1
|
Yang S, Chen K, Yu J, Jin Z, Zhang M, Li Z, Yu Y, Xuan N, Tian B, Li N, Mao Z, Wang W, Chen T, Wu Y, Zhao Y, Zhang M, Fei X, Ying S, Li W, Yan F, Zhang X, Zhang G, Shen H, Chen Z. Inhibition of cathepsin L ameliorates inflammation through the A20/NF-κB pathway in endotoxin-induced acute lung injury. iScience 2024; 27:111024. [PMID: 39559762 PMCID: PMC11570319 DOI: 10.1016/j.isci.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/07/2024] [Accepted: 09/20/2024] [Indexed: 11/20/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe inflammatory condition that remains refractory; however, its molecular mechanisms are largely unknown. Previous studies have shown numerous compounds containing 4-indolyl-2-aminopyrimidine that display strong anti-inflammatory properties. In our research, we identified that a 4-Indole-2-Arylaminopyrimidine derivative named "IAAP" suppressed lipopolysaccharide (LPS)-induced inflammation. Immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified that IAAP interacts with a lysosomal cysteine protease, cathepsin L (CTSL), and restrains its activity. The nuclear factor kappa B (NF-κB) family plays a central role in controlling innate immunity. Canonical NF-κB activation, such as stimulation with lipopolysaccharide (LPS), typically involves the degradation of A20. We observed that IAAP suppression of CTSL prevented the LPS-induced degradation of A20, thereby ameliorating NF-κB activation. This study identifies CTSL as a crucial regulator of A20/NF-κB signaling and suggests IAAP as a potential lead compound for developing drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijun Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jinkang Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhangchu Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yang Yu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nanxia Xuan
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Baoping Tian
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Na Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengtong Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbing Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tianpeng Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xia Fei
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Pharmacology & Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingxian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- State Key Lab of Respiratory Disease, Key Cite of National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
2
|
Gong K, Xu J, Tang J. Diagnostic and Prognostic Value of Deregulated Circulating Long Non-coding RNA TUG1 in Elderly Patients with Severe Pneumonia. Inflammation 2023; 46:313-321. [PMID: 36104517 DOI: 10.1007/s10753-022-01735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
To investigate the expression pattern of long non-coding RNA TUG1 in elderly patients with severe community-acquired pneumonia (sCAP) and evaluate its diagnostic and prognostic value for sCAP. Serum TUG1 levels were detected in 130 sCAP patients and 122 healthy volunteers via qRT-PCR method. The receiver operating characteristic (ROC) curve and k-M plot were drawn for the diagnostic and prognostic value evaluation. A diminished trend of TUG1 was detected in the serum of sCAP cases, and negatively correlated with the concentration of TNF-α, CRP, suPAR and sTREM-1. Among the 130 cases, 30 cases died from sCAP within 30 days after admission. Serum TUG1 had the diagnostic value for 30-day mortality prediction with the AUC of 0.823. In the non-survival group, more cases had old age, high CURB score and PSI score. K-M plot demonstrated that cases with low TUG1 levels showed poor survival than those carrying high TUG1 levels. Serum TUG1 was an independent risk factor for death in elderly patients with sCAP within 30 days after admission. Serum TUG1 was at low expression in sCAP patients, and it had the predictive value for the clinical prognosis of elderly sCAP patients.
Collapse
Affiliation(s)
- Kai Gong
- Department of Respiratory Medicine, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China
| | - Jiao Xu
- Department of Respiratory Medicine, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China
| | - Jianlei Tang
- Department of Intensive Care Unit, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China.
| |
Collapse
|
3
|
Elsholtzia bodinieri Vaniot Ameliorated Acute Lung Injury by NQO1, BCL2 and PTGS2 In Silico and In Vitro Analyses. Int J Mol Sci 2022; 23:ijms232415651. [PMID: 36555290 PMCID: PMC9779453 DOI: 10.3390/ijms232415651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.
Collapse
|
4
|
Khoury O, Clouse C, McSwain MK, Applegate J, Kock ND, Atala A, Murphy SV. Ferret acute lung injury model induced by repeated nebulized lipopolysaccharide administration. Physiol Rep 2022; 10:e15400. [PMID: 36268626 PMCID: PMC9585421 DOI: 10.14814/phy2.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023] Open
Abstract
Inflammatory lung diseases affect millions of people worldwide. These diseases are caused by a number of factors such as pneumonia, sepsis, trauma, and inhalation of toxins. Pulmonary function testing (PFT) is a valuable functional methodology for better understanding mechanisms of lung disease, measuring disease progression, clinical diagnosis, and evaluating therapeutic interventions. Animal models of inflammatory lung diseases are needed that accurately recapitulate disease manifestations observed in human patients and provide an accurate prediction of clinical outcomes using clinically relevant pulmonary disease parameters. In this study, we evaluated a ferret lung inflammation model that closely represents multiple clinical manifestations of acute lung inflammation and injury observed in human patients. Lipopolysaccharide (LPS) from Pseudomonas aeruginosa was nebulized into ferrets for 7 repeated daily doses. Repeated exposure to nebulized LPS resulted in a restrictive pulmonary injury characterized using Buxco forced maneuver PFT system custom developed for ferrets. This is the first study to report repeated forced maneuver PFT in ferrets, establishing lung function measurements pre- and post-injury in live animals. Bronchoalveolar lavage and histological analysis confirmed that LPS exposure elicited pulmonary neutrophilic inflammation and structural damage to the alveoli. We believe this ferret model of lung inflammation, with clinically relevant disease manifestations and parameters for functional evaluation, is a useful pre-clinical model for understanding human inflammatory lung disease and for the evaluation of potential therapies.
Collapse
Affiliation(s)
- Oula Khoury
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Malcolm K. McSwain
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Applegate
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nancy D. Kock
- Department of Pathology/Comparative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
5
|
Huangkui Capsule Attenuates Lipopolysaccharide-Induced Acute Lung Injury and Macrophage Activation by Suppressing Inflammation and Oxidative Stress in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6626483. [PMID: 35528830 PMCID: PMC9068299 DOI: 10.1155/2021/6626483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023]
Abstract
Background Huangkui capsule (HKC) comprises the total flavonoid extract of flowers of Abelmoschus manihot (L.) Medicus. This study aimed to explore the effects of HKC on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and LPS-stimulated RAW 264.7 cells. Methods Enzyme-linked immunosorbent assay, histopathology, spectrophotometry, and quantitative real-time polymerase chain reaction were used for the assessments. Statistical analysis was performed using a one-way analysis of variance. Results LPS significantly increased lung inflammation, neutrophil infiltration, and oxidative stress and downregulated lung miR-451 expression. Treatment with HKC dramatically, reduced the total cell count in the bronchoalveolar lavage fluid (BALF), and inhibited myeloperoxidase activity in the lung tissues 24 h after LPS challenge. Histopathological analysis demonstrated that HKC attenuated LPS-induced tissue oedema and neutrophil infiltration in the lung tissues. Additionally, the concentrations of tumour necrosis factor- (TNF-) α and interleukin- (IL-) 6 in BALF and IL-6 in the plasma reduced after HKC administration. Moreover, HKC could enhance glutathione peroxidase and catalase activities and upregulate the expression of miR-451 in the lung tissues. In vitro experiments revealed that HKC inhibited the production of nitric oxide, TNF-α, and IL-6 in LPS-induced RAW 264.7 cells and mouse primary peritoneal macrophages. Additionally, HKC downregulated LPS-induced transcription of TNF-α and IL-6 in RAW 264.7 cells. Conclusions These findings suggest that HKC has anti-inflammatory and antioxidative effects that may protect mice against LPS-induced ALI and macrophage activation.
Collapse
|
6
|
Robinson EK, Worthington A, Poscablo D, Shapleigh B, Salih MM, Halasz H, Seninge L, Mosqueira B, Smaliy V, Forsberg EC, Carpenter S. lincRNA-Cox2 Functions to Regulate Inflammation in Alveolar Macrophages during Acute Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1886-1900. [PMID: 35365562 PMCID: PMC9038212 DOI: 10.4049/jimmunol.2100743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Our respiratory system is vital to protect us from the surrounding nonsterile environment; therefore, it is critical for a state of homeostasis to be maintained through a balance of inflammatory cues. Recent studies have shown that actively transcribed noncoding regions of the genome are emerging as key regulators of biological processes, including inflammation. lincRNA-Cox2 is one such example of an inflammatory inducible long intergenic noncoding RNA functioning to fine-tune immune gene expression. Using bulk and single-cell RNA sequencing, in addition to FACS, we find that lincRNA-Cox2 is most highly expressed in the lung and is most upregulated after LPS-induced lung injury (acute lung injury [ALI]) within alveolar macrophages, where it functions to regulate inflammation. We previously reported that lincRNA-Cox2 functions to regulate its neighboring protein Ptgs2 in cis, and in this study, we use genetic mouse models to confirm its role in regulating gene expression more broadly in trans during ALI. Il6, Ccl3, and Ccl5 are dysregulated in the lincRNA-Cox2-deficient mice and can be rescued to wild type levels by crossing the deficient mice with our newly generated lincRNA-Cox2 transgenic mice, confirming that this gene functions in trans. Many genes are specifically regulated by lincRNA-Cox2 within alveolar macrophages originating from the bone marrow because the phenotype can be reversed by transplantation of wild type bone marrow into the lincRNA-Cox2-deficient mice. In conclusion, we show that lincRNA-Cox2 is a trans-acting long noncoding RNA that functions to regulate immune responses and maintain homeostasis within the lung at baseline and on LPS-induced ALI.
Collapse
Affiliation(s)
- Elektra Kantzari Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Atesh Worthington
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
| | - Donna Poscablo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
| | - Barbara Shapleigh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Mays Mohammed Salih
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Benny Mosqueira
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Valeriya Smaliy
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA;
| |
Collapse
|
7
|
Atefi N, Behrangi E, Mozafarpoor S, Seirafianpour F, Peighambari S, Goodarzi A. N-acetylcysteine and coronavirus disease 2019: May it work as a beneficial preventive and adjuvant therapy? A comprehensive review study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2020; 25:109. [PMID: 33824674 PMCID: PMC8019127 DOI: 10.4103/jrms.jrms_777_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronaviruses are major pathogens of respiratory system causing different disorders, including the common cold, Middle East respiratory syndrome, and severe acute respiratory syndrome. Today's global pandemic coronavirus disease 2019 (COVID-19) has high mortality rate, with an approximate of 20% in some studies, and is 30-60 times more fatal than the common annual influenza, However, there is still no gold standard treatment for it. N-acetylcysteine (NAC) is a well-known multi-potential drug with hypothetically probable acceptable effect on COVID-related consequences, which we completely focused in this comprehensive review. MATERIALS AND METHODS PubMed, Scopus, Science Direct, and Google Scholar have been searched. Study eligibility criteria: efficacy of NAC in various subclasses of pathogenic events which may occur during COVID-19 infection. Efficacy of NAC for managing inflammatory or any symptoms similar to symptoms of COVID-19 was reviewed and symptom improvements were assessed. RESULTS Randomized clinical trials introduced NAC as an antioxidant glutathione analog and detoxifying agent promoted for different medical conditions and pulmonary disorders to alleviate influenza and reduce mortality by 50% in influenza-infected animals. The beneficial effects of NAC on viral disorders, including Epstein-Barr virus, HIV and hepatitis, and well-known vital organ damages were also exist and reported. CONCLUSION We classified the probable effects of NAC as oxidative-regulatory and apoptotic-regulatory roles, antiviral activities, anti-inflammatory roles, preventive and therapeutic roles in lung disorders and better oxygenation functions, supportive roles in intensive care unit admitted patients and in sepsis, positive role in other comorbidities and nonpulmonary end-organ damages or failures and even in primary COVID-associated cutaneous manifestations. Based on different beneficial effects of NAC, it could be administered as a potential adjuvant therapy for COVID-19 considering patient status, contraindications, and possible drug-related adverse events.
Collapse
Affiliation(s)
- Najmolsadat Atefi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mozafarpoor
- Department of Dermatology, Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnoosh Seirafianpour
- Department of General Medicine, Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran
| | - Shadi Peighambari
- Department of Internal Medicine, San Joaquin General Hospital, CA, USA
| | - Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|