1
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
2
|
Casali C, Siciliani S, Zannino L, Biggiogera M. Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry. Eur J Histochem 2022; 66:3409. [PMID: 35441834 PMCID: PMC9044459 DOI: 10.4081/ejh.2022.3409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of DNA structure in 1953, the deoxyribonucleic acid has always been playing a central role in biological research. As physical and ordered nucleotides sequence, it stands at the base of genes existence. Furthermore, beside this 2-dimensional sequence, DNA is characterized by a 3D structural and functional organization, which is of interest for the scientific community due to multiple levels of expression regulation, of interaction with other biomolecules, and much more. Analogously, the nucleic acid counterpart of DNA, RNA, represents a central issue in research, because of its fundamental role in gene expression and regulation, and for the DNA-RNA interplay. Because of their importance, DNA and RNA have always been mentioned and studied in several publications, and the European Journal of Histochemistry is no exception. Here, we review and discuss the papers published in the last 60 years of this Journal, focusing on its contribution in deepening the knowledge about this topic and analysing papers that reflect the interest this Journal always granted to the world of DNA and RNA.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| |
Collapse
|
3
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
4
|
Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Ultrastructural immunocytochemistry shows impairment of RNA pathways in skeletal muscle nuclei of old mice: A link to sarcopenia? Eur J Histochem 2021; 65:3229. [PMID: 33764019 PMCID: PMC8033527 DOI: 10.4081/ejh.2021.3229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
During aging, skeletal muscle is affected by sarcopenia, a progressive decline in muscle mass, strength and endurance that leads to loss of function and disability. Cell nucleus dysfunction is a possible factor contributing to sarcopenia because aging-associated alterations in mRNA and rRNA transcription/maturation machinery have been shown in several cell types including muscle cells. In this study, the distribution and density of key molecular factors involved in RNA pathways namely, nuclear actin (a motor protein and regulator of RNA transcription), 5-methyl cytosine (an epigenetic regulator of gene transcription), and ribonuclease A (an RNA degrading enzyme) were compared in different nuclear compartments of late adult and old mice myonuclei by means of ultrastructural immunocytochemistry. In all nuclear compartments, an age-related decrease of nuclear actin suggested altered chromatin structuring and impaired nucleus-to-cytoplasm transport of both mRNA and ribosomal subunits, while a decrease of 5-methyl cytosine and ribonuclease A in the nucleoli of old mice indicated an age-dependent loss of rRNA genes. These findings provide novel experimental evidence that, in the aging skeletal muscle, nuclear RNA pathways undergo impairment, likely hindering protein synthesis and contributing to the onset and progression of sarcopenia.
Collapse
Affiliation(s)
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
5
|
Yokoyama S, Ohno Y, Egawa T, Ohashi K, Ito R, Ortuste Quiroga HP, Yamashita T, Goto K. MBNL1-Associated Mitochondrial Dysfunction and Apoptosis in C2C12 Myotubes and Mouse Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21176376. [PMID: 32887414 PMCID: PMC7503908 DOI: 10.3390/ijms21176376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
We explored the interrelationship between a tissue-specific alternative splicing factor muscleblind-like 1 (MBNL1) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α), B-cell lymphoma 2 (Bcl-2) or Bcl-2-associated X protein (Bax) in C2C12 myotubes and mouse skeletal muscle to investigate a possible physiological role of MBNL1 in mitochondrial-associated apoptosis of skeletal muscle. Expression level of PGC-1α and mitochondrial membrane potential evaluated by the fluorescence ratio of JC-1 aggregate to monomer in C2C12 myotubes were suppressed by knockdown of MBNL1. Conversely, the ratio of Bax to Bcl-2 as well as the apoptotic index in C2C12 myotubes was increased by MBNL1 knockdown. In plantaris muscle, on the other hand, not only the minimum muscle fiber diameter but also the expression level of MBNL1 and PGC-1α in of 100-week-old mice were significantly lower than that of 10-week-old mice. Furthermore, the ratio of Bax to Bcl-2 in mouse plantaris muscle was increased by aging. These results suggest that MBNL1 may play a key role in aging-associated muscle atrophy accompanied with mitochondrial dysfunction and apoptosis via mediating PGC-1α expression in skeletal muscle.
Collapse
Affiliation(s)
- Shingo Yokoyama
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Yoshitaka Ohno
- Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-8588, Japan;
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8511, Japan
| | - Kazuya Ohashi
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Rika Ito
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Huascar Pedro Ortuste Quiroga
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tomohiro Yamashita
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Katsumasa Goto
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Correspondence:
| |
Collapse
|
6
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Konieczny P, Stepniak-Konieczna E, Taylor K, Sznajder LJ, Sobczak K. Autoregulation of MBNL1 function by exon 1 exclusion from MBNL1 transcript. Nucleic Acids Res 2017; 45:1760-1775. [PMID: 27903900 PMCID: PMC5389549 DOI: 10.1093/nar/gkw1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Muscleblind-like proteins (MBNLs) are regulators of RNA metabolism. During tissue differentiation the level of MBNLs increases, while their functional insufficiency plays a crucial role in myotonic dystrophy (DM). Deep sequencing of RNA molecules cross-linked to immunoprecipitated protein particles (CLIP-seq) revealed that MBNL1 binds to MBNL1 exon 1 (e1) encoding both the major part of 5΄UTR and an amino-terminal region of MBNL1 protein. We tested several hypotheses regarding the possible autoregulatory function of MBNL1 binding to its own transcript. Our data indicate that MBNLs induce skipping of e1 from precursor MBNL1 mRNA and that e1 exclusion may impact transcript association with polysomes and translation. Furthermore, e1-deficient protein isoform lacking the first two zinc fingers is highly unstable and its EGFP fusion protein has severely compromised splicing activity. We also show that MBNL1 can be transcribed from three different promoters and that the transcription initiation site determines the mode of e1 regulation. Taken together, we demonstrate that MBNL proteins control steady-state levels of MBNL1 through an interaction with e1 in its precursor mRNA. Insights from our study open a new avenue in therapies against DM based on manipulation of the transcription initiation site and e1 splicing of MBNL1 mRNA.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Ewa Stepniak-Konieczna
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Lukasz J Sznajder
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
8
|
Pellicciari C. Histochemistry in biology and medicine: a message from the citing journals. Eur J Histochem 2015; 59:2610. [PMID: 26708189 PMCID: PMC4698620 DOI: 10.4081/ejh.2015.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.
Collapse
|
9
|
Iachettini S, Valaperta R, Marchesi A, Perfetti A, Cuomo G, Fossati B, Vaienti L, Costa E, Meola G, Cardani R. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1. Eur J Histochem 2015; 59:2562. [PMID: 26708183 PMCID: PMC4698615 DOI: 10.4081/ejh.2015.2562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/25/2015] [Accepted: 10/03/2015] [Indexed: 01/30/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG repeat expansion in 3'UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA) muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.
Collapse
|
10
|
Doles JD, Olwin BB. Muscle stem cells on the edge. Curr Opin Genet Dev 2015; 34:24-8. [DOI: 10.1016/j.gde.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
11
|
Surgical treatment of obesity in DM1 – a case report and a review of the literature. Neuromuscul Disord 2015; 25:414-7. [DOI: 10.1016/j.nmd.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 11/22/2022]
|
12
|
Pellicciari C. Impact of Histochemistry on biomedical research: looking through the articles published in a long-established histochemical journal. Eur J Histochem 2014; 58:2474. [PMID: 25578981 PMCID: PMC4289853 DOI: 10.4081/ejh.2014.2474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Histochemistry provides the unique opportunity to detect single molecules in the very place where they exert their structural roles or functional activities: this makes it possible to correlate structural organization and function, and may be fruitfully exploited in countless biomedical research topics. Aiming to estimate the impact of histochemical articles in the biomedical field, the last few years citations of articles published in a long-established histochemical journal have been considered. This brief survey suggests that histochemical journals, especially the ones open to a large spectrum of research subjects, do represent an irreplaceable source of information not only for cell biologists, microscopists or anatomists, but also for biochemists, molecular biologists and biotechnologists.
Collapse
|
13
|
Renna LV, Cardani R, Botta A, Rossi G, Fossati B, Costa E, Meola G. Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. Eur J Histochem 2014; 58:2444. [PMID: 25578974 PMCID: PMC4289846 DOI: 10.4081/ejh.2014.2444] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are multisystemic disorders linked to two different genetic loci and characterized by several features including myotonia, muscle weakness and atrophy, cardiac dysfunctions, cataracts and insulin-resistance. In both forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus deregulating the activity of some RNA-binding proteins and providing an explanation for the multisystemic phenotype of DM patients. However this pathogenetic mechanism does not explain some histopathological features of DM skeletal muscle like muscle atrophy. It has been observed that DM muscle shares similarities with the ageing muscle, where the progressive muscle weakness and atrophy is accompanied by a lower regenerative capacity possibly due to the failure in satellite cells activation. The aim of our study is to investigate if DM2 satellite cell derived myoblasts exhibit a premature senescence as reported for DM1 and if alterations in their proliferation potential and differentiation capabilities might contribute to some of the histopathological features observed in DM2 muscles. Our results indicate that DM myoblasts have lower proliferative capability than control myoblasts and reach in vitro senescence earlier than controls. Differentely from DM1, the p16 pathway is not responsible for the premature growth arrest observed in DM2 myoblasts which stop dividing with telomeres shorter than controls. During in vitro senescence, a progressive decrease in fusion index is observable in both DM and control myotubes with no significant differences between groups. Moreover, myotubes obtained from senescent myoblasts appear to be smaller than those from young myoblasts. Taken together, our data indicate a possible role of DM2 premature myoblast senescence in skeletal muscle histopathological alterations i.e., dystrophic changes and type 2 fibre atrophy.
Collapse
|
14
|
Malatesta M, Cardani R, Pellicciari C, Meola G. RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Front Aging Neurosci 2014; 6:196. [PMID: 25126079 PMCID: PMC4115624 DOI: 10.3389/fnagi.2014.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy
| | - Carlo Pellicciari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy ; Department of Neurology, University of Milan , Milan , Italy
| |
Collapse
|
15
|
Pellicciari C. Histochemistry as an irreplaceable approach for investigating functional cytology and histology. Eur J Histochem 2013; 57:e41. [PMID: 24441194 PMCID: PMC3896043 DOI: 10.4081/ejh.2013.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
In agreement with the evolution of histochemistry over the last fifty years and thanks to the impressive advancements in microscopy sciences, the application of cytochemical techniques to light and electron microscopy is more and more addressed to elucidate the functional characteristics of cells and tissue under different physiological, pathological or experimental conditions. Simultaneously, the mere description of composition and morphological features has become increasingly sporadic in the histochemical literature. Since basic research on cell functional organization is essential for understanding the mechanisms responsible for major biological processes such as differentiation or growth control in normal and tumor tissues, histochemical Journals will continue to play a pivotal role in the field of cell and tissue biology in all its structural and functional aspects.
Collapse
|