1
|
Zhou ZH, Zhao L, Wang YL, Wang JL. Predictive impact of serous retinal detachment in refractory diabetic macular edema. BMC Ophthalmol 2025; 25:177. [PMID: 40197164 PMCID: PMC11974119 DOI: 10.1186/s12886-025-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Anti-vascular endothelial growth factor (VEGF) drugs are the first-line treatment option for DME management. However, part of DME was refractory to anti-VEGF medicine. With promotion of imaging technology, various retinal morphological characteristics are considered to be related to the prognosis of DME treatment. This study aimed to identify reliable predictive baseline morphological characteristics for refractory diabetic macular edema. METHODS This retrospective study was to investigate refractory diabetic macular edema and were followed up for 6 months post-treatment. According to the treatment results, the cohort was divided into refractory or improved group. Baseline morphological characteristics were evaluated and analyzed using optical coherence tomography. RESULTS Serous retinal detachment (63% vs. 25%, P < 0.05) and foveal eversion (77.8% vs. 41.7%, P < 0.05) are more common morphological characteristics in refractory DME than improved group. Binary logistic regression analysis showed average thickness of serous retinal detachment can predict the risk of refractory DME (OR = 1.052, 95% CI 1.005-1.102, P = 0.030). The area under the receiver operating characteristic curves for serous retinal detachment thickness was 0.922 (95% confidence interval 0.713-0.992). CONCLUSION Patients with refractory diabetic macular edema exhibited an increased incidence of baseline morphological characteristics, including serous retinal detachment and foveal eversion. The thickness of serous retinal detachment can serve as reliable quantitative biomarker, with diabetic macular edema displaying a serous retinal detachment thickness > 162 μm having a potential to become refractory in this study. This finding may promote early detection of refractory diabetic macular edema.
Collapse
Affiliation(s)
- Zhuo-Hua Zhou
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Yong An Road 95th, Tian Qiao Street, Beijing, 100050, China
| | - Lu Zhao
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Yong An Road 95th, Tian Qiao Street, Beijing, 100050, China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Yong An Road 95th, Tian Qiao Street, Beijing, 100050, China.
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Yong An Road 95th, Tian Qiao Street, Beijing, 100050, China.
| |
Collapse
|
2
|
Han N, Yu N, Yu L. The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N 6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:265-280. [PMID: 39476953 DOI: 10.1016/j.ajpath.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/09/2024]
Abstract
Diabetic retinopathy (DR) is the major ocular complication of diabetes caused by chronic hyperglycemia, which leads to incurable blindness. Currently, the effectiveness of therapeutic interventions is limited. This study aimed to investigate the function of piezo-type mechanosensitive ion channel component 1 (PIEZO1) and its potential regulatory mechanism in DR progression. PIEZO1 expression was up-regulated in the retinal tissues of streptozotocin-induced diabetic mice and high-glucose (HG)-triggered Müller cells. Functionally, the knockdown of PIEZO1 improved the abnormal retinal function of diabetic mice and impeded inflammatory cytokine secretion and gliosis of Müller cells under HG conditions. Mechanistic investigations using RNA immunoprecipitation-real-time quantitative PCR, methylation RNA immunoprecipitation-real-time quantitative PCR, and luciferase reporter assays demonstrated that PIEZO1 was a downstream target of methyltransferase-like 3 (METTL3). METTL3-mediated N6-methyladenosine (m6A) modification within the coding sequence of PIEZO1 mRNA significantly shortened its half-life. In HG-stimulated cells, there was a negative regulatory relationship between PIEZO1 and YTH (YT521-B homology) domain family 2 (YTHDF2), a recognized m6A reader. The loss of YTHDF2 resulted in an extended half-life of PIEZO1 in cells with overexpression of METTL3, indicating that the effect of METTL3 on the mRNA stability of PIEZO1 was dependent on YTHDF2. Taken together, this study demonstrated the protective role of the PIEZO1 silencing in DR development, and that the degradation of PIEZO1 mRNA is accelerated by METTL3/YTHDF2-mediated m6A modification.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
4
|
Chen J, Ni Y, Yao W, Ding X. Clinical observations and mechanistic insights of traditional Chinese medicine in the management of diabetic retinopathy. PHARMACEUTICAL BIOLOGY 2024; 62:529-543. [PMID: 38921697 PMCID: PMC11210421 DOI: 10.1080/13880209.2024.2369292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
CONTEXT Diabetic retinopathy (DR) is one of the leading causes of vision impairment and blindness among diabetic patients globally. Despite advancements in conventional treatments, the quest for more holistic approaches and fewer side effects persists. Traditional Chinese medicine (TCM) has been used for centuries in managing various diseases, including diabetes and its complications. OBJECTIVE This review evaluated the efficacy and underlying mechanisms of TCM in the management of DR, providing information on its potential integration with conventional treatment methods. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, and the China National Knowledge Infrastructure (CNKI) with the search terms 'traditional Chinese medicine', 'diabetic retinopathy', 'clinical efficacies' and their combinations. Studies published before 2023 without language restriction were included, focusing on clinical trials and observational studies that assessed the effectiveness of TCM in DR treatment. RESULTS The review synthesized evidence of empirical traditional Chinese formulas, traditional Chinese patent medicines, and isolated phytochemicals on DR treatment. The key mechanisms identified included the reduction of oxidative stress, inflammation, and neovascularization, as well as the improvement in neurovascular functionality and integrity of the retinal blood barrier. CONCLUSIONS TCM shows promising potential to manage DR. More large-scale, randomized controlled trials are recommended to validate these findings and facilitate the integration of TCM into mainstream DR treatment protocols.
Collapse
Affiliation(s)
- Jie Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
6
|
Ouyang H, Xie Y, Du A, Dong S, Zhou S, Lu B, Wang Z, Ji L. Chlorogenic acid ameliorates non-proliferative diabetic retinopathy via alleviating retinal inflammation through targeting TNFR1 in retinal endothelial cells. Int Immunopharmacol 2024; 141:112929. [PMID: 39153307 DOI: 10.1016/j.intimp.2024.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
As a prominent complication of diabetes mellitus (DM) affecting microvasculature, diabetic retinopathy (DR) originates from blood-retinal barrier (BRB) damage. Natural polyphenolic compound chlorogenic acid (CGA) has already been reported to alleviate DR. This study delves into the concrete mechanism of the CGA-supplied protection against DR and elucidates its key target in retinal endothelial cells. DM in mice was induced using streptozotocin (STZ). CGA mitigated BRB dysfunction, leukocytes adhesion and the formation of acellular vessels in vivo. CGA suppressed retinal inflammation and the release of tumor necrosis factor-α (TNFα) by inhibiting nuclear factor kappa-B (NFκB). Furthermore, CGA reduced the TNFα-initiated adhesion of peripheral blood mononuclear cell (PBMC) to human retinal endothelial cell (HREC). CGA obviously decreased the TNFα-upregulated expression of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and abrogated the TNFα-induced NFκB activation in HRECs. All these phenomena were reversed by overexpressing type 1 TNF receptor (TNFR1) in HRECs. The CGA-provided improvement on leukocytes adhesion and retinal inflammation was disappeared in mice injected with an endothelial-specific TNFR1 overexpression adeno-associated virus (AAV). CGA reduced the interaction between TNFα and TNFR1 through binding to TNFR1 in retinal endothelial cells. In summary, excepting reducing TNFα expression via inhibiting retinal inflammation, CGA also reduced the adhesion of leukocytes to retinal vessels through decreasing VCAM1 and ICAM1 expression via blocking the TNFα-initiated NFκB activation by targeting TNFR1 in retinal endothelial cells. All of those mitigated retinal inflammation, ultimately alleviating BRB breakdown in DR.
Collapse
MESH Headings
- Animals
- Diabetic Retinopathy/drug therapy
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Chlorogenic Acid/pharmacology
- Chlorogenic Acid/therapeutic use
- Humans
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Male
- NF-kappa B/metabolism
- Mice
- Retina/drug effects
- Retina/pathology
- Retina/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Vascular Cell Adhesion Molecule-1/metabolism
- Cell Adhesion/drug effects
- Blood-Retinal Barrier/drug effects
- Blood-Retinal Barrier/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cells, Cultured
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyuan Dong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Siyan Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
8
|
Lim RR, Thomas A, Ramasubramanian A, Chaurasia SS. Retinal microglia-derived S100A9 incite NLRP3 inflammasome in a Western diet fed Ossabaw pig retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621160. [PMID: 39554084 PMCID: PMC11565851 DOI: 10.1101/2024.10.30.621160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purpose We established S100A9 as a myeloid-derived damage-associated molecular pattern (DAMPs) protein associated with increasing severity of diabetic retinopathy (DR) in type 2 diabetic subjects. The present study investigates the retinal localization, expression, and mechanisms of action for S100A9 in the young obese Ossabaw pig retina. Methods Retinae from Ossabaw pigs fed a Western diet for 10 weeks were evaluated for S100 and inflammatory mediator expression using quantitative PCR and Western blot. Double immunohistochemistry was performed to identify the cellular sources of S100A9 in the pig retina. Primary pig retinal microglial cells (pMicroglia) were examined for S100A9 production. S100A9-induced responses were also investigated, and inhibitor studies elucidated the mechanism of action via the NLRP3 inflammasome. A specific inhibitor, Paquinimod (ABR-215757), was administered in vitro to assess the rescue of S100A9-induced NLRP3 inflammasome activation in pMicroglia. Results The expression of the S100 family in the obese Ossabaw pig retina showed a significant elevation of S100A9, consistent with increased levels of circulating S100A9. Moreover, the retina had elevated levels of inflammatory mediators IL-6, IL-8, MCP-1, IL-1β and NLRP3. Retinal microglia in obese Ossabaw were activated and accompanied by an increased expression of intracellular S100A9. pMicroglia isolated from pig retina transformed from ramified to amoeboid state when activated with LPS and produced high S100A9 transcript and protein levels. The S100A9 protein, in turn, further activated pMicroglia by heightened production of S100A9 transcripts and secretion of pro-inflammatory IL-1β protein. Inhibition of TLR4 with TAK242 and NLRP3 with MCC950 attenuated the production of IL-1β during S100A9 stimulus. Finally, pre-treatment with Paquinimod successfully reduced S100A9-driven increases of glycosylated-TLR4, NLRP3, ASC, Caspase-1, and IL-1β production. Conclusion We demonstrated that microglial-derived S100A9 perpetuates pro-inflammatory responses via the NLRP3 inflammasome in the retina of young Western-diet-fed Ossabaw pigs exhibiting diabetic retinopathy.
Collapse
|
9
|
Du X, Wang Y, Gao F. PSAT1 is upregulated by METTL3 to attenuate high glucose-induced retinal pigment epithelial cell apoptosis and oxidative stress. Diagn Pathol 2024; 19:138. [PMID: 39407268 PMCID: PMC11476401 DOI: 10.1186/s13000-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, and a significant cause of visual impairment and blindness in adults. Phosphoserine aminotransferase 1 (PSAT1) is an enzyme participating in serine synthesis, which might improve insulin signaling and insulin sensitivity. Furthermore, it has been reported that the m6A methylation in mRNA controls gene expression under many physiological and pathological conditions. Nevertheless, the influences of m6A methylation on PSAT1 expression and DR progression at the molecular level have not been reported. METHODS High-glucose (HG) was used to treat human retinal pigment epithelial cells (ARPE-19) to construct a cell injury model. PSAT1 and Methyltransferase-like 3 (METTL3) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). PSAT1, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), and METTL3 protein levels were examined by western blot assay. Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and TUNEL assays. Reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidase (GSH-Px) levels were examined using special assay kits. Interaction between METTL3 and PSAT1 was verified using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assay. RESULTS PSAT1 and METTL3 levels were decreased in DR patients and HG-treated ARPE-19 cells. Upregulation of PSAT1 might attenuate HG-induced cell viability inhibition and apoptosis and oxidative stress promotion in ARPE-19 cells. Moreover, PSAT1 was identified as a downstream target of METTL3-mediated m6A modification. METTL3 might improve the stability of PSAT1 mRNA via m6A methylation. CONCLUSION METTL3 might mitigate HG-induced ARPE-19 cell damage partly by regulating the stability of PSAT1 mRNA, providing a promising therapeutic target for DR.
Collapse
Affiliation(s)
- Xiaofeng Du
- Department of Ophthalmology, Henan Provincial Eye Hospital, Henan Provincial People's Hospital, Zhengzhou City, Henan, 450003, China
| | - Yanting Wang
- Department of Ophthalmology, Henan Provincial Eye Hospital, Henan Provincial People's Hospital, Zhengzhou City, Henan, 450003, China
| | - Fan Gao
- Department of Ophthalmology, Yan'an People's Hospital, No. 16 Qilipu Street, Baota District, Yan'an City, Shaanxi province, 716000, China.
| |
Collapse
|
10
|
Qin T, Lv Y, Xi X, Wu Z. PLK-3-mediated phosphorylation of BAP1 prevents diabetic retinopathy. Biochem Pharmacol 2024; 226:116374. [PMID: 38906226 DOI: 10.1016/j.bcp.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus, and its main clinical manifestation is retinal vascular dysfunction. DR causes blindness and is a problem with significant global health implications. However, treating DR is still challenging. In this study, we aimed to explore the role of polo-like kinase-3 (PLK-3) and the potential regulatory mechanism in DR. Sprague-Dawley rats were injected intraperitoneally with streptozotocin (STZ, 60 mg/kg) to induce a rat model of DR, and rat retinal microvascular endothelial cells (RRMECs) were treated with high glucose (HG, 25 mmol/L glucose) to develop a cell model of DR. We found that PLK-3 was significantly downregulated in the retinal tissues of STZ-induced diabetic rats and HG-induced RRMECs. Lentivirus-mediated PLK-3 overexpression alleviated the histological damages in DR rats. After HG stimulation, cell proliferation, migration, and angiogenesis in RRMECs were inhibited after PLK-3 upregulation. By using label-free proteomics, we identified 82 differentially expressed proteins downstream of PLK-3, including BRCA1-associated protein 1 (BAP1), which was significantly upregulated in PLK-3-overexpressed RRMECs compared to control cells under the HG condition. In vivo and in vitro assays indicated that the forced expression of PLK-3 increased the phosphorylation of BAP1 at serine 592 and caspase-8 expression. Detailed evidence showed that BAP1-shRNA-mediated knockdown restored the cell function in HG-treated RRMECs when PLK-3 was overexpressed. Collectively, this study shows that PLK-3 alleviates retinal vascular dysfunction in DR by inhibiting the phosphorylation of BAP1. Thus, PLK-3 may develop as a promising target for the therapy of DR.
Collapse
Affiliation(s)
- Tingyu Qin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yingnan Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangying Xi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhipeng Wu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Shen R, Cheng K, Li G, Pan Z, Qiaolongbatu X, Wang Y, Ma C, Huang X, Wang L, Li W, Wang Y, Jing L, Fan G, Wu Z. Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema Through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Des Devel Ther 2024; 18:3361-3382. [PMID: 39100223 PMCID: PMC11297588 DOI: 10.2147/dddt.s468119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Alisma orientale (AO, Alisma orientale (Sam). Juzep) has been widely employed for the treatment of macular edema (ME) in traditional Chinese medicine due to its renowned water-relief properties. Nonetheless, the comprehensive investigation of AO in alleviating ME remained unexplored. This study aims to identify the active components of AO that target the eye and investigate its pharmacological effects and mechanisms on ME. Methods The study commenced with UPLC-Triple-TOF/MS analysis to identify the primary constituents of AO. Zebrafish eye tissues were then analyzed after a five-day administration of AO to detect absorbed components and metabolites. Subsequently, network pharmacology, molecular docking, and molecular dynamics simulations were employed to predict the mechanisms of ME treatment via biological target pathways. In vivo experiments were conducted to corroborate the pharmacological actions and mechanisms. Results A total of 7 compounds, consisting of 2 prototype ingredients and 5 metabolites (including isomers), were found to traverse the blood-eye barrier and localized within eye tissues. Network pharmacology results showed that AO played a role in the treatment of ME mainly by regulating the pathway network of PI3K-AKT and MAPK with TNF-α centered. Computational analyses suggested that 11-dehydro-16-oxo-24-deoxy-alisol A, a metabolite of alisol A, mitigates edema through TNF-α inhibition. Furthermore, zebrafish fundus confocal experiments and HE staining of eyes confirmed the attenuating effects of alisol A on fundus angiogenesis and ocular edema, representing the first report of AO's ME-inhibitory effects. Conclusion In this study, computational analyses with experimental validation were used to understand the biological activity and mechanism of alisol A in the treatment of ME. The findings shed light on the bioactive constituents and pharmacological actions of AO, offering valuable insights and a theoretical foundation for its clinical application in managing ME.
Collapse
Affiliation(s)
- Rui Shen
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Zhendong Pan
- Department of Clinical Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Xijier Qiaolongbatu
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuting Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Cui Ma
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Xucong Huang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Li Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Wenjing Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Lili Jing
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
12
|
Isik DU, Celik IH, Isleyen F, Tabanli FP, Kiran Yenice E. The role of delta neutrophil index in early prediction of retinopathy of prematurity. Early Hum Dev 2024; 194:106053. [PMID: 38788479 DOI: 10.1016/j.earlhumdev.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Affiliation(s)
- Dilek Ulubas Isik
- Department of Neonatology, University of Health Sciences Türkiye, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Ankara, Türkiye.
| | - Istemi Han Celik
- Department of Neonatology, University of Health Sciences Türkiye, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Ankara, Türkiye
| | - Fatih Isleyen
- Department of Neonatology, University of Health Sciences Türkiye, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Ankara, Türkiye
| | - Fatma Pinar Tabanli
- Department of Neonatology, University of Health Sciences Türkiye, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Ankara, Türkiye
| | - Esay Kiran Yenice
- Department of Ophthalmology, University of Health Sciences Türkiye, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Ankara, Türkiye
| |
Collapse
|
13
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
14
|
Andersson RBÅ, Pelino C, Monaco WA, Bunin G. Prevalence Rates of Diabetic Retinopathy and Undiagnosed Diabetes Among Delaware Nursing Home and Assisted Living Facility Residents. Gerontol Geriatr Med 2024; 10:23337214241260938. [PMID: 39091995 PMCID: PMC11292678 DOI: 10.1177/23337214241260938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 08/04/2024] Open
Abstract
Objectives: To determine the prevalence of diabetic retinopathy and undiagnosed diabetes among Delaware nursing home and assisted care facility residents. Methods: This cross-sectional study involved the statistical analysis of comprehensive eye examination records of 2,063 nursing home residents residing in 18 facilities and 4 assisted living facilities in Delaware from 2005 to 2009. Descriptive statistical analyses were conducted to identify the rates of retinal dot and blot hemorrhages and existing systemic diabetes diagnoses. Results: The mean age of nursing home and assisted care facility residents was 77 years (range 9-104), and 64.4% were over the age of 80. Most residents were female (61.1%) and white (72.5%). 3.6% of the 2,063 nursing home residents had blot or dot hemorrhages in one or both eyes. 32.8% had a type 1 or type 2 diabetes diagnosis. Of the ones with a positive dot and blot hemorrhage finding, 56.8% had a diagnosis of diabetes, and 43.2% did not. Discussion: There was a high prevalence of dot and blot hemorrhages without a systemic diagnosis of diabetes, indicating a need for regular eye care among residents.
Collapse
|
15
|
Eichenbaum D, Gonzalez VH, Roth D, Fortun J, Radcliffe NM, Cutino A, Kasper J, Coughlin BA, Arevalo JF. Ocular, Visual, and Anatomical Outcomes in Eyes Requiring Incisional Intraocular Pressure-Lowering Surgery Following the 0.19-mg Fluocinolone Acetonide Intravitreal Implant. Ophthalmic Surg Lasers Imaging Retina 2024; 55:22-23. [PMID: 38189802 DOI: 10.3928/23258160-20231109-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE To assess ocular, visual, and anatomical outcomes following the 0.19-mg fluocinolone acetonide (FAc) intravitreal implant (ILUVIEN®) and incisional intraocular pressure (IOP)-lowering surgery in diabetic macular edema. PATIENTS AND METHODS From a 36-month, phase 4, open-label, observational study (N = 202 eyes, 159 patients), 8 eyes (7 patients) required IOP-lowering surgery post-FAc; eyes were segregated by FAc-induced (n = 5, 2.47%) versus neovascular glaucoma (NVG)-related (n = 3, 1.49%) IOP elevations and assessed for IOP, best corrected visual acuity (BCVA), central subfield thickness (CST), and cup-to-disc ratio (c/d). RESULTS Changes at 36 months were +5.4 letters BCVA (P > 0.05) and +0.09 c/d (P = 0.0217); IOP and CST were unchanged. FAc-induced-group eyes required fewer IOP-lowering medications than NVG-group eyes (2.0 versus 4.0; P < 0.01) but for longer duration (15.2 versus 2.6 months; P < 0.001). CONCLUSIONS Post-FAc IOP-lowering surgery, regardless of cause, largely did not affect the outcomes measured; these procedures, then, may not meaningfully threaten positive outcomes. [Ophthalmic Surg Lasers Imaging Retina 2024;55:22-29.].
Collapse
|
16
|
Muns SM, Villegas VM, Flynn HW, Schwartz SG. Update on current pharmacologic therapies for diabetic retinopathy. Expert Opin Pharmacother 2023; 24:1577-1593. [PMID: 37431888 DOI: 10.1080/14656566.2023.2230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Diabetic retinopathy is a major cause of visual loss worldwide. The most important clinical findings include diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR). AREAS COVERED PubMed was used for our literature review. Articles from 1995 to 2023 were included. Pharmacologic treatment of diabetic retinopathy generally involves the use of intravitreal anti-vascular endothelial growth factor (VEGF) therapy for DME and PDR. Corticosteroids remain important second-line therapies for patients with DME. Most emerging therapies focus on newly identified inflammatory mediators and biochemical signaling pathways involved in disease pathogenesis. EXPERT OPINION Emerging anti-VEGF modalities, integrin antagonists, and anti-inflammatory agents have the potential to improve outcomes with reduced treatment burdens.
Collapse
Affiliation(s)
- Sofía M Muns
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
| | - Victor M Villegas
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Gonzalez VH, Luo C, Almeida DRP, Cutino A, Coughlin B, Kasper J, Kiernan DF. BETTER BASELINE VISION LEADS TO BETTER OUTCOMES AFTER THE 0.19-mg FLUOCINOLONE ACETONIDE INTRAVITREAL IMPLANT IN DIABETIC MACULAR EDEMA. Retina 2023; 43:1301-1307. [PMID: 37130434 DOI: 10.1097/iae.0000000000003827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PURPOSE Analysis of a 3-year, Phase 4, open-label, observational study evaluating the association of baseline best-corrected visual acuity (BCVA) with visual, treatment burden, and retinal thickness variability (RTV) outcomes and intraocular pressure (IOP)-related events after the 0.19-mg fluocinolone acetonide (FAc) intravitreal implant. METHODS Data from patients with diabetic macular edema (DME) who did not have a clinically significant rise in IOP after previous corticosteroid treatment (N = 202 eyes from 159 patients) were segregated by baseline BCVA of ≥20/40 or <20/40 and analyzed for BCVA, number of yearly supplemental DME treatments, RTV, and incidence of IOP-related events. RESULTS At 36 months post-FAc, eyes with better baseline BCVA (≥20/40) maintained baseline BCVA, whereas vision in eyes with worse baseline BCVA (<20/40) increased by approximately 7 letters to 61.34 letters (Snellen equivalent approximately 20/60; P < 0.05). Treatment burden and RTV decreased post-FAc regardless of baseline BCVA. Eyes with better baseline BCVA (≥20/40) had numerically fewer IOP-related events post-FAc versus eyes with worse baseline BCVA (<20/40), including a lower incidence of incisional IOP-lowering surgery. CONCLUSION The 0.19-mg FAc implant improved RTV and treatment burden regardless of baseline BCVA. Better baseline BCVA (≥20/40) was associated with long-term BCVA maintenance. Although eyes with worse baseline BCVA (<20/40) experienced significantly improved BCVA, it never rose to the level of those with better baseline BCVA. These data indicate that early, effective intervention in DME, before significant vision loss occurs, is key to maintaining visual outcomes.
Collapse
Affiliation(s)
| | - Caesar Luo
- Bay Area Retina Associates, Walnut Creek, California
| | | | | | | | | | | |
Collapse
|
18
|
Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish. Molecules 2023; 28:5350. [PMID: 37513223 PMCID: PMC10385844 DOI: 10.3390/molecules28145350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - A. R. Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia;
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| |
Collapse
|
19
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
20
|
Yuen YS, Gilhotra JS, Dalton M, Aujla JS, Mehta H, Wickremasinghe S, Uppal G, Arnold J, Chen F, Chang A, Fraser-Bell S, Lim L, Shah J, Bowditch E, Broadhead GK. Diabetic Macular Oedema Guidelines: An Australian Perspective. J Ophthalmol 2023; 2023:6329819. [PMID: 36824442 PMCID: PMC9943607 DOI: 10.1155/2023/6329819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 02/16/2023] Open
Abstract
The number of people living with diabetes is expected to rise to 578 million by 2030 and to 700 million by 2045, exacting a severe socioeconomic burden on healthcare systems around the globe. This is also reflected in the increasing numbers of people with ocular complications of diabetes (namely, diabetic macular oedema (DMO) and diabetic retinopathy (DR)). In one study examining the global prevalence of DR, 35% of people with diabetes had some form of DR, 7% had PDR, 7% had DMO, and 10% were affected by these vision-threatening stages. In many regions of the world (Australia included), DR is one of the top three leading causes of vision loss amongst working age adults (20-74 years). In the management of DMO, the landmark ETDRS study demonstrated that moderate visual loss, defined as doubling of the visual angle, can be reduced by 50% or more by focal/grid laser photocoagulation. However, over the last 20 years, antivascular endothelial growth factor (VEGF) and corticosteroid therapies have emerged as alternative options for the management of DMO and provided patients with choices that have higher chances of improving vision than laser alone. In Australia, since the 2008 NHMRC guidelines, there have been significant developments in both the treatment options and treatment schedules for DMO. This working group was therefore assembled to review and address the current management options available in Australia.
Collapse
Affiliation(s)
| | | | | | - Jaskirat S. Aujla
- South Australian Institute of Ophthalmology, Adelaide, SA, Australia
| | - Hemal Mehta
- Save Sight Registries, University of Sydney, Sydney, NSW, Australia
- Strathfield Retina Clinic, Sydney, Australia
| | - Sanj Wickremasinghe
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Gurmit Uppal
- Moreton Eye Group, Brisbane, Queensland, Australia
| | | | - Fred Chen
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Victoria, Australia
| | - Andrew Chang
- Sydney Institute of Vision Science, University of Sydney, Sydney, NSW, Australia
- Sydney Retina Clinic and Day Surgery, University of Sydney, Sydney, NSW, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Samantha Fraser-Bell
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Lyndell Lim
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Janika Shah
- Sydney Eye Hospital, Sydney, Australia
- Singapore National Eye Centre, Singapore
| | - Ellie Bowditch
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
21
|
Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J Neuroinflammation 2023; 20:25. [PMID: 36739425 PMCID: PMC9899393 DOI: 10.1186/s12974-023-02712-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease.
Collapse
|
22
|
Peripheral Blood Mononuclear Cells from Patients with Type 1 Diabetes and Diabetic Retinopathy Produce Higher Levels of IL-17A, IL-10 and IL-6 and Lower Levels of IFN-γ-A Pilot Study. Cells 2023; 12:cells12030467. [PMID: 36766809 PMCID: PMC9913819 DOI: 10.3390/cells12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is key to the pathogenesis of diabetic retinopathy (DR). This prospective study investigated alterations in inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) in 41 people with type 1 diabetes (T1D), sub-grouped into mild non-proliferative DR (mNPDR; n = 13) and active and inactive (each n = 14) PDR. Age/gender-matched healthy controls (n = 13) were included. PBMCs were isolated from blood samples. Intracellular cytokine expression by PBMCs after 16-h stimulation (either E. coli lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate plus ionomycin, D-glucose or D-mannitol) were assessed by flow cytometry. Cytokine production in plasma, non-stimulated and LPS-stimulated PBMC supernatant was also assessed. Increased BMC IL-10 secretion and reduced expression of IL-6 and IFN-γ in CD3+ cells were observed in mNPDR. Reduced IL-6 and IL-10 secretion, and higher levels of intracellular IL-6 expression, especially in CD11b+ PBMCs, was detected in aPDR; levels were positively correlated with DR duration. Patients with T1D demonstrated increased intracellular expression of IL-17A in myeloid cells and reduced IFN-γ expression in CD3+ cells. Plasma levels of IL-1R1 were increased in mNPDR compared with controls. Results suggest that elevated PBMC-released IL-10, IL-6, in particular myeloid-produced IL-17A, may be involved in early stages of DR. IL-6-producing myeloid cells may play a role in PDR development.
Collapse
|
23
|
Gao Y, Xue M, Dai B, Tang Y, Liu J, Zhao C, Meng H, Yan F, Zhu X, Lu Y, Ge Y. Identification of immune associated potential molecular targets in proliferative diabetic retinopathy. BMC Ophthalmol 2023; 23:27. [PMID: 36658547 PMCID: PMC9854219 DOI: 10.1186/s12886-023-02774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and causes of blindness in developed countries. Our study was designed to identify immune-related genes involved in the progression of proliferative diabetic retinopathy (PDR). METHODS The "GSE102485" dataset of neovascular membrane samples (NVMs) from type 1 and 2 diabetes mellitus patients was downloaded from the Gene Expression Omnibus database. Functional enrichment analyses, protein-protein interaction network (PPI) construction, and module analysis of immune pathways in NVMs and controls were conducted via Gene Set Enrichment Analysis and Metascape. RESULTS The significantly upregulated hallmark gene sets in DR2 and DR1 groups were involved in five immune pathways. Only CCR4, CXCR6, C3AR1, LPAR1, C5AR1, and P2RY14 were not previously reported in the context of PDR molecular pathophysiology. Except for P2RY14, all of the above were upregulated in retinal samples from experimental diabetes mouse models and human retina microvascular endothelial cells (HRMECs) treated with high glucose (HG) by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). CONCLUSION The genes identified herein provide insight into immune-related differential gene expression during DR progression.
Collapse
Affiliation(s)
- Ying Gao
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Min Xue
- Department of Ophthalmology, Anhui NO.2 Provincial People’s Hospital, Hefei, Anhui China
| | - Bing Dai
- grid.417028.80000 0004 1799 2608Department of Vascular Surgery, Tianjin Hospital, Tianjin, China
| | - Yun Tang
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Jingyu Liu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Changlin Zhao
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Hu Meng
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Feng Yan
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Xiaomin Zhu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Yan Lu
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| | - Yirui Ge
- grid.41156.370000 0001 2314 964XDepartment of Ophthalmology, Affilia Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province China
| |
Collapse
|
24
|
Proinflammatory Cytokines Trigger the Onset of Retinal Abnormalities and Metabolic Dysregulation in a Hyperglycemic Mouse Model. J Ophthalmol 2023; 2023:7893104. [PMID: 36895267 PMCID: PMC9991478 DOI: 10.1155/2023/7893104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Purpose Recent evidence has shown that retinal inflammation is a key player in diabetic retinopathy (DR) pathogenesis. To further understand and validate the metabolic biomarkers of DR, we investigated the effect of intravitreal proinflammatory cytokines on the retinal structure, function, and metabolism in an in vivo hyperglycemic mouse model. Methods C57Bl/6 mice were rendered hyperglycemic within one week of administration of a single high-dose intraperitoneal injection of streptozotocin, while control mice received vehicle injection. After confirming hyperglycemia, the mice received an intravitreal injection of either proinflammatory cytokines (TNF-α and IL-1β) or vehicle. Similarly, control mice received an intravitreal injection of either proinflammatory cytokines or vehicle. The retinal structure was evaluated using fundus imaging and optical coherence tomography, and retinal function was assessed using a focal electroretinogram (ERG), two days after cytokine injection. Retinas were collected for biochemical analysis to determine key metabolite levels and enzymatic activities. Results Hyperglycemic mice intraocularly injected with cytokines developed visible retinal vascular damage and intravitreal and intraretinal hyper-reflective spots two days after the cytokines injection. These mice also developed a significant functional deficit with reduced a-wave and b-wave amplitudes of the ERG at high light intensities compared to control mice. Furthermore, metabolic disruption was evident in these mice, with significantly higher retinal glucose, lactate, ATP, and glutamine levels and a significant reduction in glutamate levels compared with control mice. Minimal or no metabolic changes were observed in hyperglycemic mice without intraocular cytokines or in control mice with intraocular cytokines at 2 days post hyperglycemia. Conclusions Proinflammatory cytokines accelerated the development of vascular damage in the eyes of hyperglycemic mice. Significant changes were observed in retinal structure, function, and metabolic homeostasis. These findings support the idea that with the onset of inflammation in DR, there is a deficit in metabolism. Therefore, early intervention to prevent inflammation-induced retinal changes in diabetic patients may improve the disease outcome.
Collapse
|
25
|
Role of 19 SNPs in 10 genes with type 2 diabetes in the Pakistani population. Gene X 2023; 848:146899. [DOI: 10.1016/j.gene.2022.146899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
|
26
|
Lin HD, Lee YC, Chiang CY, Lin YJ, Shih CY, Tsai RK, Lin PY, Lin SZ, Ho TJ, Huang CY. Protective effects of Scoparia dulcis L. extract on high glucose-induced injury in human retinal pigment epithelial cells. Front Nutr 2023; 10:1085248. [PMID: 37139437 PMCID: PMC10150881 DOI: 10.3389/fnut.2023.1085248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of vision loss in diabetic patients. Hyperglycemia-induced oxidative stress and the accumulation of inflammatory factors result in blood-retinal barrier dysfunction and the pathogenesis of DR. Scoparia dulcis L. extract (SDE), a traditional Chinese medicine, has been recently recognized for its various pharmacological effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory, and anti-oxidative activities. However, there is no relevant research on the protective effect of SDE in DR. In this study, we treated high glucose (50 mM) in human retinal epithelial cells (ARPE-19) with different concentrations of SDE and analyzed cell viability, apoptosis, and ROS production. Moreover, we analyzed the expression of Akt, Nrf2, catalase, and HO-1, which showed that SDE dose-dependently reduced ROS production and attenuated ARPE-19 cell apoptosis in a high-glucose environment. Briefly, we demonstrated that SDE exhibited an anti-oxidative and anti-inflammatory ability in protecting retinal cells from high-glucose (HG) treatment. Moreover, we also investigated the involvement of the Akt/Nrf2/HO-1 pathway in SDE-mediated protective effects. The results suggest SDE as a nutritional supplement that could benefit patients with DR.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Chieh Lee
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Pi-Yu Lin
- Taiwan Buddhist Tzu-Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Tsung-Jung Ho, ; Chih-Yang Huang,
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- *Correspondence: Tsung-Jung Ho, ; Chih-Yang Huang,
| |
Collapse
|
27
|
Meng C, Xing Y, Huo L, Ma H. Relationship Between Estimated Glucose Disposal Rate and Type 2 Diabetic Retinopathy. Diabetes Metab Syndr Obes 2023; 16:807-818. [PMID: 36959899 PMCID: PMC10028301 DOI: 10.2147/dmso.s395818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE To investigate the association between diabetic retinopathy (DR), DR intensity, and estimated glucose disposal rate (eGDR) in individuals with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS This study comprised 1762 T2DM patients who were admitted between January and December, 2021. Overall, the DR was identified in 430 patients. Based on the eGDR, the participants were divided into four study groups. One-way analysis of variance was used to compare the groups. The correlations between eGDR and DR risk, eGDR, and DR severity were analyzed using regression analysis. Furthermore, these relationships were analyzed in different sex groups. RESULTS Patients with T2DM had a 19.75% (348/1762) DR detection rate, whereas those with DR had a 22.41% (78/348) proliferative DR detection rate. The DR group had substantially reduced levels of eGDR compared with the non-DR group. Multivariate logistic regression analysis demonstrated that reduced eGDR was an independent risk factor for DR, after adjusting for confounding variables. eGDR correlated significantly with proliferative DR in women but not in men. CONCLUSION In Chinese individuals with T2DM, lower eGDR was independently associated with a higher risk of DR.
Collapse
Affiliation(s)
- Cuiqiao Meng
- Health Examination Center, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lijing Huo
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Huijuan Ma, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China, Tel +86 18032838686, Email
| |
Collapse
|
28
|
Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, Iftikhar S, Shah L, Kazmi I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022; 12:metabo12121274. [PMID: 36557312 PMCID: PMC9782005 DOI: 10.3390/metabo12121274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Luqman Shah
- Department of Biochemistry, Faculty of Science, Hazara University, Mansehra 21300, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| |
Collapse
|
29
|
Yue T, Shi Y, Luo S, Weng J, Wu Y, Zheng X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front Immunol 2022; 13:1055087. [PMID: 36582230 PMCID: PMC9792618 DOI: 10.3389/fimmu.2022.1055087] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications of diabetes mellitus and the leading cause of low vision and blindness worldwide. Mounting evidence demonstrates that inflammation is a key mechanism driving diabetes-associated retinal disturbance, yet the pathophysiological process and molecular mechanisms of inflammation underlying diabetic retinopathy are not fully understood. Cytokines, chemokines, and adhesion molecules interact with each other to form a complex molecular network that propagates the inflammatory and pathological cascade of diabetic retinopathy. Therefore, it is important to understand and elucidate inflammation-related mechanisms behind diabetic retinopathy progression. Here, we review the current understanding of the pathology and pathogenesis of inflammation in diabetic retinopathy. In addition, we also summarize the relevant clinical trials to further suggest inflammation-targeted therapeutics for prevention and management of diabetic retinopathy.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Shi
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Sihui Luo
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yali Wu
- Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| | - Xueying Zheng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| |
Collapse
|
30
|
Han R, Gong R, Liu W, Xu G. Optical coherence tomography angiography metrics in different stages of diabetic macular edema. EYE AND VISION 2022; 9:14. [PMID: 35382892 PMCID: PMC8981637 DOI: 10.1186/s40662-022-00286-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To investigate the optical coherence tomography angiography (OCTA) characteristics of diabetic macular edema (DME) at different stages.
Methods
This study was a cross-sectional study. Patients diagnosed with DME were recruited. DME was classified into early, advanced, and severe DME. The vessel density (VD) in the superficial vascular plexus (SVP), deep vascular plexus (DVP) and foveal avascular zone (FAZ) parameters, including FAZ area, FAZ perimeter, acircularity index and foveal VD in a 300-μm-wide region around the FAZ (FD-300), were calculated by the AngioVue software. A multivariate generalized estimating equation was used to evaluate the associations between visual acuity and OCTA metrics.
Results
Ninety-two eyes from 74 patients with DME were included in this study. Compared to early (P = 0.006) and advanced DME (P = 0.003), the acircularity index was higher in severe DME. Both whole and parafoveal VD in the DVP decreased in eyes with severe DME compared to early DME (P = 0.018, P = 0.005, respectively) and advanced DME (P = 0.035, P = 0.012, respectively). In the multivariate generalized estimating equation, DME severity, FAZ area and foveal thickness were positively associated with worse visual acuity (P = 0.001, P = 0.007 and P = 0.001, respectively).
Conclusion
Compared to early and advanced DME, severe DME showed increased irregularity in the FAZ and more extensive vessel damage in the DVP. Greater severity level of DME, larger FAZ area, and increased foveal thickness could be risk factors for poor visual acuity.
Trial registration The protocol was published in the Chinese Clinical Trial Registry (ChiCTR2000033082).
Collapse
|
31
|
The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for proliferative diabetic retinopathy. PLoS One 2022; 17:e0277952. [PMID: 36409751 PMCID: PMC9678275 DOI: 10.1371/journal.pone.0277952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Proliferative Diabetic Retinopathy (PDR) is a chronic complication of Diabetes and the main cause of blindness among the world's working population at present. While there have been many studies on the pathogenesis of PDR, its intrinsic molecular mechanisms have not yet been fully elucidated. In recent years, several studies have employed bulk RNA-sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to profile differentially expressed genes (DEGs) and cellular components associated with PDR. This study adds to this expanding body of work by identifying PDR's target genes and cellular components by conducting an integrated transcriptome bioinformatics analysis. This study integrately examined two public bulk RNA-seq datasets(including 11 PDR patients and 7 controls) and one single-cell RNA-seq datasets(including 5 PDR patients) of Fibro (Vascular) Membranes (FVMs) from PDR patients and control. A total of 176 genes were identified as DEGs between PDR patients and control among both bulk RNA-seq datasets. Based on these DEGs, 14 proteins were identified in the protein overlap within the significant ligand-receptor interactions of retinal FVMs and Protein-Protein Interaction (PPI) network, three of which were associated with PDR (CD44, ICAM1, POSTN), and POSTN might act as key ligand. This finding may provide novel gene signatures and therapeutic targets for PDR.
Collapse
|
32
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
34
|
Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res 2022; 18:976-982. [PMID: 36254977 PMCID: PMC9827774 DOI: 10.4103/1673-5374.355743] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diabetic retinopathy, characterized as a microangiopathy and neurodegenerative disease, is the leading cause of visual impairment in diabetic patients. Many clinical features observed in diabetic retinopathy, such as capillary occlusion, acellular capillaries and retinal non-perfusion, aggregate retinal ischemia and represent relatively late events in diabetic retinopathy. In fact, retinal microvascular injury is an early event in diabetic retinopathy involving multiple biochemical alterations, and is manifested by changes to the retinal neurovascular unit and its cellular components. Currently, intravitreal anti-vascular endothelial growth factor therapy is the first-line treatment for diabetic macular edema, and benefits the patient by decreasing the edema and improving visual acuity. However, a significant proportion of patients respond poorly to anti-vascular endothelial growth factor treatments, indicating that factors other than vascular endothelial growth factor are involved in the pathogenesis of diabetic macular edema. Accumulating evidence confirms that low-grade inflammation plays a critical role in the pathogenesis and development of diabetic retinopathy as multiple inflammatory factors, such as interleukin-1β, monocyte chemotactic protein-1 and tumor necrosis factor -α, are increased in the vitreous and retina of diabetic retinopathy patients. These inflammatory factors, together with growth factors such as vascular endothelial growth factor, contribute to blood-retinal barrier breakdown, vascular damage and neuroinflammation, as well as pathological angiogenesis in diabetic retinopathy, complicated by diabetic macular edema and proliferative diabetic retinopathy. In addition, retinal cell types including microglia, Müller glia, astrocytes, retinal pigment epithelial cells, and others are activated, to secrete inflammatory mediators, aggravating cell apoptosis and subsequent vascular leakage. New therapies, targeting these inflammatory molecules or related signaling pathways, have the potential to inhibit retinal inflammation and prevent diabetic retinopathy progression. Here, we review the relevant literature to date, summarize the inflammatory mechanisms underlying the pathogenesis of diabetic retinopathy, and propose inflammation-based treatments for diabetic retinopathy and diabetic macular edema.
Collapse
Affiliation(s)
- Lei Tang
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China,Correspondence to: Guo-Tong Xu, ; Jing-Fa Zhang, .
| | - Jing-Fa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China,Correspondence to: Guo-Tong Xu, ; Jing-Fa Zhang, .
| |
Collapse
|
35
|
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors. Sci Rep 2022; 12:12955. [PMID: 35902594 PMCID: PMC9334268 DOI: 10.1038/s41598-022-12683-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1β caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1β-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
36
|
Mao J, Zhang S, Zheng Z, Deng X, Liu C, Chen Y, Zhao S, Zhang Y, Shen L. Prediction of anti-VEGF efficacy in diabetic macular oedema using intraocular cytokines and macular optical coherence tomography. Acta Ophthalmol 2022; 100:e891-e898. [PMID: 34403203 DOI: 10.1111/aos.15008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE In eyes with diabetic macular oedema (DME), aqueous humour (AH) cytokine levels before and after anti-vascular endothelial growth factor (VEGF) treatment were compared and correlated with optical coherence tomography structural parameters. METHODS This prospective study included 56 control patients with cataracts and 83 patients with DME manifesting as diffuse retinal thickening (DRT), cystoid macular oedema and serous retinal detachment (SRD). AH samples were obtained before intravitreal injection of anti-VEGF or cataract surgery. VEGF, interleukin (IL)-6, IL-8, IL-10, interferon-inducible protein 10 (IP-10) and monocyte chemotactic protein 1 (MCP-1) levels were measured by multiplex bead assay. AH cytokine levels, central macular thickness (CMT), number of hyper-reflective foci (HF), continuity of external limiting membrane and ellipsoid zone (EZ) and best-corrected visual acuity were evaluated. RESULTS In SRD, IL-6 and MCP-1 levels and HF were increased (all p < 0.05) compared to DRT. At baseline, the number of HF was correlated with VEGF, IL-6, IL-8, IP-10 and MCP-1 (all p < 0.05). Eyes sensitive to anti-VEGF treatment had high baseline levels of VEGF, MCP-1, HF and many EZ disruptions (all p < 0.05). DME patients with normal VEGF levels but with high levels of IL-8, IP-10 and MCP-1 (all p < 0.05) had little change in CMT after anti-VEGF treatment (p = 0.678). CONCLUSIONS AH concentrations of some inflammatory cytokines in DME were differentially expressed among the three DME morphologies. HF was associated with VEGF and other inflammatory cytokine levels. Multiple HF at baseline predicted a significant decrease in CMT, and eyes with normal VEGF but increased inflammatory cytokines may be insensitive to anti-VEGF treatment.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Shian Zhang
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Zicheng Zheng
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Xinyi Deng
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Chenyi Liu
- Chicago College of Optometry Midwestern University Downers Grove IL USA
| | - Yiqi Chen
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Shixin Zhao
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Yun Zhang
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| | - Lijun Shen
- Department of Retina Center Affiliated Eye Hospital of Wenzhou Medical University Hangzhou, Zhejiang China
| |
Collapse
|
37
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
38
|
Tang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. Melatonin Maintains Inner Blood-Retinal Barrier by Regulating Microglia via Inhibition of PI3K/Akt/Stat3/NF-κB Signaling Pathways in Experimental Diabetic Retinopathy. Front Immunol 2022; 13:831660. [PMID: 35371022 PMCID: PMC8964465 DOI: 10.3389/fimmu.2022.831660] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Microglial activation and melatonin protection have been reported in diabetic retinopathy (DR). Whether melatonin could regulate microglia to protect the inner blood–retinal barrier (iBRB) remains unknown. In this study, the role of microglia in iBRB breakdown and the mechanisms of melatonin’s regulation on microglia were explored. In diabetic rat retinas, activated microglia proliferated and migrated from the inner retina to the outer retina, accompanied by the obvious morphological changes. Meanwhile, significant leakage of albumin was evidenced at the site of close interaction between activated microglia and the damaged pericytes and endothelial cells. In vitro, inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, and arginase-1 (Arg-1), were increased significantly in CoCl2-treated BV2 cells. The supernatant derived from CoCl2-treated BV2 cells significantly decreased the cell viability and disrupted the junctional proteins in both pericytes and endothelial cells, resulting in severe leakage. Melatonin suppressed the microglial overactivation, i.e., decreasing the cell number and promoting its anti-inflammatory properties in diabetic rat retinas. Moreover, the leakage of iBRB was alleviated and the pericyte coverage was restored after melatonin treatment. In vitro, when treated with melatonin in CoCl2-treated BV2 cells, the inflammatory factors were decreased, while the anti-inflammatory factors were increased, further reducing the pericyte loss and increasing the tight junctions. Melatonin deactivated microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways, thus maintaining the integrity of iBRB. The present data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of melatonin in the treatment of DR by regulating microglia.
Collapse
Affiliation(s)
- Lei Tang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
39
|
C-terminal binding protein 2 promotes high-glucose-triggered cell proliferation, angiogenesis and cellular adhesion of human retinal endothelial cell line. Int Ophthalmol 2022; 42:2975-2985. [PMID: 35353294 DOI: 10.1007/s10792-022-02283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The proliferation and angiogenesis of human retinal endothelial cells (HRECs) are critical for the pathophysiology of diabetic retinopathy (DR). C-terminal binding protein 2 (CtBP2) has multiple biologic functions, but its effect on HRECs under high-glucose (HG) conditions is unclear. METHODS The cell viability, angiogenesis, cellular adhesion and CtBP2 expression levels of HRECs were measured following treatment with different concentrations of glucose. Small interfering CtBP2-targeting RNA, wide-type and function mutant plasmid of CtBP2 were constructed and then were transfected into HRECs to evaluate the effects of CtBP2 on cell functions of HRECs. RESULTS The expression of CtBP2 in HRECs was increased after HG treatment. HG treatment significantly increased cell proliferation, angiogenesis, and decreased relative gene expressions in gap junctions, tight junctions and adherens junctions. After CtBP2 was inhibited via siRNA, the changes induced by HG were partially restored. Conversely, only wild-type CtBP2 could increase cell proliferation and angiogenesis under HG condition. Mechanistically, we also found that CtBP2 exerted its functions to effect HG-induced changes via Akt signaling pathway. CONCLUSION This study implicates that CtBP2 promotes HG-induced cell proliferation, angiogenesis and cellular adhesion, and CtBP2 might be a potential target in the prevention of DR.
Collapse
|
40
|
Lelyte I, Ahmed Z, Kaja S, Kalesnykas G. Structure-Function Relationships in the Rodent Streptozotocin-Induced Model for Diabetic Retinopathy: A Systematic Review. J Ocul Pharmacol Ther 2022; 38:271-286. [PMID: 35325558 PMCID: PMC9125572 DOI: 10.1089/jop.2021.0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptozotocin (STZ)-induced rodent model is one of the most commonly employed models in preclinical drug discovery for diabetic retinopathy (DR). However, standardization and validation of experimental readouts are largely lacking. The aim of this systematic review was to identify and compare the most useful readouts of STZ-induced DR and provide recommendations for future study design based on our findings. We performed a systematic search using 2 major databases, PubMed and EMBASE. Only articles describing STZ-induced DR describing both functional and structural readouts were selected. We also assessed the risk of bias and analyzed qualitative data in the selected studies. We identified 21 studies that met our inclusion/exclusion criteria, using either rats or mice and study periods of 2 to 24 weeks. Glucose level thresholds used to define hyperglycemia were inconsistent between studies, however, most studies used either 250 or 300.6 mg/dL as a defining criterion for hyperglycemia. All included studies performed electroretinography (ERG) and reported a reduction in a-, b-, or c-wave and/or oscillatory potential amplitudes. Spectral-domain optical coherence tomography and fluorescein angiography, as well as immunohistochemical and histopathological analyses showed reductions in retinal thickness, vascular changes, and presence of inflammation. Risk of bias assessment showed that all studies had a high risk of bias due to lack of reporting or correctly following procedures. Our systematic review highlights that ERG represents the most consistent functional readout in the STZ model. However, due to the high risk of bias, caution must be used when interpreting these studies.
Collapse
Affiliation(s)
- Inesa Lelyte
- Research and Development Division, Experimentica Ltd., Kuopio, Finland.,Institute of Inflammation and Ageing, and University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, and University of Birmingham, Birmingham, United Kingdom.,Center for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
| | - Simon Kaja
- Departments of Ophthalmology and Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA.,Experimentica Ltd., Research and Development Division, Forest Park, Illinois, USA
| | - Giedrius Kalesnykas
- Research and Development Division, Experimentica Ltd., Kuopio, Finland.,Experimentica Ltd., Research and Development Division, Vilnius, Lithuania
| |
Collapse
|
41
|
Identification of the Relationship between Hub Genes and Immune Cell Infiltration in Vascular Endothelial Cells of Proliferative Diabetic Retinopathy Using Bioinformatics Methods. DISEASE MARKERS 2022; 2022:7231046. [PMID: 35154512 PMCID: PMC8831064 DOI: 10.1155/2022/7231046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
Background Diabetic retinopathy (DR) is a serious ophthalmopathy that causes blindness, especially in the proliferative stage. However, the pathogenesis of its effect on endothelial cells, especially its relationship with immune cell infiltration, remains unclear. Methods The dataset GSE94019 was downloaded from the Gene Expression Omnibus (GEO) database to obtain DEGs. Through aggregate analyses such as Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DEGs. Weighted gene coexpression network analysis (WGCNA) and Cytoscape software including molecular complex detection (MCODE) and cytoHubba plug-ins were used to comprehensively analyze and determine the hub genes. ImmuCellAI analysis was performed to further study the relationship between samples, hub genes, and 24 types of immune cell infiltration. Finally, gene-set enrichment analysis (GSEA) was employed to identify the enrichment of immune cell infiltration and endothelial cell phenotype modifications in GO biological processes (BP) based on the expression level of hub genes. Results 2393 DEGs were identified, of which 800 genes were downregulated, and 1593 genes were upregulated. The results of functional enrichment revealed that 1398 BP terms were significantly enriched in DEGs. Three hub genes, EEF1A1, RPL11, and RPS27A, which were identified by conjoint analysis using WGCNA and Cytoscape software, were positively correlated with the number of CD4 naive T cells and negatively correlated with the numbers of B cells. The number of CD4 naive T cells, T helper 2 (Th2) cells, and effector memory T (Tem) cells were significantly higher while CD8 naive T cells and B cells significantly were lower in the diabetic group than in the nondiabetic group. Conclusions We unearthed the DEGs and Hub genes of endothelial cells related to the pathogenesis of PDR: EEF1A1, RPL11, and RPS27A, which are highly related to each other and participate in the specific biological process of inflammation-related immune cell infiltration and endothelial cell development, chemotaxis, and proliferation, thus providing new perspectives into the diagnosis of and potential “killing two birds with one stone” targeted therapy for PDR.
Collapse
|
42
|
Singer MA, Sheth V, Mansour SE, Coughlin B, Gonzalez VH. Three-year safety and efficacy of the 0.19-mg fluocinolone acetonide intravitreal implant for diabetic macular edema: the PALADIN study. Ophthalmology 2022; 129:605-613. [DOI: 10.1016/j.ophtha.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
|
43
|
Therapeutic Effects of Fenofibrate Nano-Emulsion Eye Drops on Retinal Vascular Leakage and Neovascularization. BIOLOGY 2021; 10:biology10121328. [PMID: 34943243 PMCID: PMC8698460 DOI: 10.3390/biology10121328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023]
Abstract
Macular edema caused by retinal vascular leakage and ocular neovascularization are the leading causes of severe vision loss in diabetic retinopathy (DR) and age-related macular degeneration (AMD) patients. Oral administration of fenofibrate, a PPARα agonist, has shown therapeutic effects on macular edema and retinal neovascularization in diabetic patients. To improve the drug delivery to the retina and its efficacy, we have developed a nano-emulsion-based fenofibrate eye drop formulation that delivered significantly higher amounts of the drug to the retina compared to the systemic administration, as measured by liquid chromatography-mass spectrometer (LC-MS). The fenofibrate eye drop decreased leukocytes adherent to retinal vasculature and attenuated overexpression of multiple inflammatory factors in the retina of very low-density lipoprotein receptor knockout (Vldlr-/-) mice, a model manifesting AMD phenotypes, and streptozotocin-induced diabetic rats. The fenofibrate eye drop also reduced retinal vascular leakage in these models. The laser-induced choroidal neovascularization was also alleviated by the fenofibrate eye drop. There were no detectable ocular toxicities associated with the fenofibrate eye drop treatment. These findings suggest that fenofibrate can be delivered efficiently to the retina through topical administration of the nano-emulsion eye drop, which has therapeutic potential for macular edema and neovascularization.
Collapse
|
44
|
Giblin MJ, Smith TE, Winkler G, Pendergrass HA, Kim MJ, Capozzi ME, Yang R, McCollum GW, Penn JS. Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166238. [PMID: 34343639 PMCID: PMC8565496 DOI: 10.1016/j.bbadis.2021.166238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Chronic low-grade retinal inflammation is an essential contributor to the pathogenesis of diabetic retinopathy (DR). It is characterized by increased retinal cell expression and secretion of a variety of inflammatory cytokines; among these, IL-1β has the reputation of being a major driver of cytokine-induced inflammation. IL-1β and other cytokines drive inflammatory changes that cause damage to retinal cells, leading to the hallmark vascular lesions of DR; these include increased leukocyte adherence, vascular permeability, and capillary cell death. Nuclear factor of activated T-cells (NFAT) is a transcriptional regulator of inflammatory cytokines and adhesion molecules and is expressed in retinal cells. Consequently, it may influence multiple pathogenic steps early in DR. We investigated the NFAT-dependency of IL-1β-induced inflammation in human Müller cells (hMC) and human retinal microvascular endothelial cells (hRMEC). Our results show that an NFAT inhibitor, Inhibitor of NFAT-Calcineurin Association-6 (INCA-6), decreased IL-1β-induced expression of IL-1β and TNFα in hMC, while having no effect on VEGF, CCL2, or CCL5 expression. We also demonstrate that INCA-6 attenuated IL-1β-induced increases of IL-1β, TNFα, IL-6, CCL2, and CCL5 (inflammatory cytokines and chemokines), and ICAM-1 and E-selectin (leukocyte adhesion molecules) expression in hRMEC. INCA-6 similarly inhibited IL-1β-induced increases in leukocyte adhesion in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Finally, INCA-6 rescued IL-1β-induced permeability in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Taken together, these data demonstrate the potential of NFAT inhibition to mitigate retinal inflammation secondary to diabetes.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America.
| | - Taylor E Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Garrett Winkler
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Hannah A Pendergrass
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Minjae J Kim
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, United States of America
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
45
|
Abdi F, Mohammadi SS, Falavarjani KG. Intravitreal Methotrexate. J Ophthalmic Vis Res 2021; 16:657-669. [PMID: 34840688 PMCID: PMC8593537 DOI: 10.18502/jovr.v16i4.9756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Intravitreal methotrexate (MTX) has been proven to be an effective treatment for various intraocular diseases. In this article, a comprehensive review was performed on intravitreal applications of methotrexate. Different aspects of the administration of intravitreal MTX for various clinical conditions such as intraocular tumors, proliferative vitreoretinopathy, diabetic retinopathy, age-related macular degeneration, and uveitis were reviewed and the adverse effects of intravitreal injection of MTX were discussed. The most common indications are intraocular lymphoma and uveitis. Other applications remain challenging and more studies are needed to establish the role of intravitreal MTX in the management of ocular diseases.
Collapse
Affiliation(s)
- Fatemeh Abdi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - S. Saeed Mohammadi
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Chen C, Wang C, Zhou X, Xu L, Chen H, Qian K, Jia B, Su G, Fu J. Nonsteroidal anti-inflammatory drugs for retinal neurodegenerative diseases. Prostaglandins Other Lipid Mediat 2021; 156:106578. [PMID: 34245897 DOI: 10.1016/j.prostaglandins.2021.106578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most common prescription drugs for inflammation, and topical NSAIDs are often used in ophthalmology to reduce pain, photophobia, inflammation, and edema. In recent years, many published reports have found that NSAIDs play an important role in the treatment of retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, pathological myopia, and retinitis pigmentosa (RP). The aim of the current review is to provide an overview of the role of various NSAIDs in the treatment of retinal neurodegenerative diseases and the corresponding mechanisms of action. This review highlighted that the topical application of NSAIDs for the treatment of retinal degenerative diseases has been studied to a remarkable extent and that its beneficial effects in many diseases have been proven. In the future, prospective studies with large study populations are required to extend these effects to clinical settings.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Xuebin Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Lingxian Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Kun Qian
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Bo Jia
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
47
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|
48
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
49
|
Evaluating Ocular Response in the Retina and Optic Nerve Head after Single and Fractionated High-Energy Protons. Life (Basel) 2021; 11:life11080849. [PMID: 34440593 PMCID: PMC8400407 DOI: 10.3390/life11080849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
There are serious concerns about possible late radiation damage to ocular tissue from prolonged space radiation exposure, and occupational and medical procedures. This study aimed to investigate the effects of whole-body high-energy proton exposure at a single dose on apoptosis, oxidative stress, and blood-retina barrier (BRB) integrity in the retina and optic nerve head (ONH) region and to compare these radiation-induced effects with those produced by fractionated dose. Six-month-old C57BL/6 male mice were either sham irradiated or received whole-body high energy proton irradiation at an acute single dose of 0.5 Gy or 12 equal dose fractions for a total dose of 0.5 Gy over twenty-five days. At four months following irradiation, mice were euthanized and ocular tissues were collected for histochemical analysis. Significant increases in the number of apoptotic cells were documented in the mouse retinas and ONHs that received proton radiation with a single or fractionated dose (p < 0.05). Immunochemical analysis revealed enhanced immunoreactivity for oxidative biomarker, 4-hydroxynonenal (4-HNE) in the retina and ONH following single or fractionated protons with more pronounced changes observed with a single dose of 0.5 Gy. BRB integrity was also evaluated with biomarkers of aquaporin-4 (AQP-4), a water channel protein, a tight junction (TJ) protein, Zonula occludens-1 (ZO-1), and an adhesion molecule, the platelet endothelial cell adhesion molecule-1 (PECAM-1). A significantly increased expression of AQP-4 was observed in the retina following a single dose exposure compared to controls. There was also a significant increase in the expression of PECAM-1 and a decrease in the expression of ZO-1 in the retina. These changes give a strong indication of disturbance to BRB integrity in the retina. Interestingly, there was very limited immunoreactivity of AQP-4 and ZO-1 seen in the ONH region, pointing to possible lack of BRB properties as previously reported. Our data demonstrated that exposure to proton radiation of 0.5 Gy induced oxidative stress-associated apoptosis in the retina and ONH, and changes in BRB integrity in the retina. Our study also revealed the differences in BRB biomarker distribution between these two regions. In response to radiation insults, the cellular response in the retina and ONH may be differentially regulated in acute or hyperfractionated dose schedules.
Collapse
|
50
|
Tang L, Zhang C, Yang Q, Xie H, Liu D, Tian H, Lu L, Xu JY, Li W, Xu G, Qiu Q, Liu K, Luo D, Xu GT, Zhang J. Melatonin maintains inner blood-retinal barrier via inhibition of p38/TXNIP/NF-κB pathway in diabetic retinopathy. J Cell Physiol 2021; 236:5848-5864. [PMID: 33432588 DOI: 10.1002/jcp.30269] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023]
Abstract
The pathophysiology of diabetic retinopathy (DR) was complex. Under hyperglycemic conditions, the release of proinflammatory cytokines and the adhesion of leukocytes to retinal capillaries contribute to endothelial damage and the subsequent increase in vascular permeability resulting in macular edema. Melatonin, produced in the retina to regulate redox reactions and dopamine metabolism, plays protective roles against inflammation and oxidative stress. Considering its anti-inflammatory and antioxidative properties, melatonin was speculated to exert beneficial effects in DR. In this study, we characterized the protective effects of melatonin on the inner blood-retinal barrier (iBRB), as well as the possible mechanisms in experimental DR. Results showed that in diabetic rat retinas, the leakage of iBRB and the expression of inflammatory factors (VEGF, TNF-α, IL-1β, ICAM-1, and MMP9) increased dramatically, while the expression of tight junction proteins (ZO-1, occludin, JAM-A, and claudin-5) decreased significantly. The above changes were largely ameliorated by melatonin. The in vivo data were confirmed in vitro. In addition, the protein expressions of p38 MAPK, NF-κB, and TXNIP were upregulated significantly in diabetes and were downregulated following melatonin treatment. Melatonin could maintain the iBRB integrity by upregulating the expression of tight junction proteins via inhibiting p38/TXNIP/NF-κB pathway, thus decreasing the production of inflammatory factors. This study may shed light on the development of melatonin-based DR therapy.
Collapse
Affiliation(s)
- Lei Tang
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Qian Yang
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Hai Xie
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Guoxu Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|