1
|
Rinkel LA, Ospel JM, Kappelhof M, Sehgal A, McDonough RV, Tymianski M, Hill MD, Goyal M, Ganesh A. Comparing Early National Institutes of Health Stroke Scale Versus 90-Day Modified Rankin Scale Outcomes in Acute Ischemic Stroke Trials: A Systematic Review and Analysis. J Am Heart Assoc 2025; 14:e040304. [PMID: 40281657 DOI: 10.1161/jaha.124.040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Early National Institutes of Health Stroke Scale (NIHSS) assessment may provide practical benefits over 90-day modified Rankin Scale (mRS), but it is unclear how it compares in adjudicating randomized clinical trial (RCT) results in acute ischemic stroke. METHODS AND RESULTS We searched Ovid Medline (inception to April 1, 2023) and included RCTs of acute therapies for acute ischemic stroke with data for both 90-day mRS and NIHSS within 7 days. Primary outcome was agreement between trial results (classified as positive, negative, or neutral) based on 24-hour NIHSS and 90-day mRS scores. We additionally assessed agreement for 2-hour, 48-hour, 72- to 96-hour, and 5- to 7-day NIHSS scores. We aimed to validate our findings using individual patient data from the ESCAPE (Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke) and ESCAPE-NA1 (Safety and Efficacy of Nerinetide [NA-1] in Subjects Undergoing Endovascular Thrombectomy for Stroke) RCTs. We included 116 trials (44 387 patients), contributing 165 NIHSS assessments. The 24-hour NIHSS scores resulted in the same classification as 90-day mRS scores in 61/73 (83.6%) trials (Cohen's kappa, 0.64 [95% CI: 0.45-0.83] and Gwet's agreement coefficient 1, 0.79 [95% CI: 0.67-0.90]). Agreement was not statistically different by timing of NIHSS assessments (range 75%-100%, P=0.33). Individual patient data showed higher agreement for assessments between 48 hours and 7 days, varying by NIHSS dichotomization cutoffs (NIHSS score, 0-2; 2 hours, 56.6%; 24 hours, 66.6%; 48 hours, 71.8%; 5-7 days: 76.5%, P<0.01; NIHSS score, 0-7; 2 hours, 72.8%; 24 hours, 80.5%; 48 hours, 83.1%; 5-7 days: 84.7%, P<0.01). CONCLUSIONS The 24-hour NIHSS scores aligned with 90-day mRS scores in 84% of RCT results, indicating intermediate-to-good agreement. However, individual patient data showed that early NIHSS risks misclassifying around 1/4 patients. These data contribute to a better understanding of the nuances of early NIHSS score as an outcome in acute ischemic stroke RCTs.
Collapse
Affiliation(s)
- Leon A Rinkel
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
- Department of Neurology, Amsterdam University Medical Centres Location University of Amsterdam the Netherlands
| | - Johanna M Ospel
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| | - Manon Kappelhof
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres Location University of Amsterdam the Netherlands
| | - Arshia Sehgal
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| | - Rosalie V McDonough
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| | | | - Michael D Hill
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| | - Mayank Goyal
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| | - Aravind Ganesh
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, The Hotchkiss Brain Institute and the O'Brien Institute for Public Health University of Calgary Canada
| |
Collapse
|
2
|
Lu Y, Guan L, Zhang M, Yang Q, Qiu B, Zhou D, Wang Y, Pan Y, Wang L, Zhou X, Qu H, Liao X, Liu L, Zhao X, Bath PM, Johnston SC, Amarenco P, Wang Y, Wang Y. Rationale and Study Design to Assess the Efficacy and Safety of Minocycline in Patients with Moderate to Severe Acute Ischaemic Stroke (EMPHASIS). Stroke Vasc Neurol 2025:svn-2024-003577. [PMID: 40147820 DOI: 10.1136/svn-2024-003577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Inflammation and blood-brain barrier disruption may contribute to the pathogenesis of ischaemic stroke. Minocycline was shown to exert anti-inflammatory effects by attenuating microglial activation and protecting blood-brain barrier in preclinical studies. Previous small-scale clinical studies have suggested that minocycline may have a potential beneficial effect on prognosis in acute ischaemic stroke. However, the efficacy and safety of minocycline in patients with acute ischaemic stroke need to be further confirmed. STUDY AIMS We designed the study, Efficacy and Safety of Minocycline in Patients with Moderate to Severe Acute Ischaemic Stroke (EMPHASIS), to evaluate the effect of minocycline in improving the functional outcome and the drug safety in patients with acute ischaemic stroke. METHODS The EMPHASIS study is a multicentre, randomised, double-blind, placebo-controlled trial aiming to recruit patients with acute ischaemic stroke. Patients who had ischaemic stroke within 72 hours of onset, a National Institutes of Health Stroke Scale score between 4 and 25 and Ia≤1 (moderate-to-severe) will be randomly allocated to either minocycline or placebo groups in a 1:1 ratio. Patients will receive minocycline (or placebo) with a loading dose of 200 mg, and subsequent 100 mg every 12 hours for 4 days. All patients will receive routine guideline-based treatment. The primary efficacy outcome is an excellent functional outcome assessed by the proportion of modified Rankin Scale score of 0-1 at 90±7 days. The main safety outcomes include the number of symptomatic intracranial haemorrhage at 24±2 hours and 6±1 days. DISCUSSION The EMPHASIS trial is the first phase III trial to investigate whether minocycline is effective and safe in improving functional outcome at 90 days in patients with moderate-to-severe acute ischaemic stroke. The data generated may provide valuable evidence of a potential anti-inflammation treatment for ischaemic stroke.
Collapse
Affiliation(s)
- Yao Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The University of British Columbia Department of Medicine, Vancouver, British Columbia, Canada
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Meiyang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoshan Qiu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Dongyang Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Luyan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuejiao Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Qu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoling Liao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Philip M Bath
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | | | - Pierre Amarenco
- Department of Neurology and Stroke Center, University Paris Cite, Paris, France
- Population Health Research Institute, McMaster University, Hamilton, New Zealand, Canada
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Wang Y, Li M, Jiang Y, Ji Q. Comparative efficacy of neuroprotective agents for improving neurological function and prognosis in acute ischemic stroke: a network meta-analysis. Front Neurosci 2025; 18:1530987. [PMID: 39834702 PMCID: PMC11743486 DOI: 10.3389/fnins.2024.1530987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Ischemic stroke is the second leading cause of death and the third leading cause of combined disability and mortality globally. While reperfusion therapies play a critical role in the management of acute ischemic stroke (AIS), their applicability is limited, leaving many patients with significant neurological deficits and poor prognoses. Neuroprotective agents have garnered attention for their potential as adjunct therapies; however, their relative efficacy remains unclear. This study utilized a network meta-analysis (NMA) to systematically compare the efficacy of neuroprotective agents in improving neurological function and prognosis in stroke patients. Methods This study adhered to PRISMA guidelines and the Cochrane Handbook for systematic reviews. Randomized controlled trials (RCTs) were identified through comprehensive searches of the PubMed, Embase, and Cochrane Library databases. Two independent reviewers conducted the selection process, data extraction, and quality assessment. Outcomes included 90-day modified Rankin Scale (90d-mRS), change of National Institutes of Health Stroke Scale score from baseline to 90-day/14-day/7-day (90d/14d/7d-NIHSS) and 90-day/14-day Barthel Index (90d/14d-BI). Data analyses were performed using RevMan 5.4 and Stata 14.0. Results A total of 42 RCTs involving 12,210 participants were included in this analysis. The interventions assessed included Cerebrolysin, Citicoline, Edaravone, Edaravone Dextranol, Human urinary kallidinogenase, Minocycline, Nerinetide, Butylphthalide, Vinpocetine, and Control. The NMA results demonstrated that NBP ranked highest for the 90d-mRS, 90d-NIHSS, 14d-NIHSS, and 14d-BI outcomes. Edaravone was found to be the most effective intervention for the 7d-NIHSS and 90d-BI outcomes. Conclusion The findings of this study indicate that different neuroprotective agents exhibit distinct advantages at specific stages of recovery. NBP showed outstanding performance in improving 90d-mRS and 90d-NIHSS, underscoring its potential in long-term rehabilitation. Edaravone demonstrated significant superiority in 7d-NIHSS scores, highlighting its role in early neuroprotection. These results provide valuable insights for individualized clinical treatment. To further validate the efficacy and safety of neuroprotective agents, future studies should involve larger sample sizes and conduct multicenter, large-scale randomized controlled trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=601346, identifier CRD42024601346.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Mengqi Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yuye Jiang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
5
|
Zhang X, Zhao J, Sun Z, Wei D, Yao L, Li W, Zhu H, Liu W, Zhang H, Yuan X, Ma X, Meng J, Wang B, Jia Y, Qin N, Jiang W, the MIST-A Study Group. Effects of minocycline on patients with acute anterior circulation ischaemic stroke undergoing intravenous thrombectomy (MIST-A): the study protocol for a multicentre, prospective, randomised, open-label, blinded-endpoint trial. BMJ Open 2024; 14:e093443. [PMID: 39806586 PMCID: PMC11667272 DOI: 10.1136/bmjopen-2024-093443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Despite the implementation of mechanical thrombectomy, acute ischaemic stroke with large vessel occlusion (AIS-LVO) remains a significant health concern, characterised by substantial morbidity and mortality. Our trial aims to evaluate the efficacy and safety of minocycline in reducing infarct volume and improving functional outcomes in patients undergoing mechanical thrombectomy for anterior circulation AIS-LVO. METHODS AND ANALYSIS The MIST-A trial is a prospective, randomised, open-label, blinded-endpoint trial to be conducted across 12 medical centres. The study will enrol 180 adult patients who have experienced an anterior circulation AIS-LVO and have undergone mechanical thrombectomy. These patients will be randomly divided into two groups: one receiving minocycline in addition to standard care and the other receiving only standard care. The primary efficacy outcome is the change in infarct volume as measured by MRI, from baseline to day 5. The secondary efficacy outcomes include the incidence of intracerebral haemorrhage occurring within 24 hours and the clinical scores between the baseline and follow-up assessments. The primary outcome will be assessed using a mixed-effects model to determine the association between treatment and outcomes. ETHICS AND DISSEMINATION The study is approved by the Ethics Committee of Xijing Hospital (XJLL-KY20222186) and is registered at ClinicalTrials.gov (NCT05487417). This trial is estimated to end in the first quarter of 2025 and study findings are expected to be published in scientific journals that undergo peer review and also to be showcased at scientific conferences. TRIAL REGISTRATION NUMBER NCT05487417.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Li Yao
- Department of Neurology, Xi'an XD Group Hospital, Xi'an, China
| | - Weiwang Li
- Department of Neurology, Xi'an Daxing Hospital, Xi'an, China
| | - Hao Zhu
- Department of Neurology, First People's Hospital of Xianyang, Xianyang, China
| | - Wen Liu
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, China
| | - Huiping Zhang
- Department of Neurology, Baoji High-Tech Hospital, Baoji, China
| | - Xiangjun Yuan
- Department of Neurology, Weinan Central Hospital, Weinan, China
| | - Xingshun Ma
- Department of Neurology, The First Hospital of Yulin, Yulin, China
| | - Junpeng Meng
- Department of Neurology, Northwest University First Hospital, Xi'an, China
| | - Bin Wang
- Department of Neurology, Jingyang County Hospital, Xianyang, China
| | - Yi Jia
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, China
| | - Na Qin
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - the MIST-A Study Group
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xian, China
- Department of Neurology, Xi'an XD Group Hospital, Xi'an, China
- Department of Neurology, Xi'an Daxing Hospital, Xi'an, China
- Department of Neurology, First People's Hospital of Xianyang, Xianyang, China
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, China
- Department of Neurology, Baoji High-Tech Hospital, Baoji, China
- Department of Neurology, Weinan Central Hospital, Weinan, China
- Department of Neurology, The First Hospital of Yulin, Yulin, China
- Department of Neurology, Northwest University First Hospital, Xi'an, China
- Department of Neurology, Jingyang County Hospital, Xianyang, China
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, China
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
6
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
8
|
Zhao K, Wang P, Tang X, Chang N, Shi H, Guo L, Wang B, Yang P, Zhu T, Zhao X. The mechanisms of minocycline in alleviating ischemic stroke damage and cerebral ischemia-reperfusion injury. Eur J Pharmacol 2023; 955:175903. [PMID: 37422120 DOI: 10.1016/j.ejphar.2023.175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Stroke is a group of diseases resulting from cerebral vascular rupture or obstruction and subsequent brain blood circulation disorder, leading to rapid neurological deficits. Ischemic stroke accounts for the majority of all stroke cases. The current treatments for ischemic stroke mainly include t-PA thrombolytic therapy and surgical thrombectomy. However, these interventions aimed at recanalizing cerebral vessels can paradoxically lead to ischemia-reperfusion injury, which exacerbates the severity of brain damage. Minocycline, a semi-synthetic tetracycline antibiotic, has been shown to possess a wide range of neuroprotective effects independent of its antibacterial activity. Here we summarize the mechanisms underlying the protective effects of minocycline against cerebral ischemia-reperfusion injury based on the pathogenesis of cerebral ischemia-reperfusion injury, including its modulation of oxidative stress, inflammatory response, excitotoxicity, programmed cell death and blood-brain barrier injury, and also introduce the role of minocycline in alleviating stroke-related complications, in order to provide a theoretical basis for the clinical application of minocycline in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kemeng Zhao
- Basic Medical College, Xinxiang Medical University, Xinxiang, China; College of First Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, China
| | - Xiaoguang Tang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Na Chang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Haonan Shi
- Sanquan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Longfei Guo
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Bingyi Wang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Tiantian Zhu
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
9
|
Gao Y, Fang C, Wang J, Ye Y, Li Y, Xu Q, Kang X, Gu L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol Neurobiol 2023; 60:5117-5136. [PMID: 37258724 DOI: 10.1007/s12035-023-03399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.
Collapse
Affiliation(s)
- Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congcong Fang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianhui Kang
- Department of Anesthesia, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
Du M, Xu L, Zhang X, Huang X, Cao H, Qiu F, Lan W, Jiang H. Association Between Inflammatory Burden Index and Unfavorable Prognosis After Endovascular Thrombectomy in Acute Ischemic Stroke. J Inflamm Res 2023; 16:3009-3017. [PMID: 37489151 PMCID: PMC10363388 DOI: 10.2147/jir.s419087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
Background Inflammatory burden index (IBI) is a systemic inflammation indicator that reflects the inflammatory status. We aimed to investigate the prognostic value of IBI after endovascular thrombectomy (EVT) in patients with acute ischemic stroke. Methods We enrolled patients treated with EVT from a multicenter cohort between June 2020 and December 2021. The IBI was calculated as C-reaction protein × neutrophil / lymphocyte count. The primary outcome was the unfavorable functional outcome (90-day modified Rankin scale score 3-6). C-statistics and net reclassification indexes were used to assess the predictive accuracy. Multivariable logistic regression models were used to investigate the association between IBI and unfavorable outcome. Results A total of 295 patients (mean age, 64.0 ± 12.8 years; male, 63.7%) were enrolled in this study. In multivariable models, higher IBI levels were associated with an increased risk of 90-day unfavorable outcome after EVT (per 1-SD: odds ratio, 1.754; 95% confidence interval, 1.241-2.587; P = 0.002). Restricted cubic spline curve displayed a linear relationship between the IBI level and 90-day unfavorable outcome (P for nonlinearity = 0.410). Besides, IBI was a more accurate biomarker for predicting unfavorable outcomes with the highest predictive accuracy and reclassification indexes. Conclusion This study demonstrated that higher IBI was associated with an increased risk of 90-day unfavorable outcome in acute ischemic stroke treated with EVT.
Collapse
Affiliation(s)
- Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Lili Xu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Xianjun Huang
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Feng Qiu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Wenya Lan
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Haibo Jiang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| |
Collapse
|
11
|
Sun S, Li Z, Xiao Q, Tan S, Hu B, Jin H. An updated review on prediction and preventive treatment of post-stroke depression. Expert Rev Neurother 2023; 23:721-739. [PMID: 37427452 DOI: 10.1080/14737175.2023.2234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Post-stroke depression (PSD), one of the most common complications following stroke, affects approximately one-third of stroke patients and is significantly associated with increased disability and mortality as well as decreased quality of life, which makes it an important public health concern. Treatment of PSD significantly ameliorates depressive symptoms and improves the prognosis of stroke. AREAS COVERED The authors discuss the critical aspects of the clinical application of prediction and preventive treatment of PSD. Then, the authors update the biological factors associated with the onset of PSD. Furthermore, they summarize the recent progress in pharmacological preventive treatment in clinical trials and propose potential treatment targets. The authors also discuss the current roadblocks in the preventive treatment of PSD. Finally, the authors put postulate potential directions for future studies so as to discover accurate predictors and provide individualized preventive treatment. EXPERT OPINION Sorting out high-risk PSD patients using reliable predictors will greatly assist PSD management. Indeed, some predictors not only predict the incidence of PSD but also predict prognosis, which indicates that they might also aid the development of an individualized treatment scheme. Preventive application of antidepressants may also be considered.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghui Xiao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Panizzutti B, Skvarc D, Lin S, Croce S, Meehan A, Bortolasci CC, Marx W, Walker AJ, Hasebe K, Kavanagh BE, Morris MJ, Mohebbi M, Turner A, Gray L, Berk L, Walder K, Berk M, Dean OM. Minocycline as Treatment for Psychiatric and Neurological Conditions: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065250. [PMID: 36982324 PMCID: PMC10049047 DOI: 10.3390/ijms24065250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Minocycline has anti-inflammatory, antioxidant, and anti-apoptotic properties that explain the renewed interest in its use as an adjunctive treatment for psychiatric and neurological conditions. Following the completion of several new clinical trials using minocycline, we proposed an up-to-date systematic review and meta-analysis of the data available. The PICO (patient/population, intervention, comparison and outcomes) framework was used to search 5 databases aiming to identify randomized controlled trials that used minocycline as an adjunctive treatment for psychiatric and neurological conditions. Search results, data extraction, and risk of bias were performed by two independent authors for each publication. Quantitative meta-analysis was performed using RevMan software. Literature search and review resulted in 32 studies being included in this review: 10 in schizophrenia, 3 studies in depression, and 7 in stroke, with the benefit of minocycline being used in some of the core symptoms evaluated; 2 in bipolar disorder and 2 in substance use, without demonstrating a benefit for using minocycline; 1 in obsessive-compulsive disorder, 2 in brain and spinal injuries, 2 in amyotrophic lateral sclerosis, 1 in Alzheimer’s disease, 1 in multiple systems atrophy, and 1 in pain, with mixes results. For most of the conditions included in this review the data is still limited and difficult to interpret, warranting more well-designed and powered studies. On the other hand, the studies available for schizophrenia seem to suggest an overall benefit favoring the use of minocycline as an adjunctive treatment.
Collapse
Affiliation(s)
- Bruna Panizzutti
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - David Skvarc
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Sylvia Lin
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, VIC 3053, Australia
| | - Sarah Croce
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Alcy Meehan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Chiara Cristina Bortolasci
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Wolfgang Marx
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Adam J. Walker
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Kyoko Hasebe
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianca E. Kavanagh
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Margaret J. Morris
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Mohammadreza Mohebbi
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC 3125, Australia
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura Gray
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lesley Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC 3052, Australia
| | - Olivia M. Dean
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Barwon Health, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-03-4215-3300
| |
Collapse
|
13
|
Soldozy S, Dalzell C, Skaff A, Ali Y, Norat P, Yagmurlu K, Park MS, Kalani MYS. Reperfusion injury in acute ischemic stroke: Tackling the irony of revascularization. Clin Neurol Neurosurg 2023; 225:107574. [PMID: 36696846 DOI: 10.1016/j.clineuro.2022.107574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Reperfusion injury is an unfortunate consequence of restoring blood flow to tissue after a period of ischemia. This phenomenon can occur in any organ, although it has been best studied in cardiac cells. Based on cardiovascular studies, neuroprotective strategies have been developed. The molecular biology of reperfusion injury remains to be fully elucidated involving several mechanisms, however these mechanisms all converge on a similar final common pathway: blood brain barrier disruption. This results in an inflammatory cascade that ultimately leads to a loss of cerebral autoregulation and clinical worsening. In this article, the authors present an overview of these mechanisms and the current strategies being employed to minimize injury after restoration of blood flow to compromised cerebral territories.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA; Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Christina Dalzell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Anthony Skaff
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Yusuf Ali
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - M Yashar S Kalani
- Department of Surgery, University of Oklahoma, and St. John's Neuroscience Institute, Tulsa, OK, USA.
| |
Collapse
|
14
|
Mehrpooya M, Mazdeh M, Rahmani E, Khazaie M, Ahmadimoghaddam D. Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. J Clin Neurosci 2022; 106:66-75. [DOI: 10.1016/j.jocn.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
15
|
Eren F, Yilmaz SE. Neuroprotective approach in acute ischemic stroke: A systematic review of clinical and experimental studies. Brain Circ 2022; 8:172-179. [PMID: 37181847 PMCID: PMC10167855 DOI: 10.4103/bc.bc_52_22] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a disease with worldwide economic and social negative effects. It is a serious disease with high disability and mortality. Ionic imbalance, excitotoxicity, oxidative stress, and inflammation are induced during and after ischemic stroke. Cellular dysfunction, apoptosis, and necrosis are activated directly or indirectly mechanisms. The studies about neuroprotection in neurodegenerative diseases have increased in recent years. Data about the mechanisms of progressive molecular improvement in the brain tissue are increasing in acute ischemic stroke. Based on these data, preclinical and clinical studies on new neuroprotective treatments are being designed. An effective neuroprotective strategy can prolong the indication period of recanalization treatments in the acute stage of ischemic stroke. In addition, it can reduce neuronal necrosis and protect the brain against ischemia-related reperfusion injury. The current review has evaluated the recent clinical and experimental studies. The molecular mechanism of each of the neuroprotective strategies is also summarized. This review may help develop future strategies for combination treatment to protect the cerebral tissue from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fettah Eren
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sueda Ecem Yilmaz
- Department of Neurology, School of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
16
|
Westendorp WF, Vermeij JD, Smith CJ, Kishore AK, Hodsoll J, Kalra L, Meisel A, Chamorro A, Chang JJ, Rezaei Y, Amiri-Nikpour MR, DeFalco FA, Switzer JA, Blacker DJ, Dijkgraaf MG, Nederkoorn PJ, van de Beek D. Preventive antibiotic therapy in acute stroke patients: A systematic review and meta-analysis of individual patient data of randomized controlled trials. Eur Stroke J 2022; 6:385-394. [PMID: 35342808 PMCID: PMC8948510 DOI: 10.1177/23969873211056445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Infection after stroke is associated with unfavorable outcome. Randomized
controlled studies did not show benefit of preventive antibiotics in stroke
but lacked power for subgroup analyses. Aim of this study is to assess
whether preventive antibiotic therapy after stroke improves functional
outcome for specific patient groups in an individual patient data
meta-analysis. Patients and methods We searched MEDLINE (1946–7 May 2021), Embase (1947–7 May 2021), CENTRAL
(17th September 2021), trial registries, cross-checked references and
contacted researchers for randomized controlled trials of preventive
antibiotic therapy versus placebo or standard care in ischemic or
hemorrhagic stroke patients. Meta-analysis was performed by a one-step and
two-step approach. Primary outcome was functional outcome adjusted for age
and stroke severity. Secondary outcomes were infections and mortality. Results 4197 patients from nine trials were included. Preventive antibiotic therapy
was not associated with a shift in functional outcome (mRS) at 3 months
(OR1.13, 95%CI 0.98–1.31) or unfavorable functional outcome (mRS 3–6)
(OR0.85, 95%CI 0.60–1.19). Preventive antibiotics did not improve functional
outcome in pre-defined subgroups (age, stroke severity, timing and type of
antibiotic therapy, pneumonia prediction scores, dysphagia, type of stroke,
and type of trial). Preventive antibiotics reduced infections (276/2066
(13.4%) in the preventive antibiotic group vs. 417/2059 (20.3%) in the
control group, OR 0.60, 95% CI 0.51–0.71, p < 0.001),
but not pneumonia (191/2066 (9.2%) in the preventive antibiotic group vs.
205/2061 (9.9%) in the control group (OR 0.92 (0.75–1.14),
p = 0.450). Discussion and conclusion Preventive antibiotic therapy did not benefit any subgroup of patients with
acute stroke and currently cannot be recommended.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan-Dirk Vermeij
- Department of Neurology, Sint Franciscusziekenhuis, Heusden-Zolder, Belgium
| | - Craig J Smith
- Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Amit K Kishore
- Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - John Hodsoll
- Biostatistics Department, NIHR Biomedical Research Centre for Mental Health and Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Lalit Kalra
- Clinical Neurosciences, King's College Hospital NHS Foundation Trust, London, UK
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, NeuroCure Clinical Research Center, Center for Stroke Research Berlin, Berlin, Germany
| | - Angel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Yousef Rezaei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Cardiology, Seyyed-al-Shohada Heart Center, Urmia University of Medical Science, West Azerbaijan, Iran
| | | | | | - Jeffrey A Switzer
- Department of Neurology, Medical College of Georgia, Augusta, ME, USA
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine and Pharmacology, University of Western Australia
| | - Marcel Gw Dijkgraaf
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
19
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
20
|
Lopez-Navarro ER, Gutierrez J. Metalloproteinases and their inhibitors in neurological disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 395:27-38. [PMID: 34851449 DOI: 10.1007/s00210-021-02188-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of endopeptidases that degrade the extracellular matrix and are responsible for many physiological and pathological processes. We aim to review the MMP inhibition from a clinical perspective and its possible therapeutic use in the future. MMPs play a role in various neurodegenerative and cerebrovascular diseases such as large artery atherosclerosis and ischemic stroke; for example, MMPs increase blood-brain barrier permeability favoring neuroinflammation. Synthetic MMPs inhibitors have been tested mostly in oncological trials and failed to demonstrate efficacy; some of them were discontinued because of the severe adverse reactions. Tetracyclines, in submicrobial doses, act as an MMP inhibitor, although tetracyclines have not yet been proven effective in several neurological conditions in which they were tested against placebo; it is uncertain whether there may be a use for tetracyclines in cerebrovascular disease, as a neuroprotective agent or in dolichoectasia.
Collapse
Affiliation(s)
| | - Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, 710 W 168th Street, 6th floor, Suite 639, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
22
|
Lu Y, Zhou M, Li Y, Li Y, Hua Y, Fan Y. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochem Pharmacol 2021; 186:114464. [PMID: 33577892 DOI: 10.1016/j.bcp.2021.114464] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Increasing evidence suggests that microglia experience two distinct phenotypes after acute ischemic stroke (AIS): a deleterious M1 phenotype and a neuroprotective M2 phenotype. Promoting the phenotype shift of M1 microglia to M2 microglia is thought to improve functional recovery after AIS. Minocycline, a tetracycline antibiotic, can improve functional recovery after cerebral ischemia in pre-clinical and clinical research. However, the role and mechanisms of minocycline in microglia polarization is unclear. METHODS Using the transient middle cerebral artery occlusion - reperfusion (MCAO/R) model, we treated mice with saline or different minocycline concentration (10, 25, or 50 mg/kg, i.p., daily for 2 wk) at 24 h after reperfusion. Neurobehavioral evaluation, rotarod test, and corner turning test were carried out on day 14 after reperfusion. Then, neuronal injury, reactive gliosis, and microglia polarization were performed on day 7 following MCAO/R. Finally, we treated primary microglial cultures with LPS (Lipopolysaccharide; 100 ng/mL) plus IFN-γ (20 ng/mL) 24 h to induce M1 phenotype and observed the effects of minocycline on the M1/M2-related mRNAs and the STAT1/STAT6 pathway. RESULTS We found that a 14-day treatment with minocycline increased the survival rate and promoted functional outcomes evaluated with neurobehavioral evaluation, rotarod test, and corner turning test. Meanwhile, minocycline reduced the brain infarct volume, alleviated neuronal injury, and suppressed reactive gliosis on day 7 following MCAO/R. Moreover, we observed an additive effect of minocycline on microglia polarization to the M1 and M2 phenotypes in vivo and in vitro. In the primary microglia, we further found that minocycline prevented neurons from OGD/R-induced cell death in neuron-microglia co-cultures via regulating M1/M2 microglia polarization through the STAT1/STAT6 pathway. CONCLUSION Minocycline promoted microglial M2 polarization and inhibited M1 polarization, leading to neuronal survival and neurological functional recovery. The findings deepen our understanding of the mechanisms underlying minocycline-mediated neuroprotection in AIS.
Collapse
Affiliation(s)
- Yunnan Lu
- Department of Neurology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214000, China
| | - Mingming Zhou
- School of Nursing, Taihu University of Wuxi, Wuxi, Jiangsu 214000, China
| | - Yun Li
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ye Hua
- Department of Neurology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214000, China; Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, Jiangsu 214000, China.
| | - Yi Fan
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
23
|
Strickland BA, Bakhsheshian J, Emmanuel B, Amar A, Giannotta SL, Russin JJ, Mack W. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review. J Clin Neurosci 2021; 86:50-57. [PMID: 33775346 DOI: 10.1016/j.jocn.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023]
Abstract
Acute brain injury is a leading cause of morbidity and mortality worldwide. The term is inclusive of traumatic brain injury, cerebral ischemia, subarachnoid hemorrhage, and intracerebral hemorrhage. Current pharmacologic treatments have had minimal effect on improving neurological outcomes leading to a significant interest in the development neuroprotective agents. Minocycline is a second-generation tetracycline with high blood brain barrier penetrance due to its lipophilic properties. It functions across multiple molecular pathways involved in secondary-injury cascades following acute brain injury. Animal model studies suggest that minocycline might lead to improved neurologic outcomes, but few such trials exist in humans. Clinical investigations have been limited to small randomized trials in ischemic stroke patients which have not demonstrated a clear advantage in neurologic outcomes, but also have not been sufficiently powered to draw definitive conclusions. The potential neuroprotective effect of minocycline in the setting of traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage have all been limited to pilot studies with phase II/III investigations pending. The authors aim to synthesize what is currently known about minocycline as a neuroprotective agent against acute brain injury in humans.
Collapse
Affiliation(s)
- Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA.
| | - Joshua Bakhsheshian
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Emmanuel
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Arun Amar
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Steven L Giannotta
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - William Mack
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
25
|
Tsai MJ, Liou DY, Chu YC, Chen Y, Huang MC, Huang WC, Cheng H, Tsai SK, Huang SS. Minocycline exhibits synergism with conditioned medium of bone marrow mesenchymal stem cells against ischemic stroke. J Tissue Eng Regen Med 2021; 15:279-292. [PMID: 33470523 DOI: 10.1002/term.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Several lines of evidence show that a conditioned medium of bone marrow mesenchymal stem cells (BM-MSCcm) improve functional recovery after ischemic stroke but do not reduce ischemic lesions. It is important to develop a treatment strategy that can exhibit a synergistic effect with BM-MSCcm against ischemic stroke. In this study, the effect of BM-MSCcm and/or minocycline was examined in culture and in a middle cerebral artery occlusion (MCAo) animal model. In neuron-glial cultures, BM-MSCcm and combined treatment, but not minocycline, effectively increased neuronal connection and oligodendroglial survival. In contrast, minocycline and combined treatment, but not BM-MSCcm, reduced toxin-induced free radical production in cultures. Either minocycline or BM-MSCcm, or in combination, conferred protective effects against oxygen glucose deprivation-induced cell damage. In an in vivo study, BM-MSCcm and minocycline were administered to rats 2 h after MCAo. Monotherapy with BM-MSCcm or minocycline after ischemic stroke resulted in 9.4% or 17.5% reduction in infarction volume, respectively, but there was no significant difference. Interestingly, there was a 33.9% significant reduction in infarction volume by combined treatment with BM-MSCcm and minocycline in an in vivo study. The combined therapy also significantly improved grasping power, which was not altered by monotherapy. Furthermore, combined therapy increased the expression of neuronal nuclei in the peri-infarct area and hippocampus, and concurrently decreased the expression of ED1 in rat brain and the peri-infarct zone. Our data suggest that minocycline exhibits a synergistic effect with BM-MSCcm against ischemic stroke not only to improve neurological functional outcome but also to reduce cerebral infarction.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dann-Ying Liou
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Chun Chu
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi Chen
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Cheng Huang
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shen-Kou Tsai
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res 2021; 12:1-14. [PMID: 32862401 PMCID: PMC7803692 DOI: 10.1007/s12975-020-00841-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
Collapse
Affiliation(s)
- Abir A Rahman
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Narayanappa Amruta
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Ortiz JF, Ruxmohan S, Saxena A, Morillo Cox Á, Bashir F, Tambo W, Ghani MR, Moya G, Córdova I. Minocycline and Magnesium As Neuroprotective Agents for Ischemic Stroke: A Systematic Review. Cureus 2020; 12:e12339. [PMID: 33520535 PMCID: PMC7837630 DOI: 10.7759/cureus.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a leading cause of death, disability, and dementia worldwide. Strokes can be divided into ischemic strokes and hemorrhagic strokes. At the moment, tissue plasminogen activator (tPA) is the only FDA-approved drug for ischemic stroke. Minocycline (MC) and Magnesium (Mg) are promising therapies for ischemic stroke, especially in the pre-hospital setting. These drugs are readily available, inexpensive, and generally safe. We decided to investigate these drugs' neuroprotective effects in treating ischemic stroke in the acute and chronic setting. We conducted a systematic review of the published literature on MC and Mg's functional outcome in ischemic stroke. This paper's methodology included only clinical trials published in the last 15 years, using PubMed as a database. The systematic review demonstrated that MC infusion in the pre-hospital and hospital setting improved functional outcomes and disability scores. Furthermore, MC also decreased matrix metalloproteinase 9 (MMP-9) levels. MC might have a more significant effect on men than women because different molecular pathways of cerebral ischemia seem to be involved between both genders. The systematic review showed that patients with ischemic stroke did not benefit from magnesium sulfate infusion in the pre-hospital and hospital setting. Nevertheless, patients with lacunar strokes and patients who supplemented their meals with potassium-magnesium salt in the diet had better functional outcomes. Future studies would need a more significant sample of participants and a better selection to increase the study's power and avoid selection bias, respectively. Further publications could benefit from subcategorizing strokes and investigating the gender role in stroke treatment. These directives could give a more robust conclusion regarding the neuroprotective effects of these drugs.
Collapse
Affiliation(s)
- Juan Fernando Ortiz
- Neurology, Universidad San Francisco de Quito, Quito, ECU
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Alisha Saxena
- Neurology, Dayanand Medical College and Hospital, Ludhiana, IND
| | | | - Farah Bashir
- Internal Medicine, Liaquat University of Medical & Health Sciences, Hyderabad, PAK
| | - Willians Tambo
- Neurology, Universidad San Francisco de Quito, Quito, ECU
| | - Mohammad R Ghani
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gustavo Moya
- Emergency Medicine, Carlos Andrade Marín Hospital, Quito, ECU
| | | |
Collapse
|
28
|
Otsu Y, Namekawa M, Toriyabe M, Ninomiya I, Hatakeyama M, Uemura M, Onodera O, Shimohata T, Kanazawa M. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J Neurol Sci 2020; 419:117217. [PMID: 33161301 DOI: 10.1016/j.jns.2020.117217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Reperfusion therapies by tissue plasminogen activator (tPA) and mechanical thrombectomy (MT) have ushered in a new era in the treatment of acute ischemic stroke (AIS). However, reperfusion therapy-related HT remains an enigma. AIM To provide a comprehensive review focused on emerging concepts of stroke and therapeutic strategies, including the use of protective agents to prevent HT after reperfusion therapies for AIS. METHODS A literature review was performed using PubMed and the ClinicalTrials.gov database. RESULTS Risk of HT increases with delayed initiation of tPA treatment, higher baseline glucose level, age, stroke severity, episode of transient ischemic attack within 7 days of stroke onset, and hypertension. At a molecular level, HT that develops after thrombolysis is thought to be caused by reactive oxygen species, inflammation, remodeling factor-mediated effects, and tPA toxicity. Modulation of these pathophysiological mechanisms could be a therapeutic strategy to prevent HT after tPA treatment. Clinical mechanisms underlying HT after MT are thought to involve smoking, a low Alberta Stroke Program Early CT Score, use of general anesthesia, unfavorable collaterals, and thromboembolic migration. However, the molecular mechanisms are yet to be fully investigated. Clinical trials with MT and protective agents have also been planned and good outcomes are expected. CONCLUSION To fully utilize the easily accessible drug-tPA-and the high recanalization rate of MT, it is important to reduce bleeding complications after recanalization. A future study direction could be to investigate the recovery of neurological function by combining reperfusion therapies with cell therapies and/or use of pleiotropic protective agents.
Collapse
Affiliation(s)
- Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Namekawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masafumi Toriyabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
29
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
30
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
31
|
Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4356386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
Collapse
|
32
|
Rawlinson C, Jenkins S, Thei L, Dallas ML, Chen R. Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sci 2020; 10:brainsci10030159. [PMID: 32168831 PMCID: PMC7139954 DOI: 10.3390/brainsci10030159] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia, the major endogenous immune cells of the central nervous system, mediate critical degenerative and regenerative responses in ischaemic stroke. Microglia become "activated", proliferating, and undergoing changes in morphology, gene and protein expression over days and weeks post-ischaemia, with deleterious and beneficial effects. Pro-inflammatory microglia (commonly referred to as M1) exacerbate secondary neuronal injury through the release of reactive oxygen species, cytokines and proteases. In contrast, microglia may facilitate neuronal recovery via tissue and vascular remodelling, through the secretion of anti-inflammatory cytokines and growth factors (a profile often termed M2). This M1/M2 nomenclature does not fully account for the microglial heterogeneity in the ischaemic brain, with some simultaneous expression of both M1 and M2 markers at the single-cell level. Understanding and regulating microglial activation status, reducing detrimental and promoting repair behaviours, present the potential for therapeutic intervention, and open a longer window of opportunity than offered by acute neuroprotective strategies. Pharmacological modulation of microglial activation status to promote anti-inflammatory gene expression can increase neurogenesis and improve functional recovery post-stroke, based on promising preclinical data. Cell-based therapies, using preconditioned microglia, are of interest as a method of therapeutic modulation of the post-ischaemic inflammatory response. Currently, there are no clinically-approved pharmacological options targeting post-ischaemic inflammation. A major developmental challenge for clinical translation will be the selective suppression of the deleterious effects of microglial activity after stroke whilst retaining (or enhancing) the neurovascular repair and remodelling responses of microglia.
Collapse
Affiliation(s)
- Charlotte Rawlinson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Laura Thei
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (L.T.); (M.L.D.)
| | - Mark L. Dallas
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (L.T.); (M.L.D.)
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
- Correspondence: ; Tel.: +44-1782-733849; Fax: 44-1782-733326
| |
Collapse
|
33
|
Rashid MH, Kabir A, Waris MU, Salman U, Zain S. Role of Prophylactic Antibiotics in Critical Care of Stroke Patients - A Preventive Approach to Post-stroke Infections? Cureus 2020; 12:e7158. [PMID: 32257701 PMCID: PMC7108674 DOI: 10.7759/cureus.7158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Post-stroke complications are very common worldwide and the most common complication is infection. This contributes the most to the mortality rate in stroke patients. Among the infections, pneumonia and urinary tract infections are most common. Hyperthermia following stroke is associated with neuronal damage and worse outcomes. Post-stroke immunosuppression and activation of inflammatory mediators also cause infections. Based on the high mortality caused by post-stroke infections, various trials were done to seek the advantage that prophylactic antibiotics can give in the critical care of stroke patients. Antibiotics, including ceftriaxone (cephalosporin), levofloxacin (fluoroquinolone), penicillin, and minocycline (tetracycline), were used and the stroke patients were followed up to analyze the primary and secondary outcomes. It was concluded that early antibiotic therapy (mostly within 24 hours) leads to a reduced rate of post-stroke infections and reduced fever spikes, whereas follow-up for a longer period of time showed no better functional outcome. Furthermore, mortality and morbidity benefits were also not seen with prophylactic antibiotic therapy. This review helped us to put a nail in the coffin to the earlier thoughts that prophylactic antibiotics are necessary for the critical care of stroke patients.
Collapse
Affiliation(s)
- Muhammad Humayoun Rashid
- Neurology, Bakhtawar Amin Medical and Dental College, Multan, PAK.,Internal Medicine, Nishtar Medical University and Hospital, Multan, PAK
| | - Ahmad Kabir
- Pathology, Bakhtawar Amin Medical and Dental College, Multan, PAK.,Internal Medicine, Nishtar Hospital, Multan, PAK
| | | | - Umer Salman
- Internal Medicine, City Hospital, Multan, PAK
| | - Sarmad Zain
- Internal Medicine, Nishtar Hospital, Nishtar Medical University, Multan, PAK
| |
Collapse
|
34
|
Asadi A, Abdi M, Kouhsari E, Panahi P, Sholeh M, Sadeghifard N, Amiriani T, Ahmadi A, Maleki A, Gholami M. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J Glob Antimicrob Resist 2020; 22:161-174. [PMID: 32061815 DOI: 10.1016/j.jgar.2020.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The increasing crisis regarding multidrug-resistant (MDR) and extensively drug-resistant microorganisms leads to appealing therapeutic options. METHODS During the last 30 years, minocycline, a wide-spectrum antimicrobial agent, has been effective against MDR Gram-positive and Gram-negative bacterial infections. As with other tetracyclines, the mechanism of action of minocycline involves attaching to the bacterial 30S ribosomal subunit and preventing protein synthesis. RESULTS This antimicrobial agent has been approved for the treatment of acne vulgaris, some sexually transmitted diseases and rheumatoid arthritis. Although many reports have been published, there remains limited information regarding the prevalence, mechanism of resistance and clinical effectiveness of minocycline. CONCLUSION Thus, we summarize here the currently available data concerning pharmacokinetics and pharmacodynamics, mechanism of action and resistance, antibacterial activity and clinical effectiveness of minocycline.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Pegah Panahi
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res 2020; 15:773-782. [PMID: 31719236 PMCID: PMC6990777 DOI: 10.4103/1673-5374.268898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To review the neuroprotective effects of minocycline in focal cerebral ischemia in animal models. By searching in the databases of PubMed, ScienceDirect, and Scopus, and considering the inclusion and exclusion criteria of the study. Studies were included if focal cerebral ischemia model was performed in mammals and including a control group that has been compared with a minocycline group. Written in languages other than English; duplicate data; in vitro studies and combination of minocycline with other neuroprotective agents were excluded. Neurological function of patients was assessed by National Institute of Health Stroke Scale, modified Rankin Scale, and modified Barthel Index. Neuroprotective effects were assessed by detecting the expression of inflammatory cytokines. We examined 35 papers concerning the protective effects of minocycline in focal cerebral ischemia in animal models and 6 clinical trials which had evaluated the neuroprotective effects of minocycline in ischemic stroke. These studies revealed that minocycline increases the viability of neurons and decreases the infarct volume following cerebral ischemia. The mechanisms that were reported in these studies included anti-inflammatory, antioxidant, as well as anti-apoptotic effects. Minocycline also increases the neuronal regeneration following cerebral ischemia. Minocycline has considerable neuroprotective effects against cerebral ischemia-induced neuronal damages. However, larger clinical trials may be required before using minocycline as a neuroprotective drug in ischemic stroke.
Collapse
Affiliation(s)
- Yazdan Naderi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Amirhosein Sahebkar
- Halal Research Center of IRI, FDA, Tehran; Biotechnology Research Center, Pharmaceutical Technology Institute; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Mehta A, Mahale R, Buddaraju K, Javali M, Acharya P, Srinivasa R. Efficacy of Neuroprotective Drugs in Acute Ischemic Stroke: Is It Helpful? J Neurosci Rural Pract 2019; 10:576-581. [PMID: 31831974 PMCID: PMC6906097 DOI: 10.1055/s-0039-1700790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background
Out of several neuroprotective drugs (NPDs) studied in animals and humans, four NPDs (citicoline, edaravone, cerebrolysin, and minocycline) have been found to have beneficial effects in acute ischemic stroke (AIS).
Objective
The purpose is to evaluate the efficacy of citicoline, edaravone, minocycline, and cerebrolysin compared with placebo in patients with middle cerebral artery (MCA) territory AIS.
Materials and Methods
This was a prospective, single center, single-blinded, and hospital-based study. One hundred patients with MCA territory AIS with 20 patients in each group including control group were included. Barthel index (BI), National Institute of Health Stroke Scale (NIHSS) score, and modified Rankin Scale score were recorded at admission, at day 11 and after 90 days.
Results
The mean NIHSS score was significantly lesser at day 11 and after 90 days in citicoline, edaravone, and cerebrolysin group in comparison with placebo. Similarly, the mean BI score was significantly higher at day 11 and after 90 days in citicoline, edaravone, and cerebrolysin group in comparison with placebo. In minocycline group, there was no significant change in the NIHSS score and BI score at day 11 and after 90 days.
Conclusion
There was significant improvement in the functional outcome of patients with AIS involving MCA territory at 90 days receiving citicoline, edaravone, and cerebrolysin. However, minocycline did not offer the same efficacy as compared with other neuroprotective agents.
Collapse
Affiliation(s)
- Anish Mehta
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| | - Rohan Mahale
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| | - Kiran Buddaraju
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| | - Mahendra Javali
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| | - Purushottam Acharya
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| | - Rangasetty Srinivasa
- Department of Neurology, Ramaiah Medical College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
37
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
Drieu A, Buendia I, Levard D, Hélie P, Brodin C, Vivien D, Rubio M. Immune Responses and Anti-inflammatory Strategies in a Clinically Relevant Model of Thromboembolic Ischemic Stroke with Reperfusion. Transl Stroke Res 2019; 11:481-495. [PMID: 31522409 DOI: 10.1007/s12975-019-00733-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023]
Abstract
The poor clinical relevance of experimental models of stroke contributes to the translational failure between preclinical and clinical studies testing anti-inflammatory molecules for ischemic stroke. Here, we (i) describe the time course of inflammatory responses triggered by a thromboembolic model of ischemic stroke and (ii) we examine the efficacy of two clinically tested anti-inflammatory drugs: Minocycline or anti-CD49d antibodies (tested in stroke patients as Natalizumab) administered early (1 h) or late (48 h) after stroke onset. Radiological (lesion volume) and neurological (grip test) outcomes were evaluated at 24 h and 5 days after stroke. Immune cell responses peaked 48 h after stroke onset. Myeloid cells (microglia/macrophages, dendritic cells, and neutrophils) were already increased 24 h after stroke onset, peaked at 48 h, and remained increased-although to a lesser extent-5 days after stroke onset. CD8+ and CD4+ T-lymphocytes infiltrated the ipsilateral hemisphere later on (only from 48 h). These responses occurred together with a progressive blood-brain barrier leakage at the lesion site, starting 24 h after stroke onset. Lesion volume was maximal 24-48 h after stroke onset. Minocycline reduced both lesion volume and neurological deficit only when administered early after stroke onset. The blockade of leukocyte infiltration by anti-CD49d had no impact on lesion volume or long-term neurological deficit, independently of the timing of treatment. Our data are in accordance with the results of previous clinical reports on the use of Minocycline and Natalizumab on ischemic stroke. We thus propose the use of this clinically relevant model of thromboembolic stroke with recanalization for future testing of anti-inflammatory strategies for stroke.
Collapse
Affiliation(s)
- Antoine Drieu
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France
| | - Izaskun Buendia
- Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria, Madrid, Spain
| | - Damien Levard
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France
| | - Pauline Hélie
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France
| | - Camille Brodin
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France
- Department of Clinical Research, CHU de Caen Normandy, 14000, Caen, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France, Normandie Université, 14000, Caen, France.
| |
Collapse
|
39
|
Abstract
Antimicrobials are a widely used class of medications, but several of them are associated with neurological and psychiatric side effects. The exact incidence of neurotoxicity with anti-infectives is unknown, although it is estimated to be < 1%. Neurotoxicity occurs with all classes of antimicrobials, such as antibiotics, antimycobacterials, antivirals, antifungals and antiretrovirals, with side effects ranging from headaches, anxiety and depression to confusion, delirium, psychosis, mania and seizures, among others. It is important to consider these possible side effects to prevent misdiagnosis or delayed treatment as drug withdrawal can be associated with reversibility in most cases. This article highlights the different neurotoxic effects of a range of antimicrobials, discusses proposed mechanisms of onset and offers general management recommendations. The effects of antibiotics on the gut microbiome and how they may ultimately affect cognition is also briefly examined.
Collapse
Affiliation(s)
- Madison K Bangert
- Section of Infectious Diseases, Department of Medicine, UT Health McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX, 77030, USA
| | - Rodrigo Hasbun
- Section of Infectious Diseases, Department of Medicine, UT Health McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory Therapeutic Strategies in Stroke. Front Pharmacol 2019; 10:630. [PMID: 31281252 PMCID: PMC6595144 DOI: 10.3389/fphar.2019.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The role of immunity in all stages of stroke is increasingly being recognized, from the pathogenesis of risk factors to tissue repair, leading to the investigation of a range of immunomodulatory therapies. In the acute phase of stroke, proposed therapies include drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early stages of stroke are also characterized by stroke-induced immunosuppression, where downregulation of host defences predisposes patients to infection. Therefore, strategies to modulate innate immunity post-stroke have garnered greater attention. A complementary objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following stroke onset, the integrity of the blood–brain barrier is compromised, exposing central nervous system (CNS) antigens to systemic adaptive immune recognition, potentially inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-stroke inflammation and contribute to tissue repair. Cell-based therapies, established in oncology and transplantation, could become a strategy to treat the acute and chronic stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received attention. Finally, the immune system may play a role in remote ischaemic preconditioning-mediated neuroprotection against stroke. The development of stroke therapies involving organs distant to the infarct site, therefore, should not be overlooked. This review will discuss the immune mechanisms of various therapeutic strategies, surveying published data and discussing more theoretical mechanisms of action that have yet to be exploited.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Sylvie Amu
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Sotomayor-Sobrino M, Ochoa-Aguilar A, Méndez-Cuesta L, Gómez-Acevedo C. Neuroimmunological interactions in stroke. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Kim JS. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J Stroke 2019; 21:160-174. [PMID: 31161761 PMCID: PMC6549064 DOI: 10.5853/jos.2019.00584] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only therapeutic agent approved to treat patients with acute ischemic stroke. The clinical benefits of tPA manifest when the agent is administered within 4.5 hours of stroke onset. However, tPA administration, especially delayed administration, is associated with increased intracranial hemorrhage (ICH), hemorrhagic transformation (HT), and mortality. In the ischemic brain, vascular remodeling factors are upregulated and microvascular structures are destabilized. These factors disrupt the blood brain barrier (BBB). Delayed recanalization of the vessels in the presence of relatively matured infarction appears to damage the BBB, resulting in HT or ICH, also known as reperfusion injury. Moreover, tPA itself activates matrix metalloproteases, further aggravating BBB disruption. Therefore, attenuation of edema, HT, or ICH after tPA treatment is an important therapeutic strategy that may enable clinicians to extend therapeutic time and increase the probability of excellent outcomes. Recently, numerous agents with various mechanisms have been developed to interfere with various steps of ischemia/ reperfusion injuries or BBB destabilization. These agents successfully reduce infarct volume and decrease the incidence of ICH and HT after delayed tPA treatment in various animal stroke models. However, only some have entered into clinical trials; the results have been intriguing yet unsatisfactory. In this narrative review, I describe such drugs and discuss the problems and future directions. These “tPA helpers” may be clinically used in the future to increase the efficacy of tPA in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, Feeney C, Owen DR, Lingford-Hughes A, Howes O, Patel MC, Goldstone AP, Gunn RN, Blennow K, Matthews PM, Sharp DJ. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain 2019; 141:459-471. [PMID: 29272357 PMCID: PMC5837493 DOI: 10.1093/brain/awx339] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
Survivors of a traumatic brain injury can deteriorate years later, developing brain atrophy and dementia. Traumatic brain injury triggers chronic microglial activation, but it is unclear whether this is harmful or beneficial. A successful chronic-phase treatment for traumatic brain injury might be to target microglia. In experimental models, the antibiotic minocycline inhibits microglial activation. We investigated the effect of minocycline on microglial activation and neurodegeneration using PET, MRI, and measurement of the axonal protein neurofilament light in plasma. Microglial activation was assessed using 11C-PBR28 PET. The relationships of microglial activation to measures of brain injury, and the effects of minocycline on disease progression, were assessed using structural and diffusion MRI, plasma neurofilament light, and cognitive assessment. Fifteen patients at least 6 months after a moderate-to-severe traumatic brain injury received either minocycline 100 mg orally twice daily or no drug, for 12 weeks. At baseline, 11C-PBR28 binding in patients was increased compared to controls in cerebral white matter and thalamus, and plasma neurofilament light levels were elevated. MRI measures of white matter damage were highest in areas of greater 11C-PBR28 binding. Minocycline reduced 11C-PBR28 binding (mean Δwhite matter binding = −23.30%, 95% confidence interval −40.9 to −5.64%, P = 0.018), but increased plasma neurofilament light levels. Faster rates of brain atrophy were found in patients with higher baseline neurofilament light levels. In this experimental medicine study, minocycline after traumatic brain injury reduced chronic microglial activation while increasing a marker of neurodegeneration. These findings suggest that microglial activation has a reparative effect in the chronic phase of traumatic brain injury.
Collapse
Affiliation(s)
- Gregory Scott
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Amy Jolly
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - James H Cole
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Sara De Simoni
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Peter O Jenkins
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Claire Feeney
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - David R Owen
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | | | - Oliver Howes
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Maneesh C Patel
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Anthony P Goldstone
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - David J Sharp
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
44
|
Meythaler J, Fath J, Fuerst D, Zokary H, Freese K, Martin HB, Reineke J, Peduzzi-Nelson J, Roskos PT. Safety and feasibility of minocycline in treatment of acute traumatic brain injury. Brain Inj 2019; 33:679-689. [PMID: 30744442 DOI: 10.1080/02699052.2019.1566968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Minocycline is a pleomorphic neuroprotective agent well studied in animal models of traumatic brain injury (TBI) and brain ischemia. METHODS To test the hypothesis that administration of minocycline in moderate to severe TBI (Glasgow Coma Score 3-12). Fifteen patients were enrolled in a two-dose escalation study of minocycline to evaluate the safety of twice the recommended antibiotic dosage; tier 1 n = 7 at a loading dose of 800 mg followed by 200 mg twice a day (BID) for 7 days; tier 2 n = 8 at a loading dose of 800 mg followed by 400 mg BID for 7 days. RESULTS The mean initial GCS was 5.6 for Tier 1 patients and 5.4 for Tier 2. The Disability Rating Scale (DRS) had a trend towards improvement with the higher dose 12.5 SD ± 7.7 (N = 5) for Tier 1 at 4 weeks and 8.5 SD ± 9.9 at week 12 (N = 5), whereas for Tier 2 it was 9.7 ± 6.9 (N = 6) for week 4 and 6.0 SD ± 6.1 (N = 7) for week 12 (p = .251 repeated measures ANOVA). Liver function tests increased but resolved after the first week and there were no infections. CONCLUSIONS Minocycline was safe for moderate to severe TBI at a dose twice that as recommended for treatment of infection. The higher dose did trend towards an improved outcome.
Collapse
Affiliation(s)
- Jay Meythaler
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - John Fath
- b Department of Surgery - Trauma Division , Oakwood Dearborn Hospital , Dearborn , Michigan
| | - Darren Fuerst
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Hashem Zokary
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Kristina Freese
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Heidi Baird Martin
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - Joshua Reineke
- c School of Pharmacy , South Dakota State University , Dearborn , Michigan
| | - Jean Peduzzi-Nelson
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| | - P Tyler Roskos
- a Department of Physical Medicine and Rehabilitation-Oakwood, School of Medicine , Wayne State University , Taylor , MI , USA
| |
Collapse
|
45
|
Koulaeinejad N, Haddadi K, ehteshami S, shafizad M, Salehifar E, Emadian O, Ali Mohammadpour R, Ala S. Effects of Minocycline on Neurological Outcomes In Patients With Acute Traumatic Brain Injury: A Pilot Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1086-1096. [PMID: 31531090 PMCID: PMC6706715 DOI: 10.22037/ijpr.2019.1100677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a public health problem worldwide. Secondary damage of brain injury begins within a few minutes after the trauma and can last a long time. It can be reversible, unlike primary injury. Therefore, therapeutic intervention can be used. The aims of this study were to assess the effects of minocycline on neurological function and serum S100B protein and neuron-specific enolase (NSE) levels in patients with moderate to severe TBI. Patients with acute onset of TBI and surgical evacuation of hematoma were randomized to receive either minocycline 100 mg orally twice daily or placebo for 7 days. The primary outcomes included changes in level of S100B and NSE at different time points during the trial. Additionally, changes in Glasgow coma scale (GCS) score were evaluated. The Glasgow Outcome Scale-Extended (GOS-E) score at 6 months after injury was assessed in discharge patients. Thirty four patients were randomized into the placebo (n = 20) and treatment (n = 14) groups. There was a marginal statistically significant differences in the normalized value of S100B between groups (p < 0.1). The reduction in serum NSE level from baseline to day 5 was statistically significant (p = 0.01) in minocycline group while it was not significantly decrease in placebo group (p = 0.2). Also, GCS improvement over time within the minocycline group was significant (p = 0.04) while was not significant in placebo group (p = 0.11). The GOS-E scores were not significantly different between minocycline and placebo group. Based on this study, it seems that the use of minocycline may be effective in acute TBI.
Collapse
Affiliation(s)
- Neda Koulaeinejad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kaveh Haddadi
- Department of Neurosurgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - saeid ehteshami
- Department of Neurosurgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - misagh shafizad
- Department of Neurosurgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ebrahim Salehifar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Omid Emadian
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Ali Mohammadpour
- Department of Biostatistics, Faculty of Health Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Shahram Ala
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
46
|
Sheng Z, Liu Y, Li H, Zheng W, Xia B, Zhang X, Yong VW, Xue M. Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Front Neurol 2018; 9:1103. [PMID: 30619060 PMCID: PMC6306456 DOI: 10.3389/fneur.2018.01103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives: This study aimed to assess the efficacy of minocycline for the treatment of acute ischemic stroke. Background: While there have been meta-analysis that surveyed the efficacy of minocycline in the treatment of acute stroke, they have some methodological limitations. We performed a new systematic review which was distinct from previous one by adding new outcomes and including new studies. Methods: Document retrieval was executed through PubMed, Cochrane Central Register of Controlled Trials, the Stroke Center, NIH's Clinical Trials, Current Controlled Trials, and the WHO International Clinical Trials Registry Platform Search Portal before Jan 2018. The data meeting the inclusion criteria were extracted. Before meta-analysis, publication bias and heterogeneity of included studies were surveyed. Random and fixed-effects models were employed to calculate pooled estimates and 95% confidence intervals (CIs). Additionally, sensitivity and subgroup analyses were implemented. Result: For clinical studies, 4 trials with 201 patients in the minocycline group, and 195 patients in the control group met the inclusion criteria; 3 were randomized trials. At the end of 90-day follow up or discharge day, results showed that the groups receiving minocycline were superior to the control group, with significant differences in the NIHSS scores (mean difference [MD], −2.75; 95% CI, −4.78, 0.27; p = 0.03) and mRS scores (MD, −0.98; 95% CI, −1.27, −0.69; p < 0.01), but not Barthel Index Score (MD, 9.04; 95% CI, −0.78, 18.07; p = 0.07). For rodent experiments, 14 studies were included. Neurological severity scores (NSS) was significantly improved (MD, −1.38; 95% CI, −1.64, −1.31; p < 0.01) and infarct volume was obviously reduced (Std mean difference [SMD], −2.38; 95% CI, −3.40, −1.36; p < 0.01) in the minocycline group. Heterogeneity among the studies was proved to exist for infarct volume (Chi2 = 116.12, p < 0.01; I2 = 0.89) but not for other variables. Conclusions: Based on the results in our study, minocycline appears as an effective therapeutic option for acute ischemic stroke.
Collapse
Affiliation(s)
- Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Wei Zheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Bin Xia
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Xin Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
47
|
Goenka L, Uppugunduri Satyanarayana CR, S SK, George M. Neuroprotective agents in Acute Ischemic Stroke-A Reality Check. Biomed Pharmacother 2018; 109:2539-2547. [PMID: 30551514 DOI: 10.1016/j.biopha.2018.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Luxitaa Goenka
- Department of Clinical Pharmacology, SRM Medical College Hospital & Research Centre, Kattankulathur, Chennai, Tamil Nadu, 603203 India
| | - Chakradhara Rao Uppugunduri Satyanarayana
- Platform of Pediatric Onco-Hematology (CANSEARCH Laboratory), Department of Pediatrics, University of Geneva, Bâtiment Tulipe, Avenue De La Roseraie, 641205 Geneva, Switzerland
| | - Suresh Kumar S
- Department of Pharmacology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, Ras Al Khaymah, United Arab Emirates
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital & Research Centre, Kattankulathur, Chennai, Tamil Nadu, 603203 India.
| |
Collapse
|
48
|
Shi L, Rocha M, Leak RK, Zhao J, Bhatia TN, Mu H, Wei Z, Yu F, Weiner SL, Ma F, Jovin TG, Chen J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J Cereb Blood Flow Metab 2018; 38:2073-2091. [PMID: 30191760 PMCID: PMC6282224 DOI: 10.1177/0271678x18798162] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on "neuroprotectants" (1990-2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%-80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Collapse
Affiliation(s)
- Ligen Shi
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Marcelo Rocha
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jingyan Zhao
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hongfeng Mu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan L Weiner
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Feifei Ma
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tudor G Jovin
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Preventive Antibiotics for Poststroke Infection in Patients With Acute Stroke: A Systematic Review and Meta-analysis. Neurologist 2018; 23:35-42. [PMID: 29494432 DOI: 10.1097/nrl.0000000000000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS To determine if preventive antibiotics is effective in poststroke infection in patients with acute stroke in comparison with no prophylaxis. MATERIALS AND METHODS MEDLINE (1950 to January 2017), the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2017) and EMBASE (1974 to January 2017) databases were used to search for randomized controlled trials with intervening measures related to the preventive antibiotics in patients with acute stroke. Besides, the reference lists of the retrieved publications were manually searched to explore other relevant studies. RESULTS We included 6 randomized controlled trials involving 4110 stroke patients. The study population, study design, intervening measures, and definition of infection were different. Preventive antibiotics significantly reduced the incidence of algorithm-defined infection in patients with acute stroke from 11.14% (220/1975) to 7.43% (149/2006); odds ratio (OR)=0.41; 95% confidence interval (CI), 0.20-0.87; P=0.02. There was no difference in mortality between 2 groups, the mortality in preventive antibiotics group was 17.03% (347/2037) and control group was 16.10% (328/2037); OR=1.07; 95% CI, 0.90-1.27; P=0.44. And preventive antibiotics did not improve the proportion of good outcome, the proportion of good outcome in preventive antibiotics group was 45.47% (909/1999) and control group was 45.76% (913/1995); OR=0.89; 95% CI, 0.62-1.28; P=0.53. None of the studies reported severe adverse relevant to the study antibiotics. CONCLUSIONS Preventive antibiotics significantly reduced the incidence of algorithm-defined infection in patients with acute stroke, but did not decrease the mortality or improve the proportion of good outcome. Future research should aim to identify the group of stroke patients who will benefit most from antibiotic prophylaxis.
Collapse
|
50
|
Malone K, Amu S, Moore AC, Waeber C. The immune system and stroke: from current targets to future therapy. Immunol Cell Biol 2018; 97:5-16. [DOI: 10.1111/imcb.12191] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Sylvie Amu
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Anne C Moore
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| |
Collapse
|