1
|
Liu D, Langston JC, Prabhakarpandian B, Kiani MF, Kilpatrick LE. The critical role of neutrophil-endothelial cell interactions in sepsis: new synergistic approaches employing organ-on-chip, omics, immune cell phenotyping and in silico modeling to identify new therapeutics. Front Cell Infect Microbiol 2024; 13:1274842. [PMID: 38259971 PMCID: PMC10800980 DOI: 10.3389/fcimb.2023.1274842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a global health concern accounting for more than 1 in 5 deaths worldwide. Sepsis is now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can develop from bacterial (gram negative or gram positive), fungal or viral (such as COVID) infections. However, therapeutics developed in animal models and traditional in vitro sepsis models have had little success in clinical trials, as these models have failed to fully replicate the underlying pathophysiology and heterogeneity of the disease. The current understanding is that the host response to sepsis is highly diverse among patients, and this heterogeneity impacts immune function and response to infection. Phenotyping immune function and classifying sepsis patients into specific endotypes is needed to develop a personalized treatment approach. Neutrophil-endothelium interactions play a critical role in sepsis progression, and increased neutrophil influx and endothelial barrier disruption have important roles in the early course of organ damage. Understanding the mechanism of neutrophil-endothelium interactions and how immune function impacts this interaction can help us better manage the disease and lead to the discovery of new diagnostic and prognosis tools for effective treatments. In this review, we will discuss the latest research exploring how in silico modeling of a synergistic combination of new organ-on-chip models incorporating human cells/tissue, omics analysis and clinical data from sepsis patients will allow us to identify relevant signaling pathways and characterize specific immune phenotypes in patients. Emerging technologies such as machine learning can then be leveraged to identify druggable therapeutic targets and relate them to immune phenotypes and underlying infectious agents. This synergistic approach can lead to the development of new therapeutics and the identification of FDA approved drugs that can be repurposed for the treatment of sepsis.
Collapse
Affiliation(s)
- Dan Liu
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States
- Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Petruk G, Puthia M, Samsudin F, Petrlova J, Olm F, Mittendorfer M, Hyllén S, Edström D, Strömdahl AC, Diehl C, Ekström S, Walse B, Kjellström S, Bond PJ, Lindstedt S, Schmidtchen A. Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs. Nat Commun 2023; 14:6097. [PMID: 37773180 PMCID: PMC10541425 DOI: 10.1038/s41467-023-41702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden.
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | | | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Dag Edström
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Ann-Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, SE-22184, Lund, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Dermatology, Skane University Hospital, SE-22185, Lund, Sweden
| |
Collapse
|
3
|
Forsythiaside A prevents zymosan A-induced cell migration in neutrophil-differentiated HL-60 cells via PD-1/PD-L1 pathway. Heliyon 2023; 9:e13490. [PMID: 36865477 PMCID: PMC9970906 DOI: 10.1016/j.heliyon.2023.e13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Neutrophils, which account for more than 80% of leukocyte, play an important role in resolution of inflammation. Immune checkpoint molecules could be potential biomarkers in immunosuppression. Forsythiaside A (FTA), a main constituent of Forsythia suspensa (Thunb.) Vahl, provides a very significant anti-inflammatory activity. Here we defined the immunological mechanisms of FTA by taking programmed cell death-1 (PD-1)/programmed cell death-Ligand 1 (PD-L1) pathway into consideration. FTA could inhibited cell migration in HL-60-derived neutrophils in vitro, and this action appeared to be mediated via PD-1/PD-L1 depended JNK and p38 MAPK pathways. In vivo, FTA prevented PD-L1+ neutrophils infiltration and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and interferon-gamma (IFN-γ) after zymosan A-induced peritonitis. PD-1/PD-L1 inhibitor could abolish the suppression of FTA. The expression of inflammatory cytokines and chemokines were positively correlated with PD-L1. Molecular docking showed that FTA could bind to PD-L1. Taken together, FTA might prevent neutrophils infiltration to exert inflammation resolution through PD-1/PD-L1 pathway.
Collapse
|
4
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
5
|
Fong P, Wang QT. Protective effect of oral contraceptive against Helicobacter pylori infection in US adult females: NHANES 1999-2000. Epidemiol Infect 2021; 149:e120. [PMID: 33896437 PMCID: PMC8161376 DOI: 10.1017/s0950268821000923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the antibacterial properties of oestrogen and progestogen were discovered. The aim of this study was to find the cross-sectional association between oral contraceptive use and Helicobacter pylori seroprevalence. Data were obtained from the US National Health and Nutrition Examination Survey (NHANES). The H. pylori immunoglobulin G (IgG) enzyme-linked immunosorbent assays were used to categorise participants as seropositive or seronegative. The study population included 799 female participants who had information on H. pylori seroprevalence and all other covariates and had not been taking any medications (except oral contraceptives). The bivariate Rao-Scott chi-square test indicated a significant association between H. pylori seroprevalence and contraceptive use (P < 0.01). The variables of race, education, poverty income ratio, smoking, and blood lead and cadmium levels were also significantly associated with H. pylori seroprevalence (P < 0.01). Multiple logistic regression analysis of the age-adjusted model revealed that contraceptive users are 65% less likely of being H. pylori seropositive as compared to non-contraceptive users (odds ratio (OR): 0.35, 95% confidence interval (CI): 0.18-0.68). This association is stronger with the final multivariate model (OR: 0.46, 95% CI: 0.23-0.89). Conclusions: This finding reveals the potential protective effect of oral contraceptives against H. pylori infection and serves as a foundation study for further investigations.
Collapse
Affiliation(s)
- P. Fong
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Q. T. Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|