1
|
Feng Z, Ou L, Li H, Hao Y, Wei R, Zhang G, Yao M. Unveiling the therapeutic potential of HZQYF: exploring the inhibitory impact of a clinical herbal formula on gastric cancer through network pharmacology and transcript analysis. BMC Complement Med Ther 2025; 25:142. [PMID: 40247271 PMCID: PMC12004866 DOI: 10.1186/s12906-025-04871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Hezi Qingyou Formula (HZQYF) is a clinical formulation known for its efficacy in treating gastrointestinal diseases. Nevertheless, its specific impact and underlying mechanism of action in gastric cancer remain to be fully elucidated. The major components of the formula were precisely identified and characterized using ultra-high-performance liquid chromatography coupled with a tandem mass spectrometer (UHPLC-MS/MS). Network pharmacology and transcript analysis were utilized to identify the targets associated with drug-disease interactions. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses were conducted to unravel the pivotal pathways involved. Furthermore, in vitro experiments were performed to validate the anti-gastric cancer activity of HZQYF, including assessments of cell viability and clonogenic potential. These results revealed that 260 co-expressed targets were identified as shared between HZQYF and gastric cancer. These genes were significantly enriched in biological processes and pathways related to steroid metabolism, gamma-aminobutyric acid (GABA)-A receptor complex, steroid binding activity, extracellular ligand-gated ion channel activity, chemical carcinogenesis-reactive oxygen species, and GABAergic synapse. Furthermore, the principal components of the formula were characterized. Subsequent cell experiments confirmed the formula's ability to inhibit gastric cancer activity and suppress colony formation in vitro. In conclusion, these findings suggest that Hezi Qingyou Formula may exert its anti-gastric cancer activity by influencing reactive oxygen species and modulating GABAergic synapses in-silico methods. This study provides a foundation for further exploration of HZQYF as a potential therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, Shandong, 273400, China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, Shandong, 273400, China
| | - Yajie Hao
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, Shandong, 273400, China
| | - Ruixia Wei
- Lunan Pharmaceutical Group Co., Ltd, Linyi, Shandong, 276000, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, Shandong, 276000, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Ahn CR, Baek SH. Synergistic effects of 6-shogaol and hyperthermia on ACHN renal cancer cells: modulation of ROS and heat shock pro-teins in cancer therapy. Front Pharmacol 2025; 16:1522285. [PMID: 40051570 PMCID: PMC11882530 DOI: 10.3389/fphar.2025.1522285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Renal cancer is known for its aggressive progression and resistance to standard treatments, underscoring the need for novel therapeutic strategies. This study explores the potential of combining 6-shogaol (6-SHO), a bioactive compound derived from ginger (Zingiber officinale), with hyperthermia to enhance anticancer efficacy in ACHN renal cancer cells. Methods ACHN cells were treated with 6-SHO and exposed to hyperthermic conditions. We evaluated the combined effects on apoptosis, cell cycle arrest, and cell proliferation, as well as the role of reactive oxygen species (ROS) and heat shock proteins (HSPs) in mediating these responses. Results The combination of 6-SHO and hyperthermia significantly increased apoptosis, induced G2/M phase cell cycle arrest, and reduced cell proliferation more effectively than either treatment alone. ROS played a critical role in these effects, with modulation of HSPs and heat shock factor 1 (HSF1) further disrupting cancer cell survival mechanisms. Discussion These findings highlight the synergistic potential of 6-SHO and hyperthermia as a novel therapeutic approach in renal cancer treatment, supporting the need for further research and clinical evaluation.
Collapse
Affiliation(s)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Huang T, Wang L, Wang Y, Liu Y, Bai J, Wen X, Li Y, Long K, Zhang H. Traditional Chinese Medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118812. [PMID: 39260710 DOI: 10.1016/j.jep.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic atrophic gastritis (CAG), precancerous lesions of gastric cancer (PLGC), and gastric cancer (GC), seriously threaten human health. Traditional Chinese medicine (TCM) has been employed in the treatment of chronic diseases for a long time and has shown remarkable efficacy. AIM OF THE STUDY Recently, there has been an increasing use of TCM in treating CAG, PLGC, and GC. The objective of this study is to compile a comprehensive overview of the existing research on the effects and molecular mechanisms of TCM, including formulas, single herbs, and active components. MATERIALS AND METHODS To obtain a comprehensive understanding of traditional use of TCM in treating these diseases, we reviewed ancient books and Chinese literature. In addition, keywords such as "TCM", "CAG", "PLGC", "GC", and "active ingredients" were used to collect modern research on TCM published in databases such as CNKI, Web of Science, and Pubmed up to April 2024. All collected information was then summarized and analyzed. RESULTS This study analyzed 174 articles, which covered the research progress of 20 TCM formulas, 14 single herbs, and 50 active ingredients in treating CAG, PLGC, and GC. Sources, effects, and molecular mechanisms of the TCM were summarized. CONCLUSIONS This article reviews the progress of TCM in the management of CAG, PLGC, and GC, which will provide a foundation for the clinical application and further development of TCM.
Collapse
Affiliation(s)
- Yuxi Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Tingting Huang
- Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Lu Wang
- Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| | - Yuan Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Jingyi Bai
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Xinli Wen
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Kaihua Long
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China; Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China; Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| |
Collapse
|
4
|
Kim B, Park B. Isoorientin Suppresses Invasion of Breast and Colon Cancer Cells by Inhibition of CXC Chemokine Receptor 4 Expression. Biomol Ther (Seoul) 2024; 32:759-766. [PMID: 39370769 PMCID: PMC11535293 DOI: 10.4062/biomolther.2024.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer metastasis still accounts for up to 90% of cancer-related deaths, but the molecular mechanism for metastasis is unclear. Several chemokines and their receptors mediate tumor cell metastasis, particularly through long-term effects that regulate angiogenesis, tumor cell proliferation and apoptosis. Among them, CXC chemokine receptor 4 (CXCR4) has been shown to play a pivotal role in cancer metastasis through interaction with a ligand (CXCL12), also known as stromal cell-derived factor 1α (SDF-1α). The CXCR4 promoter region is well characterized, and its expression is controlled by various transcriptional factors, including NF-κB, HIF-1α, and so forth. Isoorientin (ISO) is a 3', 4', 5, 7-tetrahydroxy-6-C-glucopyranosyl flavone. ISO has been reported to exhibit anti-oxidant, anti-cancer, and anti-inflammatory properties. However, the anti-metastatic effect of ISO following downregulation of CXCR4 is unknown, and the mechanism underlying the antitumor activity has yet to be elucidated. In our present study, we showed that ISO inhibited the expression of CXCR4 through NF-κB regulation in breast and colon cancer cells. We have also demonstrated that ISO inhibits CXCR4 expression in a variety of tumor cells. Furthermore, we found that CXCR4 expression is regulated through inhibition of the transcription process. Inhibition of CXCR4 expression also reduced the invasion of cancer cells by CXCL12. In conclusion, our results suggest that ISO is a novel inhibitor to regulate CXCR4 expression and the key molecule contributing to antitumor activity.
Collapse
Affiliation(s)
- Buyun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
5
|
Wang BR, Ma HH, Chang CH, Liao CH, Chang WS, Mong MC, Yang YC, Gu J, Bau DT, Tsai CW. Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan. Life (Basel) 2024; 14:801. [PMID: 39063556 PMCID: PMC11277778 DOI: 10.3390/life14070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Matrix metalloproteinase (MMP)-2 and -9, which degrade type IV collagen, are linked to cancer invasion and metastasis. Gene polymorphisms in MMP-2 and MMP-9 can influence their function, impacting cancer development and progression. This study analyzed the association between polymorphisms MMP-2 rs243865 (C-1306T), rs2285053 (C-735T), and MMP-9 rs3918242 (C-1562T) with serum concentrations of these enzymes in upper tract urothelial cancer (UTUC) patients. We conducted a case-control study with 218 UTUC patients and 580 healthy individuals in Taiwan. Genotyping was performed using PCR/RFLP on DNA from blood samples, and MMP-2 and MMP-9 serum levels and mRNA expressions in 30 UTUC patients were measured using ELISA and real-time PCR. Statistical analysis showed that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes were differently distributed between UTUC patients and controls (p = 0.0199 and 0.0020). The MMP-2 rs2285053 TT genotype was associated with higher UTUC risk compared to the CC genotype (OR = 2.20, p = 0.0190). Similarly, MMP-9 rs3918242 CT and TT genotypes were linked to increased UTUC risk (OR = 1.51 and 2.92, p = 0.0272 and 0.0054). In UTUC patients, TT carriers of MMP-2 rs2285053 and MMP-9 rs3918242 showed higher mRNA and protein levels (p < 0.01). These findings suggest that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes are significant markers for UTUC risk and metastasis in Taiwan.
Collapse
Affiliation(s)
- Bo-Ren Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 41152, Taiwan
- National Defense Medical Center, Taipei 11490, Taiwan
| | - Hung-Huan Ma
- Division of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung 427003, Taiwan
| | - Chao-Hsiang Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Hsi Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 41152, Taiwan
- National Defense Medical Center, Taipei 11490, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
7
|
Çınar İ, Gıdık B, Dirican E. Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells. Mol Biol Rep 2024; 51:491. [PMID: 38578469 DOI: 10.1007/s11033-024-09453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.
Collapse
Affiliation(s)
- İrfan Çınar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Bayburt University, Bayburt, 69000, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey.
| |
Collapse
|
8
|
Yang P, Chai Y, Wei M, Ge Y, Xu F. Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking. Sci Rep 2023; 13:14114. [PMID: 37644107 PMCID: PMC10465614 DOI: 10.1038/s41598-023-41157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Salidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein-protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a "drug component-target gene-disease" network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Wei
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yan Ge
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feixue Xu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
9
|
To HTN, Park JH, Kim JW, Kang D. Delta/Notch-like Epidermal Growth Factor-Related Receptor (DNER), a Potential Prognostic Marker of Gastric Cancer Regulates Cell Survival and Cell Cycle Progression. Int J Mol Sci 2023; 24:10077. [PMID: 37373228 DOI: 10.3390/ijms241210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Upregulation of the expression of Delta/notch-like epidermal growth factor-related receptor (DNER) and its oncogenic role have been reported in several cancers, including gastric, breast, and prostate cancers. This study aimed to investigate the oncogenic role of DNER and the mechanisms behind its oncogenic role in gastric cancer. Analysis of the RNASeq data of gastric cancer tissues obtained from the TCGA database revealed that the expression of DNER was associated with the pathology of advanced gastric cancer and the prognosis of patients. DNER expression was increased upon stem cell-enriching cancer spheroid culture. Knockdown of DNER expression inhibited cell proliferation and invasion, induced apoptosis, enhanced chemosensitivity, and decreased spheroid formation of SNU-638 gastric cancer cells. DNER silencing elevated the expression of p53, p21cip/waf, and p27, and increased G1 phase cells at the expense of S phase cells. Knockdown of p21cip/waf expression in the DNER-silenced cells partially restored cell viability and S phase progression. DNER silencing also induced the apoptosis of SNU-638 cells. While both cleaved caspases-8 and 9 were detected in adherent cells, only cleaved caspase-8 was found to have increased in spheroid-cultured cells, suggesting a distinct activation pattern of caspase activation depending on the growth condition. Knockdown of p53 expression rescued the DNER-silenced cells from apoptosis and partially restored cell viability. In contrast, overexpression of the Notch intracellular domain (NICD) decreased the expression of p53, p21cip/waf, and cleaved caspase-3 in DNER-silenced cells. Moreover, NICD expression fully reverted the cell viability reduction, arrest in the G1 phase, and elevated apoptosis caused by DNER silencing, thereby suggesting activation of Notch signaling by DNER. Expression of a membrane-unbound mutant of mDNER also decreased cell viability and induced apoptosis. On the other hand, TGF-β signals were found to be involved in DNER expression in both adherent and spheroid-cultured cells. DNER could therefore be a link connecting TGF-β signaling to Notch signaling. Taken together, DNER regulates cell proliferation, survival, and invasive capacity of the gastric cancer cells through the activation of Notch signaling, which may facilitate tumor progression into an advanced stage. This study provides evidences suggesting that DNER could be a potential prognostic marker, a therapeutic target, and a drug candidate in the form of a cell-free mutant.
Collapse
Affiliation(s)
- Han Thi Ngoc To
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| |
Collapse
|