fiber intake were associated with an increase in putative anti-inflammatory butyrate-producing bacteria, such as the genera Butyricicoccus and Coprococcus 1. Conversely, higher added sugar intake was associated with an increase in putative pro-inflammatory bacteria, such as the genera Klebsiella. Predictive metagenomics suggested that bacterial genes involved in the biosynthesis of lipopolysaccharide decreased with higher HEI scores, whereas a simultaneous decrease in genes involved in taurine degradation indicates less neuroinflammation. We found that a healthy diet, fiber, and added sugar intake affect the gut microbiome composition and its predicted metagenomic function in PD patients. This suggests that a healthy diet may support gut microbiome that has a positive influence on PD risk and progression.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aline D Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA.
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Saadullah M, Tariq H, Chauhdary Z, Saleem U, Anwer Bukhari S, Sehar A, Asif M, Sethi A. Biochemical properties and biological potential of Syzygium heyneanum with antiparkinson's activity in paraquat induced rodent model. PLoS One 2024; 19:e0298986. [PMID: 38551975 PMCID: PMC10980224 DOI: 10.1371/journal.pone.0298986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1β, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafsa Tariq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amna Sehar
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Aisha Sethi
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Nakaso K. Roles of Microglia in Neurodegenerative Diseases. Yonago Acta Med 2024; 67:1-8. [PMID: 38380436 PMCID: PMC10867232 DOI: 10.33160/yam.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
In recent years, microglia have attracted attention owing to their roles in various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Microglia, which are brain-resident macrophages, not only act as immune cells but also perform other functions in the body. Interestingly, they exert contrasting effects on different neurodegenerative diseases. In addition to the previously reported M1 (toxic) and M2 (protective) types, microglia now also include disease-associated microglia owing to a more elaborate classification. Understanding this detailed classification is necessary to elucidate the association between microglia and neurodegenerative diseases. In this review, we discuss the diverse roles of microglia in neurodegenerative diseases and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, School of Medicine, Faculty of Medicine, Tottori University, 683-8503 Yonago, Japan
| |
Collapse
|
8
|
Zhang Z, Shi M, Li Z, Ling Y, Zhai L, Yuan Y, Ma H, Hao L, Li Z, Zhang Z, Hölscher C. A Dual GLP-1/GIP Receptor Agonist Is More Effective than Liraglutide in the A53T Mouse Model of Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:7427136. [PMID: 37791037 PMCID: PMC10545468 DOI: 10.1155/2023/7427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is a complex syndrome with many elements, such as chronic inflammation, oxidative stress, mitochondrial dysfunction, loss of dopaminergic neurons, build-up of alpha-synuclein (α-syn) in cells, and energy depletion in neurons, that drive the disease. We and others have shown that treatment with mimetics of the growth factor glucagon-like peptide 1 (GLP-1) can normalize energy utilization, neuronal survival, and dopamine levels and reduce inflammation. Liraglutide is a GLP-1 analogue that recently showed protective effects in phase 2 clinical trials in PD patients and in Alzheimer disease patients. We have developed a novel dual GLP-1/GIP receptor agonist that can cross the blood-brain barrier and showed good protective effects in animal models of PD. Here, we test liraglutide against the dual GLP-1/GIP agonist DA5-CH (KP405) in the A53T tg mouse model of PD which expresses a human-mutated gene of α-synuclein. Drug treatment reduced impairments in three different motor tests, reduced levels of α-syn in the substantia nigra, reduced the inflammation response and proinflammatory cytokine levels in the substantia nigra and striatum, and normalized biomarker levels of autophagy and mitochondrial activities in A53T mice. DA5-CH was superior in almost all parameters measured and therefore may be a better drug treatment for PD than liraglutide.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ming Shi
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhengmin Li
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yuan Ling
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Luke Zhai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
9
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 294] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
10
|
Chan L, Hsu W, Chen KY, Wang W, Hung YC, Hong CT. Therapeutic Effect of Human Adipocyte-derived Stem Cell-derived Exosomes on a Transgenic Mouse Model of Parkinson's Disease. In Vivo 2023; 37:2028-2038. [PMID: 37652511 PMCID: PMC10500537 DOI: 10.21873/invivo.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Stem cell therapy and regenerative medicine are promising for treating Parkinson's disease (PD) not only for the potential for cell replacement but also for the paracrine effect of stem cell secretion, especially proteins and nucleotide-enriched exosomes. This study investigated the neuroprotective effect of exosomes secreted from human adipocyte-derived stem cells (hADSCs) on PD. MATERIALS AND METHODS hADSCs were isolated from the visceral fat tissue of individuals without PD who underwent bariatric surgery and were validated using surface markers and differentiation ability. Exosomes were isolated from the culture medium of hADSCs through serial ultracentrifugation and validated. Condensed exosomes were administered intravenously to 12-week-old MitoPark mice, transgenic parkinsonism mouse model with conditional knockout of mitochondrial transcription factor A in dopaminergic neurons, monthly for 3 months. Motor function, gait, and memory were assessed monthly, and immunohistochemical analysis of neuronal and inflammatory markers was performed at the end of the experiments. RESULTS The hADSC-derived exosome-treated mice exhibited better motor function in beam walking and gait analyses than did the untreated mice. In the novel object recognition tests, the exosome-treated mice retained better memory function. Immunohistochemical analysis revealed that although exosome treatment did not prevent the loss of dopaminergic neurons in the substantia nigra of mice, it down-regulated microglial activation and neuroinflammation in the midbrain. CONCLUSION hADSC-derived exosomes were neuroprotective in this in vivo mouse model of PD, likely because of their anti-inflammatory effect. Use of hADSC-derived exosomes may offer several beneficial effects in stem cell therapy. Since they can also be produced at an industrial level, they are a promising treatment option for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, R.O.C
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wayne Hsu
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
| | - Kai-Yun Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Weu Wang
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yi-Chieh Hung
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan, R.O.C.;
- Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, R.O.C.;
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
11
|
Patil CR, Suryakant Gawli C, Bhatt S. Targeting inflammatory pathways for treatment of the major depressive disorder. Drug Discov Today 2023; 28:103697. [PMID: 37422168 DOI: 10.1016/j.drudis.2023.103697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Current treatments modalities for major depressive disorder (MDD) mainly target the monoaminergic neurotransmission. However, the therapeutic inadequacy and adverse effects confine the use of these conventional antidepressants to a limited subset of MDD patients. The classical antidepressants are increasingly proving unsatisfactory in tackling the treatment-resistant depression (TRD). Hence, the focus of treatment is shifting to alternative pathogenic pathways involved in depression. Preclinical and clinical evidences accumulated across the last decades have unequivocally affirmed the causative role of immuno-inflammatory pathways in the progression of depression. There is an upsurge in the clinical evaluations of the drugs having anti-inflammatory effects as antidepressants. This review highlights the molecular mechanisms connecting the inflammatory pathways to the MDD and current clinical status of inflammation modulating drugs in the treatment of MDD.
Collapse
Affiliation(s)
- Chandragauda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Chandrakant Suryakant Gawli
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur 425405, Maharashtra, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| |
Collapse
|
12
|
Zhao Y, Walker DI, Lill CM, Bloem BR, Darweesh SKL, Pinto-Pacheco B, McNeil B, Miller GW, Heath AK, Frissen M, Petrova D, Sánchez MJ, Chirlaque MD, Guevara M, Zibetti M, Panico S, Middleton L, Katzke V, Kaaks R, Riboli E, Masala G, Sieri S, Zamora-Ros R, Amiano P, Jenab M, Peters S, Vermeulen R. Lipopolysaccharide-binding protein and future Parkinson's disease risk: a European prospective cohort. J Neuroinflammation 2023; 20:170. [PMID: 37480114 PMCID: PMC10362572 DOI: 10.1186/s12974-023-02846-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Brooklyn McNeil
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Myrthe Frissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dafina Petrova
- Escuela Andaluza de Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College NHS Healthcare Trust, London, UK
| | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, UK
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastián, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Mazda Jenab
- Nutrition and Metabolism (NME) Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.59, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Song S, Tu D, Meng C, Liu J, Wilson B, Wang Q, Shih YYI, Gao HM, Hong JS. Dysfunction of the noradrenergic system drives inflammation, α-synucleinopathy, and neuronal loss in mouse colon. Front Immunol 2023; 14:1083513. [PMID: 36845109 PMCID: PMC9950510 DOI: 10.3389/fimmu.2023.1083513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Clinical and pathological evidence revealed that α-synuclein (α-syn) pathology seen in PD patients starts in the gut and spreads via anatomically connected structures from the gut to the brain. Our previous study demonstrated that depletion of central norepinephrine (NE) disrupted brain immune homeostasis, producing a spatiotemporal order of neurodegeneration in the mouse brain. The purpose of this study was 1) to determine the role of peripheral noradrenergic system in the maintenance of gut immune homeostasis and in the pathogenesis of PD and 2) to investigate whether NE-depletion induced PD-like α-syn pathological changes starts from the gut. For these purposes, we investigated time-dependent changes of α-synucleinopathy and neuronal loss in the gut following a single injection of DSP-4 (a selective noradrenergic neurotoxin) to A53T-SNCA (human mutant α-syn) over-expression mice. We found DPS-4 significantly reduced the tissue level of NE and increased immune activities in gut, characterized by increased number of phagocytes and proinflammatory gene expression. Furthermore, a rapid-onset of α-syn pathology was observed in enteric neurons after 2 weeks and delayed dopaminergic neurodegeneration in the substantia nigra was detected after 3-5 months, associated with the appearance of constipation and impaired motor function, respectively. The increased α-syn pathology was only observed in large, but not in the small, intestine, which is similar to what was observed in PD patients. Mechanistic studies reveal that DSP-4-elicited upregulation of NADPH oxidase (NOX2) initially occurred only in immune cells during the acute intestinal inflammation stage, and then spread to enteric neurons and mucosal epithelial cells during the chronic inflammation stage. The upregulation of neuronal NOX2 correlated well with the extent of α-syn aggregation and subsequent enteric neuronal loss, suggesting that NOX2-generated reactive oxygen species play a key role in α-synucleinopathy. Moreover, inhibiting NOX2 by diphenyleneiodonium or restoring NE function by salmeterol (a β2-receptor agonist) significantly attenuated colon inflammation, α-syn aggregation/propagation, and enteric neurodegeneration in the colon and ameliorated subsequent behavioral deficits. Taken together, our model of PD shows a progressive pattern of pathological changes from the gut to the brain and suggests a potential role of the noradrenergic dysfunction in the pathogenesis of PD.
Collapse
Affiliation(s)
- Sheng Song
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, United States
| | - Dezhen Tu
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of medicine, Nanjing University, Nanjing, China
| | - Chengbo Meng
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jie Liu
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Belinda Wilson
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, United States
| | - Hui-Ming Gao
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of medicine, Nanjing University, Nanjing, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
14
|
Zhou L, Han D, Wang X, Chen Z. Probiotic Formulation VSL#3 Interacts with Mesenchymal Stromal Cells To Protect Dopaminergic Neurons via Centrally and Peripherally Suppressing NOD-Like Receptor Protein 3 Inflammasome-Mediated Inflammation in Parkinson's Disease Mice. Microbiol Spectr 2023; 11:e0320822. [PMID: 36728426 PMCID: PMC10100967 DOI: 10.1128/spectrum.03208-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023] Open
Abstract
Systemic immunomodulation is increasingly recognized among the beneficial effects of mesenchymal stromal cells (MSCs) in treatment of Parkinson's disease (PD), while the underlying mechanism is not fully understood. With the growing popularity of using probiotics as an adjuvant approach in PD treatment, concerns about the added effects of probiotics have been raised. In addition to the molecular mechanism mediating the neuroprotective effects of MSCs, the combined effects of a probiotic formulation, VSL#3, and MSC infusion were also evaluated in PD mice. The animals were weekly treated with human MSCs (hMSCs) via the tail vein, VSL#3 via the gastrointestinal tract, or their combination six times. hMSCs, VSL#3 alone, and their combination markedly ameliorated the decreased striatal dopamine content, loss of dopaminergic neurons in the substantia nigra, increased levels of proinflammatory cytokines in serum, as well as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) mRNAs in striatum and peripheral tissues induced by MPTP. Furthermore, hMSCs, VSL#3, and their combination notably downregulated mRNA expression of NOD-like receptor protein 3 (NLRP3) and caspase-1 in brain and peripheral tissues of PD mice. These results suggest that hMSCs, VSL#3, and their combination prevent neurodegenerative changes in PD mice via anti-inflammatory activities in both the central and peripheral systems, possibly through suppressing the NLRP3 inflammasome. Moreover, two-way analysis of variance (ANOVA) indicated that VSL#3 interacts with hMSCs to attenuate neurodegeneration and inhibit NLRP3 inflammasome-mediated inflammation without altering the effects of hMSCs. Major findings of our study support the usage of probiotic formulation VSL#3 as an adjuvant therapy to hMSC infusion in PD treatment. IMPORTANCE This study provides evidence for the neuroprotective activities of human umbilical cord MSCs from the aspect of anti-inflammation actions. hMSCs inhibit the NLRP3 inflammasome and MPTP-induced inflammation in both brain and periphery to relieve the degenerative changes in dopaminergic neurons in PD mice. Furthermore, as an additional therapeutic agent, probiotic formulation VSL#3 interacts with hMSCs in suppressing the NLRP3 inflammasome as well as the central and peripheral anti-inflammatory effects to exert neuroprotective actions in PD mice without altering the actions of hMSCs, suggesting the potential of VSL#3 as an adjuvant therapy in PD treatment. The findings of the present study give a further understanding of the anti-inflammatory activity and the molecular mechanism for the beneficial effects of MSCs as well as the potential application of probiotic formulation as an adjuvant approach to MSC therapy in PD treatment.
Collapse
Affiliation(s)
- Liping Zhou
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Xingzhe Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
16
|
Huang T, Zhao JY, Pan RR, Jiang T, Fu XX, Huang Q, Wang XX, Gong PY, Tian YY, Zhang YD. Dysregulation of Circulatory Levels of lncRNAs in Parkinson's Disease. Mol Neurobiol 2023; 60:317-328. [PMID: 36264433 DOI: 10.1007/s12035-022-03086-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in Parkinson's disease (PD) pathogenesis. Herein, we used gene expression profiles from GEO database to construct a PD-specific ceRNA network. Functional enrichment analysis suggested that ceRNA network might participate in the development of PD. PPI networks were constructed, and the ceRNA subnetwork based on five hub genes was set up. In a cohort of 32 PD patients and 31 healthy controls, the expression of 10 DElncRNAs (TTC3-AS1, LINC01259, ZMYND10-AS1, CHRM3-AS1, MYO16-AS1, AGBL5-IT1, HOTAIRM1, RABGAP1L-IT1, HLCS-IT1, and LINC00393) were further verified. Consistent with the microarray data, LINC01259 expression was significantly lower in PD patients compared with controls (P = 0.008). Intriguingly, such a difference was only observed among male patients and male controls when dividing study participants based on their gender (P = 0.016). However, the expression of other lncRNAs did not differ significantly between the two groups. Receiver operating characteristic (ROC) curve analysis revealed that the diagnostic power of LINC01259 was 0.694 for PD and 0.677 for early-stage PD. GSEA enrichment analysis revealed that LINC01259 was mainly enriched in biological processes associated with immune function and inflammatory response. Moreover, LINC01259 expression was not correlated with age of patients, disease duration, disease stage, MDS-UPDRS score, MDS-UPDRS III score, MMSE score, and MOCA score. The current study provides further evidence for the dysregulation of lncRNAs in circulating leukocytes of PD patients, revealing that LINC01259 has clinical potential as a novel immune and inflammatory biomarker for PD and early-stage PD diagnosis.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Jin-Ying Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Rong-Rong Pan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Xin-Xin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210000, China
| | - Qing Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Xi-Xi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
17
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
18
|
Sordillo PP, Allaire A, Bouchard A, Salvail D, Labbe SM. The complex lipid, SPPCT-800, reduces lung damage, improves pulmonary function and decreases pro-inflammatory cytokines in the murine LPS-induced acute respiratory distress syndrome (ARDS) model. PHARMACEUTICAL BIOLOGY 2022; 60:1255-1263. [PMID: 35786152 PMCID: PMC9255205 DOI: 10.1080/13880209.2022.2087689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Acute respiratory distress syndrome (ARDS) is a highly fatal, inflammatory condition of lungs with multiple causes. There is no adequate treatment. OBJECTIVE Using the murine LPS-induced ARDS model, we investigate SPPCT-800 (a complex lipid) as treatment for ARDS. MATERIALS AND METHODS C57B16/N mice received 50 μg of Escherichia coli O111:B4 lipopolysaccharide (LPS). SPPCT-800 was given as either: (1) 20 or 200 mg/kg dose 3 h after LPS; (2) 200 mg/kg (prophylactically) 30 min before LPS; or (3) eight 200 mg/kg treatments over 72 h. Controls received saline installations. RESULTS At 48 and 72 h, SpO2 was 94% and 90% in controls compared to 97% and 94% in treated animals. Expiration times, at 24 and 48 h, were 160 and 137 msec for controls, but 139 and 107 msec with SPPCT-800. In BALF (24 h), cell counts were 4.7 × 106 (controls) and 2.9 × 106 (treated); protein levels were 1.5 mg (controls) and 0.4 mg (treated); and IL-6 was 942 ± 194 pg/mL (controls) versus 850 ± 212 pg/mL (treated) [at 72 h, 4664 ± 2591 pg/mL (controls) versus 276 ± 151 pg/mL (treated)]. Weight losses, at 48 and 72 h, were 20% and 18% (controls), but 14% and 8% (treated). Lung injury scores, at 24 and 72 h, were 1.4 and 3.0 (controls) and 0.3 and 2.2 (treated). DISCUSSION AND CONCLUSIONS SPPCT-800 was effective in reducing manifestations of ARDS. SPPCT-800 should be further investigated as therapy for ARDS, especially in longer duration or higher cumulative dose studies.
Collapse
Affiliation(s)
| | | | | | - Dan Salvail
- IPS Therapeutique, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
19
|
He L, Zhao H, Wang F, Guo X. Inflammatory rheumatic diseases and the risk of Parkinson's disease: A systematic review and meta-analysis. Front Neurol 2022; 13:999820. [PMID: 36438950 PMCID: PMC9684169 DOI: 10.3389/fneur.2022.999820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Several studies showed inconsistencies in the relationships between inflammatory rheumatic diseases (IRDs) and the risk of Parkinson's disease (PD). Therefore, we carried out a meta-analysis to investigate the associations between different IRDs and PD risk. METHODS A comprehensive search was undertaken on PubMed, Embase, Cochrane Library, and Web of Science databases up to June 2022. Studies reporting the relationships between IRDs and PD risk were included. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated by using random-effects models. RESULTS Twenty-two publications covering seven IRDs containing data from 833,004 patients were identified for quantitative analysis. The pooled results indicated that ankylosing spondylitis (RR = 1.55, 95% CI: 1.31-1.83, I2 = 32.1%, P < 0.001), Sjögren's syndrome (RR = 1.34, 95% CI: 1.22-1.47, I2 = 58.5%, P < 0.001), and Behcet's disease (RR = 1.93, 95% CI: 1.07-3.49, I2 = 57.6%, P = 0.030) were associated with an increased PD risk. However, no significant associations were observed between gout, rheumatoid arthritis, systemic lupus erythematosus, as well as polymyalgia rheumatica and the subsequent development of PD. CONCLUSION Ankylosing spondylitis, Sjögren's syndrome, and Behcet's disease may increase PD risk.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Hong CT, Chan L, Chen KY, Lee HH, Huang LK, Yang YCSH, Liu YR, Hu CJ. Rifaximin Modifies Gut Microbiota and Attenuates Inflammation in Parkinson's Disease: Preclinical and Clinical Studies. Cells 2022; 11:3468. [PMID: 36359864 PMCID: PMC9656351 DOI: 10.3390/cells11213468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 09/15/2023] Open
Abstract
Patients with Parkinson's disease (PD) exhibit distinct gut microbiota, which may promote gut-derived inflammation. Rifaximin is a nonabsorbable antibiotic that can modify gut microbiota. The present study investigated the effect of rifaximin on gut microbiota and inflammation status in PD. The study examined the effect of long-term rifaximin treatment on in vivo transgenic PD mice (MitoPark) and short-term rifaximin treatment on patients with PD. Rifaximin treatment caused a significant change in gut microbiota in the transgenic PD mice; in particular, it reduced the relative abundance of Prevotellaceae UCG-001 and increased the relative abundance of Bacteroides, Muribaculum, and Lachnospiraceae UCG-001. Rifaximin treatment attenuated serum interleukin-1β, interleukin-6 and tumor necrosis factor-α, claudin-5 and occludin, which indicated the reduction of systemic inflammation and the protection of the blood-brain barrier integrity. The rifaximin-treated MitoPark mice exhibited better motor and memory performance than did the control mice, with lower microglial activation and increased neuronal survival in the hippocampus. In the patients with PD, 7-day rifaximin treatment caused an increase in the relative abundance of Flavonifractor 6 months after treatment, and the change in plasma proinflammatory cytokine levels was negatively associated with the baseline plasma interleukin-1α level. In conclusion, the present study demonstrated that rifaximin exerted a neuroprotective effect on the transgenic PD mice by modulating gut microbiota. We observed that patients with higher baseline inflammation possibly benefited from rifaximin treatment. With consideration for the tolerability and safety of rifaximin, randomized controlled trials should investigate the disease-modification effect of long-term treatment on select patients with PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
21
|
Su Q, Ng WL, Goh SY, Gulam MY, Wang LF, Tan EK, Ahn M, Chao YX. Targeting the inflammasome in Parkinson's disease. Front Aging Neurosci 2022; 14:957705. [PMID: 36313019 PMCID: PMC9596750 DOI: 10.3389/fnagi.2022.957705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in which neuroinflammation plays pivotal roles. An important mechanism of neuroinflammation is the NLRP3 inflammasome activation that has been implicated in PD pathogenesis. In this perspective, we will discuss the relationship of some key PD-associated proteins including α-synuclein and Parkin and their contribution to inflammasome activation. We will also review promising inhibitors of NLRP3 inflammasome pathway that have potential as novel PD therapeutics. Finally, we will provide a summary of current and potential in vitro and in vivo models that are available for therapeutic discovery and development.
Collapse
Affiliation(s)
- Qi Su
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Suh Yee Goh
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Muhammad Yaaseen Gulam
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| |
Collapse
|
22
|
Hong CT, Chen JH, Huang TW. Probiotics treatment for Parkinson disease: a systematic review and meta-analysis of clinical trials. Aging (Albany NY) 2022; 14:7014-7025. [PMID: 36084951 PMCID: PMC9512504 DOI: 10.18632/aging.204266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS People with Parkinson disease (PwP) exhibit gut dysbiosis and considerable gastrointestinal (GI) symptoms. Probiotics, beneficial strains of microorganisms, supplement and optimize the intestinal environment and alleviate GI symptoms among elderly people. We conducted a systematic review and meta-analysis of clinical trials to investigate the effects of probiotics on PwP. METHODS We searched the PubMed, Embase, and Cochrane Library databases. Major outcomes were the effects on GI symptoms, including bowel movement and stool characteristics. This study was registered with PROSPERO (CRD42021262036). RESULTS Six randomized controlled trials (RCTs) and two open-label studies were included. Most of the probiotic regimens were based on Lactobacillus and Bifidobacterium. Six studies investigated the benefit of probiotics for GI symptoms, especially for PwP with functional constipation, and two RCTs assessed probiotics' effect on systematic metabolism and inflammation. In the meta-analysis, probiotic treatment significantly increased the frequency of bowel movements among PwP (mean difference [MD]: 1.06 /week, 95% confidence interval [CI]: 0.61 to 1.51, p < 0.001, I2 = 40%). Additionally, probiotic treatment significantly normalized stool consistency (standard MD: 0.61, 95% CI = 0.31 to 0.91, p < 0.001, I2 = 0%). CONCLUSIONS Although the probiotic compositions varied, probiotic treatment significantly attenuated constipation for PwP and exhibited possible systematic effects on inflammation and metabolism. Given the tolerability of probiotics, the present meta-analysis may provide more consolidated evidence of the benefit of probiotics on constipation in PwP and a possible new therapeutic approach for disease modification.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tsai-Wei Huang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
COVID-19 and Parkinsonism: A Critical Appraisal. Biomolecules 2022; 12:biom12070970. [PMID: 35883526 PMCID: PMC9313170 DOI: 10.3390/biom12070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
A few cases of parkinsonism linked to COVID-19 infection have been reported so far, raising the possibility of a post-viral parkinsonian syndrome. The objective of this review is to summarize the clinical, biological, and neuroimaging features of published cases describing COVID-19-related parkinsonism and to discuss the possible pathophysiological mechanisms. A comprehensive literature search was performed using NCBI’s PubMed database and standardized search terms. Thirteen cases of COVID-19-related parkinsonism were included (7 males; mean age: 51 years ± 14.51, range 31–73). Patients were classified based on the possible mechanisms of post-COVID-19 parkinsonism: extensive inflammation or hypoxic brain injury within the context of encephalopathy (n = 5); unmasking of underlying still non-symptomatic Parkinson’s Disease (PD) (n = 5), and structural and functional basal ganglia damage (n = 3). The various clinical scenarios show different outcomes and responses to dopaminergic treatment. Different mechanisms may play a role, including vascular damage, neuroinflammation, SARS-CoV-2 neuroinvasive potential, and the impact of SARS-CoV-2 on α-synuclein. Our results confirm that the appearance of parkinsonism during or immediately after COVID-19 infection represents a very rare event. Future long-term observational studies are needed to evaluate the possible role of SARS-CoV-2 infection as a trigger for the development of PD in the long term.
Collapse
|
24
|
Yan M, Jin H, Pan C, Hang H, Li D, Han X. Movement Disorder and Neurotoxicity Induced by Chronic Exposure to Microcystin-LR in Mice. Mol Neurobiol 2022; 59:5516-5531. [PMID: 35732866 DOI: 10.1007/s12035-022-02919-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Microcystins are produced by some species of cyanobacteria, which are hazardous materials to the environment and human beings. It has been demonstrated that microcystin-LR (MC-LR) could disrupt the blood-brain barrier and cause learning and memory deficits, but the neurotoxicity of MC-LR on motor function remains unclear. In this study, the mice were exposed to MC-LR dissolved in drinking water at doses of 1, 7.5, or 15 μg/L for 15 months. We observed that 15 μg/L MC-LR could enter mouse brain tissues such as the cortex, hippocampus, and substantia nigra (SN). And 15 μg/L MC-LR also caused hypokinesia in mice and induced the loss and apoptosis of SN dopaminergic neurons (DA neurons). Meanwhile, MC-LR induced the accumulation of alpha synuclein (α-syn) in DA neurons and decreased the proteins of tyrosine hydroxylase (TH), dopa decarboxylase (DDC) and dopamine transporter (DAT), resulting in a reduction in dopamine (DA) content, which are pathological features of Parkinson's disease (PD). These results suggested that chronic MC-LR might induce PD-like lesions in mice. Moreover, chronic MC-LR exposure caused the inflammatory response in the SN, manifested by the increased numbers of glial cells and the release of inflammatory factors (TNF-α, MCP-1, and IL-6). In vitro, it was proved that MC-LR mediated SH-SY5Y cell apoptosis by activating oxidative stress and damaging mitochondria. Collectively, this study revealed a novel molecular mechanism for MC-LR neurotoxicity with significant implications for human health and the public environment.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hexing Hang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.,Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Jiangsu Province, 210008, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
25
|
Jain A, Bozovicar K, Mehrotra V, Bratkovic T, Johnson MH, Jha I. Investigating the specificity of endothelin-traps as a potential therapeutic tool for endothelin-1 related disorders. World J Diabetes 2022; 13:434-441. [PMID: 35800412 PMCID: PMC9210543 DOI: 10.4239/wjd.v13.i6.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelin (ET)-traps are Fc-fusion proteins with a design based on the physiological receptors of ET-1. Previous work has shown that use of the selected ET-traps potently and significantly reduces different markers of diabetes pathology back to normal, non-disease levels.
AIM To demonstrate the selected ET-traps potently and significantly bind to ET-1.
METHODS We performed phage display experiments to test different constructs of ET-traps, and conducted bio-layer interferometry binding assays to verify that the selected ET-traps bind specifically to ET-1 and display binding affinity in the double-digit picomolar range (an average of 73.8 rM, n = 6).
RESULTS These experiments have confirmed our choice of the final ET-traps and provided proof-of-concept for the potential use of constructs as effective biologics for diseases associated with pathologically elevated ET-1.
CONCLUSION There is increased need for such therapeutics as they could help save millions of lives around the world.
Collapse
Affiliation(s)
- Arjun Jain
- ET-Traps Limited, Cambridge CB3 0JE, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
- Accelerate Cambridge, Judge Business School, University of Cambridge, Cambridge CB2 1AG, United Kingdom
| | - Kristof Bozovicar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Slovenia 1000, Slovenia
| | - Vidhi Mehrotra
- ET-Traps Limited, Cambridge CB3 0JE, United Kingdom
- Accelerate Cambridge, Judge Business School, University of Cambridge, Cambridge CB2 1AG, United Kingdom
| | - Tomaz Bratkovic
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Slovenia 1000, Slovenia
| | - Martin H Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Ira Jha
- ET-Traps Limited, Cambridge CB3 0JE, United Kingdom
| |
Collapse
|
26
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
27
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
28
|
Systemic inflammation biomarkers in 6-OHDA- and LPS-induced Parkinson’s disease in rats. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Zhang Y, Chu JMT, Wong GTC. Cerebral Glutamate Regulation and Receptor Changes in Perioperative Neuroinflammation and Cognitive Dysfunction. Biomolecules 2022; 12:biom12040597. [PMID: 35454185 PMCID: PMC9029551 DOI: 10.3390/biom12040597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is intricately linked to learning and memory. Its activity depends on the expression of AMPA and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical trauma and contributes to the development of perioperative neurocognitive disorders, which are characterized by impairment in multiple cognitive domains. In this review, we aim to examine how glutamate handling and glutamatergic function are affected by neuroinflammation and their contribution to cognitive impairment. We will first summarize the current data regarding glutamate in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative neuroinflammation and the implications they have for perioperative neurocognitive disorders.
Collapse
|
30
|
Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 2022; 179:695-714. [PMID: 33900631 PMCID: PMC8820183 DOI: 10.1111/bph.15508] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Christian Hölscher
- The Second Associated Hospital, Neurology DepartmentShanxi Medical UniversityTaiyuanChina
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
31
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
32
|
Abolarin PO, Nafiu AB, Oyewole AL, Amin A, Ogundele OM, Owoyele BV. Selenium reduces nociceptive response in acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity. IBRO Neurosci Rep 2021; 12:1-11. [PMID: 34927129 PMCID: PMC8652001 DOI: 10.1016/j.ibneur.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The potential of Se to alleviate pain associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity was investigated. Swiss mice were intraperitoneally injected with MPTP (20 mg/kg) 4 times with an interval of 2 h in 1 day. Seven days after MPTP injection, the mice (n = 5 mice per group) were randomly assigned to groups: MPTP-, DOPA (50 mg/kg)-, Se4 (0.4 mg/kg)-, Se6 (0.6 mg/kg)-, DOPA+Se4-, and DOPA+Se6-treated groups were compared with controls. MPTP mice were treated for seven days; thereafter, motor-coordination and nociceptive-motor reactions were assessed. Pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and selected pain biomarkers (substance P (SP), glutamate and β-endorphin) were assessed in the serum and the substantial nigra pars compacta (SNpc). Motor activity was increased slightly by Se (0.6 or 0.4 mg/kg) vs. MPTP (10.48 ± 2.71 or 11.81 ± 1.28 s vs. 3.53 ± 0.06 s respectively) but considerably increased by DOPA (50 mg/kg) vs. MPTP (50.47 ± 3.06 s vs. 3.53 ± 0.06 s respectively). Se and DOPA increased nociceptive threshold but Se alone reduced both serum and SN pro-inflammatory cytokines. Se modulates SP while DOPA modulates SP and glutamate in the SNpc of mice treated with MPTP. Se suppressed pro-inflammatory cytokines and restored the basal pain biomarkers in the SNpc of mice treated with MPTP. Se requires further study as analgesic adjuvant.
Collapse
Affiliation(s)
| | | | | | - Abdulbasit Amin
- Department of Physiology, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
| | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | | |
Collapse
|
33
|
Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson's Disease with CMV Infection Background. Int J Mol Sci 2021; 22:ijms222313119. [PMID: 34884936 PMCID: PMC8658620 DOI: 10.3390/ijms222313119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson’s disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56− T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56− T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.
Collapse
|
34
|
Wakasugi N, Hanakawa T. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer's and Lewy Body Disease Spectra. Front Syst Neurosci 2021; 15:777706. [PMID: 34867224 PMCID: PMC8637125 DOI: 10.3389/fnsys.2021.777706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1 - 42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson's disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson's disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Lv M, Xue G, Cheng H, Meng P, Lian X, Hölscher C, Li D. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01. Brain Behav 2021; 11:e2231. [PMID: 34125470 PMCID: PMC8413783 DOI: 10.1002/brb3.2231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.
Collapse
Affiliation(s)
- MiaoJun Lv
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - GuoFang Xue
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - HuiFeng Cheng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - PengFei Meng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Xia Lian
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - DongFang Li
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
36
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
37
|
Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
|
38
|
Diffusion kurtosis imaging to evaluate the effect and mechanism of tetramethylpyrazine on cognitive impairment induced by lipopolysaccharide in rats. Brain Imaging Behav 2021; 15:2492-2501. [PMID: 33570727 DOI: 10.1007/s11682-021-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022]
Abstract
Using diffusion kurtosis imaging (DKI) to evaluate the brain changes, the therapeutic effect and mechanism of tetramethylpyrazine in rats with dementia induced by lipopolysaccharide. Thirty-six male Sprague-Dawley rats were randomly divided into control group and five groups pretreated with sham operation, lipopolysaccharide(150ug) and three doses of tetramethylpyrazine(5, 10, and 20 mg/mL respectively). The Morris water maze test was used to evaluate cognitive ability. DKI and histology were performed. Low-dose of tetramethylpyrazine pretreated rats showed lower escape latency(6th day: 15.92seconds(s) vs. 5.11 s, P = 0.001), spent more time in the target quadrant(15.67 s vs. 29.83 s, P = 0.009) and crossed the platform area more frequently(3.50 vs. 9.17, P = 0.001) than rats in the LPS-treated group. Compared to sham group, the fractional anisotropy (FA), axial diffusion (Da), mean kurtosis (MK), and axial kurtosis (Ka) values in the cortex of lipopolysaccharide group were lower (P = 0.021,0.003,0.003,0.001,respectively).The MK, Ka, Kr, and FA values in the hippocampus of the lipopolysaccharide group were higher (P = 0.01, 0.026,0.007,0.003,respectively),while MD and Da values were lower (P = 0.045,0.044, respectively). Tetramethylpyrazine-pretreated rats showed higher values of FA, MD, Da, MK, and Ka in the cortex, lower MK, Ka, Kr, and FA values and higher MD,Da values in the hippocampus than the lipopolysaccharide group. Histologically, prominent inflammatory cells infiltration in the brain parenchyma of lipopolysaccharide group were observed, while groups pretreated using tetramethylpyrazine were alleviated. Tetramethylpyrazine can improve cognitive dysfunction induced by lipopolysaccharide. DKI can sensitively detect microstructure integrity of brain parenchyma in a non-invasive manner.
Collapse
|
39
|
Galper J, Balwani M, Fahn S, Waters C, Krohn L, Gan-Or Z, Dzamko N, Alcalay RN. Cytokines and Gaucher Biomarkers in Glucocerebrosidase Carriers with and Without Parkinson Disease. Mov Disord 2021; 36:1451-1455. [PMID: 33570220 PMCID: PMC8248172 DOI: 10.1002/mds.28525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Homozygous and compound heterozygous variants in glucocerebrosidase (GBA) can cause Gaucher disease (GD), whereas heterozygous variants increase the risk of developing Parkinson's disease (PD). GD patients display altered peripheral immune proteins. However, it is unknown if these are altered in GBA carriers with PD. OBJECTIVES To determine whether plasma cytokines and immune biomarkers associated with GD are also altered in GBA carriers with or without PD. METHODS Inflammatory cytokines and established GD biomarkers, ferritin, CD162, CCL18, and chitotriosidase (28 biomarkers) were measured in GBA pathogenic variant carriers with (n = 135) and without (n = 83) PD, and non-carriers with (n = 75) and without PD (n = 77). RESULTS PD patients with biallelic pathogenic variants in GBA had elevated plasma levels of ferritin, CCL18, and MIP1α. These biomarkers were not elevated in heterozygous GBA carriers. CONCLUSION GD plasma biomarkers are not promising candidates for stratifying the risk for PD in carriers of heterozygous GBA pathogenic variants. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jasmin Galper
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Nicolas Dzamko
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
40
|
Yan A, Song L, Zhang Y, Wang X, Liu Z. Systemic Inflammation Increases the Susceptibility to Levodopa-Induced Dyskinesia in 6-OHDA Lesioned Rats by Targeting the NR2B-Medicated PKC/MEK/ERK Pathway. Front Aging Neurosci 2021; 12:625166. [PMID: 33597857 PMCID: PMC7882708 DOI: 10.3389/fnagi.2020.625166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Background: The long-term administration of levodopa (L-dopa), the gold-standard treatment for Parkinson's disease (PD), is irreparably associated with L-dopa-induced dyskinesia (LID), which dramatically affects the quality of life of patients. However, the underlying molecular mechanisms of how LID exacerbates remain unknown. Neuroinflammation in the striatum plays an active role in LID. These findings prompt an investigation of non-neuronal mechanisms of LID. This study will examine the effects of systemic inflammation in the development and progression of LID. Methods: To evaluate the possible influence of systemic inflammation in the appearance of LID, the PD rats received an intraperitoneal (IP) injection of various concentrations of lipopolysaccharides (LPS, 1, 2, and 5 mg/kg) or saline. One day later, these PD rats started to receive daily treatment with L-dopa (6 mg/kg) along with benserazide (6 mg/kg) or saline for 21 days, and dyskinesia was evaluated at several time points. Moreover, the activation of microglia and astrocytes and the molecular changes in NR2B and mGLUR5 signaling pathways were measured. Results: We found that systemic inflammatory stimulation with LPS exacerbated the intensity of abnormal involuntary movements (AIMs) induced by L-dopa treatment in 6-hydroxydopamine (6-OHDA) lesioned rats. The LPS injection activated the gliocytes and increased the levels of proinflammatory cytokines in the striatum in LID rats. The PD rats that received the LPS injection showed the overexpression of p-NR2B and NR2B, as well as activated PKC/MEK/ERK and NF-κB signal pathways in response to the L-dopa administration. On the contrary, clodronate-encapsulated liposomes (Clo-lipo), which could suppress the inflammatory response induced by peripheral LPS injection, improved behavioral dysfunction, inhibited neuroinflammation, prevented NR2B overexpression, and decreased the phosphorylation of PKC/MEK/ERK and NF-κB signaling pathways. Conclusion: This study suggests that systemic inflammation, by exacerbating preexisting neuroinflammation and facilitating NR2B subunit activity, may play a crucial role in the development of LID. The administration of Clo-lipo restores the effects of LPS and decreases the susceptibility to LID in 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Aijuan Yan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Chang TC, Chen YC, Huang YC, Lin WC, Lu CH. Systemic oxidative stress and cognitive function in Parkinson's disease with different PWMH or DWMH lesions. BMC Neurol 2021; 21:16. [PMID: 33430806 PMCID: PMC7798238 DOI: 10.1186/s12883-020-02037-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), frequently accompanied by cognitive impairments, is associated with systemic oxidative stress and abnormal structural changes on brain images. We aimed to identify the correlation between systemic oxidative stress and cognitive function in PD patients with different periventricular white matter hyperintensities (PWMH) and deep white matter hyperintensities (DWMH). METHODS A total of 146 participants with idiopathic PD underwent brain MRI, which revealed PWMH and DWMH. The number of lesions were evaluated using the Fazekas criteria. Systemic oxidative stress was determined as early or late phase changes in leukocyte apoptosis and its subsets by flow cytometry. Cognitive functions, including attention, executive function, memory, language, and visual space, were assessed. RESULTS For different DWMH, the leukocyte apoptosis and its subsets were significantly different.. However, there were no significant differences in oxidative stress biomarkers in PD patients with different PWMH. Attention and memory were significantly decreased in patients with more advanced DWMH injuries. Attention, memory, and language were significantly impaired in patients with worse PWMH lesions. CONCLUSION Significant oxidative stress biomarker alternations in PD patients with DWMH, but not PWMH, might be associated with white matter injury. Systemic inflammatory responses may contribute to deep white matter damage in PD. Further, more cognitive deficits were seen in PD patients with worse deep white matter lesions, especially in moderate to severe periventricular white matter injury. TRIAL REGISTRATION Retrospective study.
Collapse
Affiliation(s)
- Ta-Chih Chang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Cun Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chi Huang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Unda SR, Antoniazzi AM, Altschul DJ, Marongiu R. Peripheral Leukocytosis Predicts Cognitive Decline but Not Behavioral Disturbances: A Nationwide Study of Alzheimer's and Parkinson's Disease Patients. Dement Geriatr Cogn Disord 2021; 50:143-152. [PMID: 34058741 PMCID: PMC8376803 DOI: 10.1159/000516340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Peripheral and central nervous system inflammation have been linked to the classic symptoms of Parkinson's disease (PD) and Alzheimer's disease (AD). However, it remains unclear whether the analysis of routine systemic inflammatory markers could represent a useful prediction tool to identify clinical subtypes in patients with Parkinson's and Alzheimer's at higher risk of dementia-associated symptoms, such as behavioral and psychological symptoms of dementia (BPSD). METHODS We performed a multivariate logistic regression using the 2016 and 2017 National Inpatient Sample with International Classification of Diseases 10th edition codes to assess if pro-inflammatory white blood cells (WBCs) anomalies correlate with dementia and BPSD in patients with these disorders. RESULTS We found that leukocytosis was the most common WBC inflammatory marker identified in 3.9% of Alzheimer's and 3.3% Parkinson's patients. Leukocytosis was also found to be an independent risk factor for Parkinson's dementia. Multivariate analysis of both cohorts showed that leukocytosis is significantly decreased in patients with BPSD compared to patients without BPSD. CONCLUSIONS These results suggest a link between leukocytosis and the pathophysiology of cognitive dysfunction in both PD and AD. A better understanding of the role of systemic neuroinflammation on these devastating neurodegenerative disorders may facilitate the development of cost-effective blood biomarkers for patient's early diagnosis and more accurate prognosis.
Collapse
Affiliation(s)
- Santiago R. Unda
- Department of Neurological Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - David J. Altschul
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, USA,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roberta Marongiu
- Department of Neurological Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
43
|
Klann E, Tagliamonte MS, Ukhanova M, Mai V, Vedam-Mai V. Gut Microbiota Dynamics in Parkinsonian Mice. ACS Chem Neurosci 2020; 11:3267-3276. [PMID: 32941730 DOI: 10.1021/acschemneuro.0c00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peripheral immunity is thought to be dysregulated in Parkinson's disease (PD) and may provide an avenue for novel immunotherapeutic interventions. Gut microbiota is a potential factor for modulating immunotherapy response. Considering the possibly complex role of the gut-brain axis in PD, we used a preclinical model to determine the effects of gut microbiota dynamics in mice receiving an immunotherapeutic intervention compared to controls. A total of 17 M83 heterozygous transgenic mice were used in this study. Mice in the treatment arm (N = 10) received adoptive cellular therapy (ACT) by injection, and control mice (N = 7) were injected with saline at 8 weeks of age. All mice received peripheral α-syn fibrils to hasten parkinsonian symptoms via an intramuscular injection 1 week later (9 weeks of age; baseline). Fecal pellets were collected from all mice at three time points postinjection (baseline, 6 weeks, and 12 weeks). DNA from each stool sample was extracted, and 16S rDNA was amplified, sequenced, and analyzed using QIIME2 and RStudio. Differences in the relative abundance of bacterial taxa were observed over time between groups. No significant differences in alpha diversity were found between groups at any time point. UniFrac measures of phylogenetic distance between samples demonstrated distinct clustering between groups postbaseline (p = 0.002). These differences suggest that the gut microbiome may be capable of influencing immunotherapy outcomes. Conclusively, we observed distinctly different microbiota dynamics in treated mice compared to those in the control group. These results suggest a correlation between the gut-brain axis, PD pathology, and immunotherapy.
Collapse
Affiliation(s)
- Emily Klann
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida 32611, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Massimiliano S. Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Volker Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Chaná-Cuevas P, Salles-Gándara P, Rojas-Fernandez A, Salinas-Rebolledo C, Milán-Solé A. The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:1044. [PMID: 33041985 PMCID: PMC7527541 DOI: 10.3389/fneur.2020.01044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Considering their current burden and epidemiological projections, nowadays Parkinson's disease and the COVID-19 pandemic are two key health problems. There is evidence of the pathogenic role of neurotropic viruses in neurodegenerative diseases and coronaviruses are neurotropic, with some of them selectively targeting the basal ganglia. Moreover, some authors demonstrated the longevity of these viruses in the affected cells of the nervous system for long periods. Coronavirus was detected in brain autopsies and SARS-CoV-2 has been isolated from the CSF of affected patients. The marked inflammatory response in some particular patients with COVID-19 with a consequent increase of pro-inflammatory cytokines is considered a prognostic factor. Immunologic changes are observed in patients with Parkinson's disease, possibly having a role in its pathogenesis. A dynamic pro-inflammatory state accompanies α-synuclein accumulation and the development and progression of neurodegeneration. Also, some viral infectious diseases might have a role as triggers, generating a cross autoimmune reaction against α-synuclein. In the past Coronaviruses have been related to Parkinson's disease, however, until now the causal role of these viruses is unknown. In this paper, our focus is to assess the potential relationship between SARS-CoV-2 infection and Parkinson's disease.
Collapse
Affiliation(s)
- Pedro Chaná-Cuevas
- Movement Disorders Center, CETRAM, Santiago, Chile
- Faculty of Medical Science, University of Santiago of Chile, Santiago, Chile
| | | | - Alejandro Rojas-Fernandez
- Institute of Medicine & Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Salinas-Rebolledo
- Institute of Medicine & Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
45
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|
46
|
Association of Tooth Loss with New-Onset Parkinson's Disease: A Nationwide Population-Based Cohort Study. PARKINSONS DISEASE 2020; 2020:4760512. [PMID: 32765825 PMCID: PMC7374233 DOI: 10.1155/2020/4760512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Introduction Tooth loss is associated with poor oral hygiene. During insufficient oral sanitation, focal infection and inflammation can occur and these reactions may induce systemic inflammation. Systemic inflammatory reaction may be related to the degeneration of dopamine neurons in the substantia nigra. We hypothesized that tooth loss is related to increased risk of new-onset Parkinson's disease. Methods Between 2003 and 2006, we included 153,165 participants from the national health insurance system-health screening cohort in Korea. The incidence of new-onset Parkinson's disease was defined as International Classification of Diseases-10 code “G20,” accompanying the prescription records for any anti-Parkinson's disease medication. Results Approximately 19.9% of the included participants had periodontal disease. After a median duration of 10.4 years, 1,227 (0.8%) cases of new-onset Parkinson's disease were noted. The number of tooth loss was positively related to an increased risk of new-onset Parkinson's disease. Contrastingly, the frequency of tooth brushings and dental clinic visits for any causes as well as competent dental care were negatively related to the development of new-onset Parkinson's disease. In multivariable analysis, the number of tooth loss (≥15) was positively related to new-onset Parkinson's disease development (hazard ratio: 1.38, 95% confidence interval (1.03–1.85), p=0.029, p for trend = 0.043) after adjusting variables. Conclusion Our study demonstrated that the number of tooth loss was positively correlated with a higher risk of new-onset Parkinson's disease development in a longitudinal study setting. Increased number of tooth loss may be an important risk indicator of new-onset Parkinson's disease.
Collapse
|
47
|
Haque A, Samantaray S, Knaryan VH, Capone M, Hossain A, Matzelle D, Chandran R, Shields DC, Farrand AQ, Boger HA, Banik NL. Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson's disease. Exp Neurol 2020; 330:113315. [PMID: 32302678 PMCID: PMC7282933 DOI: 10.1016/j.expneurol.2020.113315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans. Disease characteristics include tremor, rigidity, postural instability, bradykinesia, and at a cellular level, glial cell activation and Lewy body inclusions in DA neurons. The most potent medical/surgical treatments do not ultimately prevent disease progression. Therefore, new therapies must be developed to halt progression of the disease. While the mechanisms of the degenerative process in PD remain elusive, chronic inflammation, a common factor in many neurodegenerative diseases, has been implicated with associated accumulation of toxic aggregated α-synuclein in neurons. Calpain, a calcium-activated cysteine neutral protease, plays a pivotal role in SN and spinal cord degeneration in PD via its role in α-synuclein aggregation, activation/migration of microglia and T cells, and upregulation of inflammatory processes. Here we report an increased expression of a subset of CD4+ T cells in rodent models of PD, including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mice and DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride]/6-hydroxydopamine rats, which produced higher levels of perforin and granzyme B - typically found in cytotoxic T cells. Importantly, the CD4+ cytotoxic subtype was attenuated following calpain inhibition in MPTP mice, suggesting that calpain and this distinct CD4+ T cell subset may have critical roles in the inflammatory process, disease progression, and neurodegeneration in PD.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Supriti Samantaray
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Varduhi H Knaryan
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azim Hossain
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC 29401, USA
| | - Raghavendar Chandran
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Donald C Shields
- Department of Neurosurgery, The George Washington University, Washington, DC, USA
| | - Ariana Q Farrand
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heather A Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC 29401, USA.
| |
Collapse
|
48
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Pajares M, I. Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 2020; 9:cells9071687. [PMID: 32674367 PMCID: PMC7408280 DOI: 10.3390/cells9071687] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder primarily characterized by the death of dopaminergic neurons that project from the substantia nigra pars compacta. Although the molecular bases for PD development are still little defined, extensive evidence from human samples and animal models support the involvement of inflammation in onset or progression. However, the exact trigger for this response remains unclear. Here, we provide a systematic review of the cellular mediators, i.e., microglia, astroglia and endothelial cells. We also discuss the genetic and transcriptional control of inflammation in PD and the immunomodulatory role of dopamine and reactive oxygen species. Finally, we summarize the preclinical and clinical approaches targeting neuroinflammation in PD.
Collapse
Affiliation(s)
- Marta Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ana I. Rojo
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERcv), ISCIII, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: ; Tel.: +34-915854383; Fax: +34-915854401
| |
Collapse
|
50
|
Söderbom G. Status and future directions of clinical trials in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:153-188. [PMID: 32739003 DOI: 10.1016/bs.irn.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel therapies are needed to treat Parkinson's disease (PD) in which the clinical unmet need is pressing. Currently, no clinically available therapeutic strategy can either retard or reverse PD or repair its pathological consequences. l-DOPA (levodopa) is still the gold standard therapy for motor symptoms yet symptomatic therapies for both motor and non-motor symptoms are improving. Many on-going, intervention trials cover a broad range of targets, including cell replacement and gene therapy approaches, quality of life improving technologies, and disease-modifying strategies (e.g., controlling aberrant α-synuclein accumulation and regulating cellular/neuronal bioenergetics). Notably, the repurposing of glucagon-like peptide-1 analogues with potential disease-modifying effects based on metabolic pathology associated with PD has been promising. Nevertheless, there is a clear need for improved therapeutic and diagnostic options, disease progression tracking and patient stratification capabilities to deliver personalized treatment and optimize trial design. This review discusses some of the risk factors and consequent pathology associated with PD and particularly the metabolic aspects of PD, novel therapies targeting these pathologies (e.g., mitochondrial and lysosomal dysfunction, oxidative stress, and inflammation/neuroinflammation), including the repurposing of metabolic therapies, and unmet needs as potential drivers for future clinical trials and research in PD.
Collapse
|