1
|
Sato K, Ogasawara H, Ikeda Y, Kumagai H, Inoue R, Tsuno T, Matsunaga K, Ishida E, Shirakawa J. The antitumor effects of metformin are potentially mediated through LPA receptor inhibition. Diabetes Res Clin Pract 2025; 222:112094. [PMID: 40073948 DOI: 10.1016/j.diabres.2025.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
AIMS Although metformin has antitumor effects, the detailed mechanism of action, particularly with respect to the cellular responses mediated through G protein-coupled receptors (GPCRs), remains unclear. METHODS AND RESULTS Here, we assayed a panel of 200 GPCRs in cells treated with metformin and reported that signaling through several receptors, including lysophosphatidic acid (LPA) receptors, was suppressed. Metformin significantly attenuated LPA-induced intracellular Ca2+ mobilization in LPA receptor 1 (LPAR1)-, 2 (LPAR2)-, and 3 (LPAR3)-transfected rat hepatoma RH7777 cells. LPA treatment increased LPAR3-transfected RH7777 cell adhesion and migration. This response to LPA was attenuated by treatment with the Gq/11 inhibitor YM-254890 and metformin. In contrast, these inhibitors had minimal effects on the cell migration induced by epidermal growth factor. CONCLUSIONS These results indicate that the inhibition of LPA receptor signaling by metformin, especially the consequent suppression of LPAR3-mediated cell migration, may contribute to the antitumor effects of metformin.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | | | - Yuichi Ikeda
- Tanso Biosciences, Inc., Bunkyo-ku, Tokyo 1130023, Japan
| | | | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Koichi Matsunaga
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Emi Ishida
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
2
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
3
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
4
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Rabie MA, Ibrahim HI, Nassar NN, Atef RM. Adenosine A 1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington's disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model. Chem Biol Interact 2023; 369:110288. [PMID: 36509115 DOI: 10.1016/j.cbi.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive impairments. Intrastriatal injection of 3- nitropropionic acid (3NP) was used to induce HD-like symptoms by inhibiting succinate dehydrogenase enzyme (SDH) in the mitochondrial complex II. The adenosine A1 receptor has long been known to have a crucial role in neuroprotection, mainly by blocking Ca2+ influx, which causes inhibition of glutamate (Glu) and a decline in its excitatory effects at the postsynaptic level. To this end, this study investigated the possible involvement of TrKB/PI3K/Akt/CREB/BDNF pathway in mediating protection afforded by the central N6-cyclohexyladenosine (CHA), an adenosine A1 receptor agonist. A single intrastriatal CHA injection (6.25 nM/1 μL); 45min after 3-NP injection, attenuated neuronal death, and improved cognitive and motor deficits caused by 3-NP neurotoxin. This effect was shown to parallel an enhanced activation of PI3K/Akt/CREB/BDNF axis as well as boosting pERK1/2 levels. Moreover, CHA attenuated neuroinflammatory and oxidative stress status via reducing NFκB p65, TNFα and iNOS contents and increasing SOD. Furthermore, immunohistochemical data showed a reduction in the glial fibrillary acidic protein (GFAP) immunoreactivity to a marker for astrocyte and microglia activation following CHA treatment. The results of this study suggest that CHA may have protective effect against HD via modulating oxidative stress, excitotoxic and inflammatory pathways.
Collapse
Affiliation(s)
- Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Heba I Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt.
| |
Collapse
|
6
|
Sanati M, Aminyavari S, Afshari AR, Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer's disease. Life Sci 2022; 291:120299. [PMID: 34999113 DOI: 10.1016/j.lfs.2021.120299] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a type of dementia, is characterized by progressive memory decline and cognition impairment. Despite the considerable body of evidence regarding AD pathophysiology, current therapies merely slow down the disease progression, and a comprehensive therapeutic approach is unavailable. Accordingly, finding an efficient multifunctional remedy is necessary to blunt the increasing rate of AD incidence in the upcoming years. AD shares pathophysiological similarities (e.g., impairment of cognitive functions, insulin sensitivity, and brain glucose metabolism) with noninsulin-dependent diabetes mellitus (NIDDM), which offers the utilization of metformin, a biguanide hypoglycemic agent, as an alternative therapeutic approach in AD therapy. Emerging evidence has revealed the impact of metformin in patients suffering from AD. It has been described that metformin employs multiple mechanisms to improve cognition and memory impairment in pre-clinical AD models, including reduction of hippocampal amyloid-beta (Aβ) plaque and neurofibrillary tangles (NFTs) load, suppression of inflammation, amelioration of mitochondrial dysfunction and oxidative stress, restriction of apoptotic neuronal death, and induction of neurogenesis. This review discusses the pre-clinical evidence, which may shed light on the role of metformin in AD and provide a more comprehensive mechanistic insight for future studies in this area of research.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Liu HL, Hu FY, Xu P, Wu JH. Regulation of mitophagy by metformin improves the structure and function of retinal ganglion cells following excitotoxicity-induced retinal injury. Exp Eye Res 2022; 217:108979. [DOI: 10.1016/j.exer.2022.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
|
8
|
Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed Pharmacother 2021; 139:111662. [PMID: 34243629 DOI: 10.1016/j.biopha.2021.111662] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is one of the most prescribed drugs in type II diabetes (T2DM) which has recently found new applications in the prevention and treatment of various illnesses, from metabolic disorders to cardiovascular and age-related diseases. Metformin improves insulin resistance (IR) by modulating metabolic mechanisms and mitochondrial biogenesis. Alternation of microRNAs (miRs) in the treatment of IR-related illnesses has been observed by metformin therapy. MiRs are small non-coding RNAs that play important roles in RNA silencing, targeting the 3'untranslated region (3'UTR) of most mRNAs and inhibiting the translation of related proteins. As a result, their dysregulation is associated with many diseases. Metformin may alter miRs levels in the treatment of various diseases by AMPK-dependent or AMPK-independent mechanisms. Here, we summarized the therapeutic role of metformin by modifying the aberrant expression of miRs as potential biomarkers or therapeutic targets in diseases in which IR plays a key role.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci 2020; 257:118066. [PMID: 32652135 DOI: 10.1016/j.lfs.2020.118066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022]
Abstract
AIMS Understanding the underlying molecular mechanisms involved in epileptogenesis is necessary to target the best therapeutic interventions in epilepsy. Recently, it has been postulated that metformin, an old antidiabetic oral drug, has anti-seizure properties mostly due to its antioxidant activities. This study was designed to evaluate the ameliorative effects of metformin on the progression of epilepsy in the temporal lobe epilepsy model in rats. MAIN METHODS Temporal lobe Epilepsy was induced by intracerebroventricular microinjection of kainic acid. Metformin was orally administered for two weeks before induction of epilepsy. Anti-epileptogenic activity of metformin was evaluated by intracranial electroencepholography (IEEG) recording to detect spontaneous seizures, mossy fiber sprouting by Timm staining, neurogenesis by BrdU staining. KEY FINDINGS Oral administration of metformin prior to kainite-induced status epilepticus blocked the variant characterizations of epileptogenesis like neuronal cell death, aberrant neurogenesis, mossy fiber sprouting, and spontaneous seizures. SIGNIFICANCE These findings indicate that metformin has potential anti-epileptogenic properties in temporal lobe epilepsy.
Collapse
|
10
|
Wang Y, Zhao J, Guo FL, Gao X, Xie X, Liu S, Yang X, Yang X, Zhang L, Ye Y, Fan L, Wang J. Metformin Ameliorates Synaptic Defects in a Mouse Model of AD by Inhibiting Cdk5 Activity. Front Cell Neurosci 2020; 14:170. [PMID: 32670025 PMCID: PMC7327108 DOI: 10.3389/fncel.2020.00170] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the neuron-specific activators p35/p39 and plays important roles in neuronal development, synaptic plasticity, and cognitive behavior. However, the proteolytic cleavage of p35 to p25 leads to prolonged and aberrant Cdk5 activation and results in synaptic depression, highly mimicking the early pathology of Alzheimer’s disease (AD). Therefore, Cdk5 inhibition is a potential promising strategy for AD drug development. Here in the present study, we showed that metformin, the most widely used drug for type 2 diabetes, suppressed Cdk5 hyper-activation and Cdk5-dependent tau hyper-phosphorylation in the APP/PS1 mouse hippocampus. We also identified the underlying molecular and cellular mechanism that metformin prevented Cdk5 hyper-activation by inhibiting the calpain-dependent cleavage of p35 into p25. Moreover, chronic metformin treatment rescued the core phenotypes in APP/PS1 mice as evidenced by restored spine density, surface GluA1 trafficking, Long-term potentiation (LTP) expression, and spatial memory. Altogether our study discovered an unidentified role of metformin in suppressing Cdk5 hyper-activation and thus preventing AD pathogenesis and suggested that metformin is a potential promising AD therapeutic drug.
Collapse
Affiliation(s)
- YaLi Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - JianHua Zhao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - XiaHuan Gao
- Department of Pathology, People's Hospital of Tongchuan, Tongchuan, China
| | - Xine Xie
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - ShouQing Liu
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - Xin Yang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XinFeng Yang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LuYi Zhang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YuXiao Ye
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LiBing Fan
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Metformin and cognition from the perspectives of sex, age, and disease. GeroScience 2020; 42:97-116. [PMID: 31897861 DOI: 10.1007/s11357-019-00146-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.
Collapse
|
12
|
Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, Abroudi M, Dadashizadeh G, Lalau JD, De Broe ME, Hosseinzadeh H. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest 2020; 43:1-19. [PMID: 31098946 DOI: 10.1007/s40618-019-01060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin is the first prescribed drug for hyperglycemia in type 2 diabetes mellitus. Mainly by activating AMPK pathway, this drug exerts various functions that among them protective effects are of the interest. PURPOSE Herein, we aimed to gather data about the protective impacts of metformin against various natural or chemical toxicities. RESULTS An extensive search among PubMed, Scopus, and Google Scholar was conducted by keywords related to protection, toxicity, natural and chemical toxins and, metformin. Our literature review showed metformin alongside its anti-hyperglycemic effect has a wide range of anti-toxic effects against anti-tumour and routine drugs, natural and chemical toxins, herbicides and, heavy metals. CONCLUSION It is evident that metformin is a potent drug against the toxicity of a broad spectrum of natural, chemical toxic agents which is proved by a vast number of studies. Metformin mainly through AMPK axis can protect different organs against toxicities. Moreover, metformin preserves DNA integrity and can be an option for adjuvant therapy to ameliorate side effect of other therapeutics.
Collapse
Affiliation(s)
- S E Meshkani
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - D Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - K Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - G Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - J-D Lalau
- Department of Endocrinology, Université de Picardie Jules Verne, Amiens, France
| | - M E De Broe
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
In vitro cellular uptake and neuroprotective efficacy of poly-arginine-18 (R18) and poly-ornithine-18 (O18) peptides: critical role of arginine guanidinium head groups for neuroprotection. Mol Cell Biochem 2019; 464:27-38. [DOI: 10.1007/s11010-019-03646-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
|
14
|
A L, Zou T, He J, Chen X, Sun D, Fan X, Xu H. Rescue of Retinal Degeneration in rd1 Mice by Intravitreally Injected Metformin. Front Mol Neurosci 2019; 12:102. [PMID: 31080404 PMCID: PMC6497809 DOI: 10.3389/fnmol.2019.00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is a progressive hereditary retinal degenerative disease in which photoreceptor cells undergo degeneration and apoptosis, eventually resulting in irreversible loss of visual function. Currently, no effective treatment exists for this disease. Neuroprotection and inflammation suppression have been reported to delay the development of RP. Metformin is a well-tested drug used to treat type 2 diabetes, and it has been reported to exert beneficial effects in neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. In the present study, we used immunofluorescence staining, electroretinogram (ERG) recordings and RNA-Seq to explore the effects of metformin on photoreceptor degeneration and its mechanism in rd1 mice. We found that metformin significantly reduced apoptosis in photoreceptors and delayed the degeneration of photoreceptors and rod bipolar cells in rd1 mice, thus markedly improving the visual function of rd1 mice at P14, P18, and P22 when tested with a light/dark transition test and ERG. Microglial activation in the outer nuclear layer (ONL) of the retina of rd1 mice was significantly suppressed by metformin. RNA-Seq showed that metformin markedly downregulated inflammatory genes and upregulated the expression of crystallin proteins, which have been demonstrated to be important neuroprotective molecules in the retina, revealing the therapeutic potential of metformin for RP treatment. αA-crystallin proteins were further confirmed to be involved in the neuroprotective effects of metformin in a Ca2+ ionophore-damaged 661W photoreceptor-like cell line. These data suggest that metformin exerts a protective effect in rd1 mice via both immunoregulatory and new neuroprotective mechanisms.
Collapse
Affiliation(s)
- Luodan A
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China.,Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ting Zou
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Juncai He
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xia Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Dayu Sun
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|