1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
3
|
Sabir DK. Targeting the Hippo and Rap1 signaling pathways: the anti-proliferative effects of curcumin in colorectal cancer cell lines. Med Oncol 2025; 42:41. [PMID: 39779534 DOI: 10.1007/s12032-024-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
CRC has the third-highest cancer incidence and death. Many human cancers, including colorectal cancer, are connected to abnormal signaling pathway gene expression. Many human malignancies include Hippo and Rap1 signaling. This research examined curcumin's therapeutic effects on colorectal cancer cell lines' Hippo and Rap1 signaling pathway genes. The role of the above signaling pathways is considered in colorectal cancer development. No research has examined curcumin's influence on key genes in these pathways; thus, this work is meant to uncover its more precise mechanism. First, the gene expression omnibus database is queried to discover GSE8671, a dataset that contains differentially expressed genes associated in CRC formation. DAVID was used to discover the corporation of these genes and signaling pathways (Hippo and Rap1), and the cancer genome atlas (TCGA) database was utilized to select genes and assess their expression and biomarker potential. MTT, apoptosis, and quantitative PCR were used to assess whether curcumin is therapeutic for colorectal cancer cell lines. An in-silico analysis identified the dysregulation of several critical genes AXIN2, MYC, TEAD4, MET, LPAR1, and ADCY9 in colorectal cancer, highlighting their involvement in the Hippo and Rap1 signaling pathways. Experimental assessments, including MTT assays, apoptosis assays, and quantitative PCR (qPCR) analysis, demonstrated that the targeted modulation of these genes effectively inhibits cancer cell proliferation. Specifically, treatment with curcumin resulted in a significant reduction in cell viability in HT-29 and HCT-116 colorectal cancer cell lines, thereby facilitating apoptotic cell death. Furthermore, curcumin administration was associated with the upregulation of LPAR1 and ADCY9 gene expression, while concurrently downregulating AXIN2, MYC, TEAD4, and MET in both cell lines. This study reveals compelling evidence of curcumin's potent anticancer properties, highlighting its transformative influence on the Hippo and Rap1 signaling pathways within colorectal cancer cells. These findings not only underscore curcumin's potential as a therapeutic agent but also pave the way for innovative strategies in the fight against colorectal cancer.
Collapse
Affiliation(s)
- Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Rubí-Sans G, Nyga A, Mateos-Timoneda MA, Engel E. Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts. BIOMATERIALS ADVANCES 2025; 166:214061. [PMID: 39406156 DOI: 10.1016/j.bioadv.2024.214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 11/13/2024]
Abstract
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex three-dimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain.
| |
Collapse
|
5
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
6
|
Akrida I, Makrygianni M, Nikou S, Mulita F, Bravou V, Papadaki H. Hippo pathway effectors YAP, TAZ and TEAD are associated with EMT master regulators ZEB, Snail and with aggressive phenotype in phyllodes breast tumors. Pathol Res Pract 2024; 262:155551. [PMID: 39153238 DOI: 10.1016/j.prp.2024.155551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Phyllodes tumors (PTs) of the breast are uncommon fibroepithelial neoplasms that tend to recur locally and may have metastatic potential. Their pathogenesis is poorly understood. Hippo signaling pathway plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. Hippo signaling dysfunction has been implicated in cancer. Recent evidence suggests that there is cross-talk between the Hippo signaling key proteins YAP/TAZ and the epithelial-mesenchymal transition (EMT) master regulators Snail and ZEB. In this study we aimed to investigate the expression of Hippo signaling pathway components and EMT regulators in PTs, in relation to tumor grade. METHODS Expression of Hippo signaling effector proteins YAP, TAZ and their DNA binding partner TEAD was evaluated by immunohistochemistry in paraffin-embedded tissue specimens from 86 human phyllodes breast tumors (45 benign, 21 borderline, 20 malignant), in comparison with tumor grade and with the expression of EMT-related transcription factors ZEB and Snail. RESULTS Nuclear immunopositivity for YAP, TAZ and TEAD was detected in both stromal and epithelial cells in PTs and was significantly higher in high grade tumors. Interestingly, there was a significant correlation between the expression of YAP, TAZ, TEAD and the expression of ZEB and SNAIL. CONCLUSIONS Our results originally implicate Hippo signaling pathway in PTs pathogenesis and suggest that an interaction between Hippo signaling key components and EMT regulators may promote the malignant features of PTs.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece; Department of Surgery, University Hospital of Patras, Rion, Greece.
| | - Maria Makrygianni
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, Rion, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Rion, Greece
| |
Collapse
|
7
|
Liu Y, Wang Q, Sun Z, Chen H, Yue L, Yang J, Li Z, Lv X, Zhou X. Investigating the Effects of AL049796.1 Silencing in Inhibiting High Glucose-Induced Colorectal Cancer Progression. DNA Cell Biol 2024; 43:401-413. [PMID: 38853745 DOI: 10.1089/dna.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. In vitro experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. In vivo, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Qi Wang
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Zicheng Sun
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Haijun Chen
- Department of General Surgery, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong, China
| | - Luxiao Yue
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jiachen Yang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaojun Zhou
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Akbar S, Mashreghi S, Kalani MR, Valanik A, Ahmadi F, Aalikhani M, Bazi Z. Blood miRNAs miR-549a, miR-552, and miR-592 serve as potential disease-specific panels to diagnose colorectal cancer. Heliyon 2024; 10:e28492. [PMID: 38571665 PMCID: PMC10988015 DOI: 10.1016/j.heliyon.2024.e28492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction miRNAs originating from colorectal cancer (CRC) tissue receive significant focus in the early diagnosis of CRC due to their stability in body fluids. However, if these miRNAs originated from alternative organs, their prognostic value will diminish. Thus, in this study, we aim to identify disease-specific miRNAs for colorectal cancer (CRC) by employing bioinformatics and experimental methodologies. Method To identify CRC-specific miRNAs, we retrieved miRNA profiles of CRC and normal tissues from the Cancer Genome Atlas (TCGA) database. Subsequently, computational strategies were utilized to select potential candidate miRNAs. Following this, the expression levels of the potent miRNAs were assessed through RT-qPCR in both CRC tissue and serum samples from patients (N = 46), as well as healthy individuals (N = 46). Additionally, the associations between clinicopathological characteristics, survival outcomes, and diagnostic accuracy were evaluated. Results A total of 8893 RNA-seq expression data were acquired from TCGA, comprising 8250 data from 19 distinct cancer types and 643 corresponding healthy samples. Based on the computational methodology, miR-549a, miR-552, and miR-592 were identified as the principal expressed miRNAs in colorectal cancer (CRC). Within these miRNAs, miR-552 displayed a substantial association with tumors at the N and T stages. miR-549a and miR-592 were observed to be linked exclusively to the invasion of tumor depth and tumor stage (TNM), respectively. The receiver operating characteristic (ROC) analysis conducted on the miRNA expression in serum samples revealed that all miRNAs exhibited an area under the ROC curve (AUC) of up to 0.86, thereby indicating their high diagnostic accuracy. Conclusion Considering the strong associations of these three identified miRNAs with CRC, they can collectively serve as a panel for specific discrimination of CRC from other types of cancer within the body. Although this study focused solely on CRC, this approach can potentially be applied to other cancer types as well.
Collapse
Affiliation(s)
- Soroush Akbar
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samaneh Mashreghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Akram Valanik
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzaneh Ahmadi
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Aalikhani
- Department of Medical Biotechnology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
9
|
Roy S, Singh J, Ray SS. Weighted Combination of Łukasiewicz implication and Fuzzy Jaccard similarity in Hybrid Ensemble Framework (WCLFJHEF) for Gene Selection. Comput Biol Med 2024; 170:107981. [PMID: 38262204 DOI: 10.1016/j.compbiomed.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
A framework is developed for gene expression analysis by introducing fuzzy Jaccard similarity (FJS) and combining Łukasiewicz implication with it through weights in hybrid ensemble framework (WCLFJHEF) for gene selection in cancer. The method is called weighted combination of Łukasiewicz implication and fuzzy Jaccard similarity in hybrid ensemble framework (WCLFJHEF). While the fuzziness in Jaccard similarity is incorporated by using the existing Gödel fuzzy logic, the weights are obtained by maximizing the average F-score of selected genes in classifying the cancer patients. The patients are first divided into different clusters, based on the number of patient groups, using average linkage agglomerative clustering and a new score, called WCLFJ (weighted combination of Łukasiewicz implication and fuzzy Jaccard similarity). The genes are then selected from each cluster separately using filter based Relief-F and wrapper based SVMRFE (Support Vector Machine with Recursive Feature Elimination). A gene (feature) pool is created by considering the union of selected features for all the clusters. A set of informative genes is selected from the pool using sequential backward floating search (SBFS) algorithm. Patients are then classified using Naïve Bayes'(NB) and Support Vector Machine (SVM) separately, using the selected genes and the related F-scores are calculated. The weights in WCLFJ are then updated iteratively to maximize the average F-score obtained from the results of the classifier. The effectiveness of WCLFJHEF is demonstrated on six gene expression datasets. The average values of accuracy, F-score, recall, precision and MCC over all the datasets, are 95%, 94%, 94%, 94%, and 90%, respectively. The explainability of the selected genes is shown using SHapley Additive exPlanations (SHAP) values and this information is further used to rank them. The relevance of the selected gene set are biologically validated using the KEGG Pathway, Gene Ontology (GO), and existing literatures. It is seen that the genes that are selected by WCLFJHEF are candidates for genomic alterations in the various cancer types. The source code of WCLFJHEF is available at http://www.isical.ac.in/~shubhra/WCLFJHEF.html.
Collapse
Affiliation(s)
- Sukriti Roy
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India.
| | - Joginder Singh
- Center for Soft Computing Research, Indian Statistical Institute, Kolkata 700108, India.
| | - Shubhra Sankar Ray
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India; Center for Soft Computing Research, Indian Statistical Institute, Kolkata 700108, India.
| |
Collapse
|
10
|
Sabale P, Waghmare S, Potey L, Khedekar P, Sabale V, Rarokar N, Chikhale R, Palekar R. Novel targeting strategies on signaling pathways of colorectal cancer. COLORECTAL CANCER 2024:489-531. [DOI: 10.1016/b978-0-443-13870-6.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Kowalczyk AE, Krazinski BE, Piotrowska A, Grzegrzolka J, Godlewski J, Dziegiel P, Kmiec Z. Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer. Cancers (Basel) 2023; 15:5771. [PMID: 38136317 PMCID: PMC10742029 DOI: 10.3390/cancers15245771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Salvador homolog-1 (SAV1) is a component of the Hippo pathway that regulates tissue growth and homeostasis by affecting diverse cell processes, including apoptosis, cell division, and differentiation. The aberrant expression of Hippo pathway components has been observed in various human cancers. This study aimed to examine the expression level of the SAV1 gene in colorectal cancer (CRC) and its prognostic value and associations with tumor progression. We obtained matched pairs of tumor tissue and non-cancerous mucosa of the large intestine from 94 CRC patients as well as 40 colon biopsies of healthy subjects collected during screening colonoscopy. The tissue samples and CRC cell lines were quantified for SAV1 mRNA levels using the quantitative polymerase chain reaction method, while SAV1 protein expression was estimated in the paired tissues of CRC patients using immunohistochemistry. The average level of SAV1 mRNA was decreased in 93.6% of the tumor tissues compared to the corresponding non-cancerous tissues and biopsies of healthy colon mucosa. A downregulated expression of SAV1 mRNA was also noted in the CRC cell lines. Although the average SAV1 immunoreactivity was increased in the CRC samples compared to the non-cancerous tissues, a decreased immunoreactivity of the SAV1 protein in the tumor specimens was associated with lymph node involvement and higher TNM disease stage and histological grade. The results of our study suggest that the impaired expression of SAV1 is involved in CRC progression.
Collapse
Affiliation(s)
- Anna Ewa Kowalczyk
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Bartlomiej Emil Krazinski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (B.E.K.); (J.G.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
12
|
Zhou J, Foroughi Pour A, Deirawan H, Daaboul F, Aung TN, Beydoun R, Ahmed FS, Chuang JH. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality. EBioMedicine 2023; 94:104726. [PMID: 37499603 PMCID: PMC10388166 DOI: 10.1016/j.ebiom.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Colorectal cancers are the fourth most diagnosed cancer and the second leading cancer in number of deaths. Many clinical variables, pathological features, and genomic signatures are associated with patient risk, but reliable patient stratification in the clinic remains a challenging task. Here we assess how image, clinical, and genomic features can be combined to predict risk. METHODS We developed and evaluated integrative deep learning models combining formalin-fixed, paraffin-embedded (FFPE) whole slide images (WSIs), clinical variables, and mutation signatures to stratify colon adenocarcinoma (COAD) patients based on their risk of mortality. Our models were trained using a dataset of 108 patients from The Cancer Genome Atlas (TCGA), and were externally validated on newly generated dataset from Wayne State University (WSU) of 123 COAD patients and rectal adenocarcinoma (READ) patients in TCGA (N = 52). FINDINGS We first observe that deep learning models trained on FFPE WSIs of TCGA-COAD separate high-risk (OS < 3 years, N = 38) and low-risk (OS > 5 years, N = 25) patients (AUC = 0.81 ± 0.08, 5 year survival p < 0.0001, 5 year relative risk = 1.83 ± 0.04) though such models are less effective at predicting overall survival (OS) for moderate-risk (3 years < OS < 5 years, N = 45) patients (5 year survival p-value = 0.5, 5 year relative risk = 1.05 ± 0.09). We find that our integrative models combining WSIs, clinical variables, and mutation signatures can improve patient stratification for moderate-risk patients (5 year survival p < 0.0001, 5 year relative risk = 1.87 ± 0.07). Our integrative model combining image and clinical variables is also effective on an independent pathology dataset (WSU-COAD, N = 123) generated by our team (5 year survival p < 0.0001, 5 year relative risk = 1.52 ± 0.08), and the TCGA-READ data (5 year survival p < 0.0001, 5 year relative risk = 1.18 ± 0.17). Our multicenter integrative image and clinical model trained on combined TCGA-COAD and WSU-COAD is effective in predicting risk on TCGA-READ (5 year survival p < 0.0001, 5 year relative risk = 1.82 ± 0.13) data. Pathologist review of image-based heatmaps suggests that nuclear size pleomorphism, intense cellularity, and abnormal structures are associated with high-risk, while low-risk regions have more regular and small cells. Quantitative analysis shows high cellularity, high ratios of tumor cells, large tumor nuclei, and low immune infiltration are indicators of high-risk tiles. INTERPRETATION The improved stratification of colorectal cancer patients from our computational methods can be beneficial for treatment plans and enrollment of patients in clinical trials. FUNDING This study was supported by the National Cancer Institutes (Grant No. R01CA230031 and P30CA034196). The funders had no roles in study design, data collection and analysis or preparation of the manuscript.
Collapse
Affiliation(s)
- Jie Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, Farmington, CT, USA
| | | | - Hany Deirawan
- Department of Pathology, Wayne State University, Detroit, MI, USA; Department of Dermatology, Wayne State University, Detroit, MI, USA
| | - Fayez Daaboul
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Rafic Beydoun
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, Farmington, CT, USA.
| |
Collapse
|
13
|
Wang CH, Baskaran R, Ng SSC, Wang TF, Li CC, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Huang CY. Platycodin D confers oxaliplatin Resistance in Colorectal Cancer by activating the LATS2/YAP1 axis of the hippo signaling pathway. J Cancer 2023; 14:393-402. [PMID: 36860929 PMCID: PMC9969589 DOI: 10.7150/jca.77322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Oxaliplatin-based therapy is used as a first-line drug to treat metastatic colorectal cancer. However, long-term and repeated drug treatment resulted in drug resistance and the failure of chemotherapy. Various natural compounds were previously reported to act as chemosensitizers to reverse drug resistance. In this study, we found that platycodin D (PD), a saponin found in Platycodon grandiflorum, inhibited LoVo and OR-LoVo cells proliferation, invasion, and migration ability. Our results indicated that combined treatment of oxaliplatin with PD dramatically reduced the cellular proliferation in both LoVo and OR-LoVo cells. Furthermore, treatment with PD dose-dependently decreased LATS2/YAP1 hippo signaling and survival marker p-AKT expression, as well as increased cyclin-dependent kinase inhibitor proteins such as p21 and p27 expression. Importantly, PD activates and promotes YAP1 degradation through the ubiquitination and proteasome pathway. The nuclear transactivation of YAP was significantly reduced under PD treatment, leading to transcriptional inhibition of the downstream genes regulating cell proliferation, pro-survival, and metastasis. In conclusion, our results showed that PD is suitable as a promising agent for overcoming oxaliplatin-resistant colorectal cancer.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Shawn Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan,Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan,Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan,Department of Biotechnology, Asia University, Taichung 413, Taiwan,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| |
Collapse
|
14
|
Yang J, Song DH, Kim CH, Kim MH, Jo HC, Kim H, Park JE, Baek JC. Expression of the Hippo Pathway Core Components in Endometrial Cancer and Its Association with Clinicopathologic Features. Diagnostics (Basel) 2022; 12:2973. [PMID: 36552980 PMCID: PMC9776728 DOI: 10.3390/diagnostics12122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The Hippo signaling pathway has a key role in tumorigenesis. This study aimed to evaluate the relationship between the expression of core components of the Hippo signaling pathway and its association with clinicopathological features in endometrial cancer. MATERIALS AND METHODS We retrospectively collected endometrioid endometrial cancer specimens from 60 patients between January 2002 and December 2009 at Gyeongsang National University Hospital. Relevant clinicopathological data were obtained through electronic medical records of patients. The expression patterns of six core components (YAP, p-YAP, LATS1/2, MST1/2, KIBRA, and Merlin) were identified by immunohistochemistry on tissue microarray sections. RESULTS The positive expression ratio was 75.0% for YAP, 73.3% for p-YAP, 26.7% for MST1/2, 16.7% for KIBRA, 15.0% for Merlin, and 15.0% for LATS1/2. YAP expression was negatively correlated with MST 1/2 kinases (p = 0.045) and positively correlated with p-YAP (p = 0.012). Merlin, and MST 1/2 kinases (p = 0.043) showed a positive correlation. A subgroup of patients aged below 60 years (p = 0.004) and with myometrial invasion depth of less than 1/2 (p = 0.041) showed a positive association with YAP expression. p-YAP expression was negatively associated with a subset of patients with primary tumour size ≥4 cm (p = 0.03). Logistic regression analysis showed a significant association between age and YAP expression. The odds ratio of p-YAP expression was significantly lower in the group with tumour size ≥4 cm. CONCLUSION Two prognostic factors, age and tumour size, were significantly associated with the expression of YAP and p-YAP in endometrial cancer. Further research should focus on their expression as a marker for prediction of clinicopathological implications in endometrial cancer.
Collapse
Affiliation(s)
- Juseok Yang
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Cho Hee Kim
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyen Chul Jo
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyoeun Kim
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Ji Eun Park
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong Chul Baek
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
15
|
Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10102512. [PMID: 36289774 PMCID: PMC9599207 DOI: 10.3390/biomedicines10102512] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.
Collapse
|
16
|
Mao W, Zhou J, Hu J, Zhao K, Fu Z, Wang J, Mao K. A pan-cancer analysis of FAT atypical cadherin 4 (FAT4) in human tumors. Front Public Health 2022; 10:969070. [PMID: 36051999 PMCID: PMC9424548 DOI: 10.3389/fpubh.2022.969070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Objective We performed a pan-cancer analysis to explore the potential mechanisms of FAT4 in 33 different tumors. Methods In this study, we selected 33 types of cancers based on the datasets of TCGA (the cancer genome atlas). We analyzed the expression of FAT4 in tumor and normal tissues. Meanwhile, we analyzed the expression levels of FAT4 in tissues from tumors of different stages. Kaplan-Meier survival analysis, Tumor Mutational Burden (TMB), Microsatellite Instability (MSI), immune infiltration analysis, Gene set enrichment analysis (GSEA), and FAT4-related gene enrichment analysis were performed. Results FAT4 expression in most tumor tissues was lower than in corresponding control tissues. FAT4 expression was different in different stages of bladder cancer (BLCA), kidney clear cell carcinoma (KIRC), and breast cancer (BRCA). In addition, the expression level of FAT4 in different types of tumors has an important impact on the prognosis of patients. FAT4 might influence the efficacy of immunotherapy via tumor burden and microsatellite instability. We observed a statistically positive correlation between cancer-associated fibroblasts and FAT4 expression in most tumors. GSEA of BLCA indicated that low FAT4 expression groups were mainly enriched in calcium signaling pathway and chemokine signaling pathway. GSEA analysis of KIRC suggested low FAT4 expression groups were mainly involved in olfactory transduction and oxidative phosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the role of FAT4 in the pathogenesis of cancer may be related to human papillomavirus infection, Hippo signaling pathway, PI3K-Akt signaling pathway, etc. Gene Ontology (GO) enrichment analysis further showed that most of these genes were related to the pathways or cell biology, such as peptidyl-tyrosine phosphorylation, cell junction assembly, protein tyrosine kinase activity, etc. Conclusion Our study summarized and analyzed the antitumor effect of FAT4 in different tumors comprehensively, which aided in understanding the role of FAT4 in tumorigenesis from the perspective of clinical tumor samples. Pan-cancer analysis showed that FAT4 to be novel biomarkers for various cancers prognosis.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiajing Zhou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jie Hu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kui Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenling Fu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Wang
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,*Correspondence: Jun Wang
| | - Kaili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,Kaili Mao
| |
Collapse
|
17
|
Zhang W, Liu R, Zhang L, Wang C, Dong Z, Feng J, Luo M, Zhang Y, Xu Z, Lv S, Wei Q. Downregulation of miR-335 exhibited an oncogenic effect via promoting KDM3A/YAP1 networks in clear cell renal cell carcinoma. Cancer Gene Ther 2022; 29:573-584. [PMID: 33888871 PMCID: PMC9113937 DOI: 10.1038/s41417-021-00335-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer affecting many people worldwide. Although the 5-year survival rate is 65% in localized disease, after metastasis, the survival rate is <10%. Emerging evidence has shown that microRNAs (miRNAs) play a crucial regulatory role in the progression of ccRCC. Here, we show that miR-335, an anti-onco-miRNA, is downregulation in tumor tissue and inhibited ccRCC cell proliferation, invasion, and migration. Our studies further identify the H3K9me1/2 histone demethylase KDM3A as a new miR-335-regulated gene. We show that KDM3A is overexpressed in ccRCC, and its upregulation contributes to the carcinogenesis and metastasis of ccRCC. Moreover, with the overexpression of KDM3A, YAP1 was increased and identified as a direct downstream target of KDM3A. Enrichment of KDM3A demethylase on YAP1 promoter was confirmed by CHIP-qPCR and YAP1 was also found involved in the cell growth and metastasis inhibitory of miR-335. Together, our study establishes a new miR-335/KDM3A/YAP1 regulation axis, which provided new insight and potential targeting of the metastasized ccRCC.
Collapse
Affiliation(s)
- Wenqiang Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ruiyu Liu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lin Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Chao Wang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ziyan Dong
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Jiasheng Feng
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Mayao Luo
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Yifan Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Zhuofan Xu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Shidong Lv
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Qiang Wei
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
18
|
Eggington HR, Mulholland EJ, Leedham SJ. Morphogen regulation of stem cell plasticity in intestinal regeneration and carcinogenesis. Dev Dyn 2022; 251:61-74. [PMID: 34716737 DOI: 10.1002/dvdy.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.
Collapse
Affiliation(s)
- Holly R Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
19
|
Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M, Kavianpour M. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell Int 2021; 21:705. [PMID: 34953494 PMCID: PMC8710012 DOI: 10.1186/s12935-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effective therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcinogenesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. On the other hand, interaction with other pathways like Wnt, TGF-β, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, which this process could be regulated via other signaling pathways. This review article aimed to shed light on how the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
Collapse
Affiliation(s)
| | - Bentolhoda Hayatmoghadam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Jamali
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Golmohammadi
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
21
|
Lim YX, Lin H, Seah SH, Lim YP. Reciprocal Regulation of Hippo and WBP2 Signalling-Implications in Cancer Therapy. Cells 2021; 10:cells10113130. [PMID: 34831354 PMCID: PMC8625973 DOI: 10.3390/cells10113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Sock Hong Seah
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
- Correspondence:
| |
Collapse
|
22
|
The Expression and Prognostic Value of ILK and YAP1 in Glioma. Appl Immunohistochem Mol Morphol 2021; 30:e21-e29. [DOI: 10.1097/pai.0000000000000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
|
23
|
Bourdakou MM, Spyrou GM, Kolios G. Colon Cancer Progression Is Reflected to Monotonic Differentiation in Gene Expression and Pathway Deregulation Facilitating Stage-specific Drug Repurposing. Cancer Genomics Proteomics 2021; 18:757-769. [PMID: 34697067 DOI: 10.21873/cgp.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Colon cancer is one of the most common cancer types and the second leading cause of death due to cancer. Many efforts have been performed towards the investigation of molecular alterations during colon cancer progression. However, the identification of stage-specific molecular markers remains a challenge. The aim of this study was to develop a novel computational methodology for the analysis of alterations in differential gene expression and pathway deregulation across colon cancer stages in order to reveal stage-specific biomarkers and reinforce drug repurposing investigation. MATERIALS AND METHODS Transcriptomic datasets of colon cancer were used to identify (a) differentially expressed genes with monotonicity in their fold changes (MEGs) and (b) perturbed pathways with ascending monotonic enrichment (MEPs) related to the number of the participating differentially expressed genes (DEGs), across the four colon cancer stages. Through an in silico drug repurposing pipeline we identified drugs that regulate the expression of MEGs and also target the resulting MEPs. RESULTS Our methodology highlighted 15 MEGs and 32 candidate repurposed drugs that affect their expression. We also found 51 MEPs divided into two groups according to their rate of DEG content alteration across colon cancer stages. Focusing on the target MEPs of the highlighted repurposed drugs, we found that one of them, the neuroactive ligand-receptor interaction, was targeted by the majority of the candidate drugs. Moreover, we observed that two of the drugs (PIK-75 and troglitazone) target the majority of the resulting MEPs. CONCLUSION These findings highlight significant genes and pathways that can be used as stage-specific biomarkers and facilitate the discovery of new potential repurposed drugs for colon cancer. We expect that the computational methodology presented can be applied in a similar way to the analysis of any progressive disease.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George M Spyrou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece;
| |
Collapse
|
24
|
Feng Y, Ci H, Wu Q. Expression of mammalian sterile 20-like kinase 1 and 2 and Yes-associated protein 1 proteins in triple-negative breast cancer and the clinicopathological significance. Medicine (Baltimore) 2021; 100:e27032. [PMID: 34449481 PMCID: PMC8389968 DOI: 10.1097/md.0000000000027032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIM Mammalian sterile 20-like kinase 1 and 2 (MST1/2) and Yes-associated protein 1 (YAP1) are the core molecules of the Hippo signaling pathway, which have been found to be unbalanced in the occurrence of tumors and promote the development of the lesions. The present study aimed to investigate the expression of MST1/2 and YAP1 proteins in triple-negative breast cancer (TNBC) and their clinicopathological significance. METHODS Immunohistochemistry was used to detect the expression level of protein in tissues. According to the percentage of positive cells and staining intensity, the expression intensity of MST1/2 and YAP1 proteins in the tissue samples was scored, and the correlation between MST1/2 and the clinicopathological features of TNBC were discussed. RESULTS The expression of MST1/2 and YAP1 was associated with histological grade, metastasis, lymph node metastasis stage, and tumor node metastasis stage. The overexpression of YAP1 predicted a poor prognosis in terms of overall survival and disease-free survival time. The MST1/2 expression was associated with improved overall survival and disease free survival of the patients. CONCLUSION MST1/2 and YAP1 may be used as prognostic indicators to evaluate the recurrence of TNBC and might become one of the new targets for breast cancer treatment.
Collapse
Affiliation(s)
- Yang Feng
- Department of Pathology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui, China
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongfei Ci
- Department of Pathology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui, China
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qiong Wu
- Department of Pathology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui, China
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
25
|
Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol 2021; 85:33-42. [PMID: 34265423 DOI: 10.1016/j.semcancer.2021.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway was originally characterized by genetic studies in Drosophila to regulate tissue growth and organ size, and the core components of this pathway are highly conserved in mammals. Studies over the past two decades have revealed critical physiological and pathological functions of the Hippo tumor-suppressor pathway, which is tightly regulated by a broad range of intracellular and extracellular signals. These properties enable the Hippo pathway to serve as an important controller in organismal development and adult tissue homeostasis. Dysregulation of the Hippo signaling has been observed in many cancer types, suggesting the possibility of cancer treatment by targeting the Hippo pathway. The general consensus is that Hippo has tumor suppressor function. However, growing evidence also suggests that the function of the Hippo pathway in malignancy is cancer context dependent as recent studies indicating tumor promoting function of LATS. This article surveys the Hippo pathway signaling mechanisms and then reviews both the tumor suppressing and promoting function of this pathway. A comprehensive understanding of the dual roles of the Hippo pathway in cancer will benefit future therapeutic targeting of the Hippo pathway for cancer treatment.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
27
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Drexler R, Fahy R, Küchler M, Wagner KC, Reese T, Ehmke M, Feyerabend B, Kleine M, Oldhafer KJ. Association of subcellular localization of TEAD transcription factors with outcome and progression in pancreatic ductal adenocarcinoma. Pancreatology 2021; 21:170-179. [PMID: 33317954 DOI: 10.1016/j.pan.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transcriptional enhanced associated domain (TEAD) transcription factors are nuclear effectors of several oncogenic signalling pathways including Hippo, WNT, TGF-ß and EGFR pathways that interact with various cancer genes. The subcellular localization of TEAD regulates the functional output of these pathways affecting tumour progression and patient outcome. However, the impact of the TEAD family on pancreatic ductal adenocarcinoma (PDAC) and its clinical progression remain elusive. METHODS A cohort of 81 PDAC patients who had undergone surgery was established. Cytoplasmic and nuclear localization of TEAD1, TEAD2, TEAD3 and TEAD4 was evaluated with the immunoreactive score (IRS) by immunohistochemistry (IHC) using paraffin-embedded tissue. Results were correlated with clinicopathological data, disease-free and overall survival. RESULTS Nuclear staining of all four TEADs was increased in pancreatic cancer tissue. Patients suffering from metastatic disease at time of surgery showed a strong nuclear staining of TEAD2 and TEAD3 (p < 0.05). Furthermore, a nuclear > cytoplasmic ratio of TEAD2 and TEAD3 was associated with a shorter overall survival and TEAD2 emerged as an independent prognostic factor for disease-free survival. CONCLUSION Our study underlines the importance of TEAD transcription factors in PDAC as a nuclear localization was found to be associated with metastatic disease and an unfavourable prognosis after surgical resection.
Collapse
Affiliation(s)
- Richard Drexler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| | - Rebecca Fahy
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mirco Küchler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Kim C Wagner
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Tim Reese
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mareike Ehmke
- Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | | | - Moritz Kleine
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karl J Oldhafer
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| |
Collapse
|
29
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
31
|
Lin L, Wen J, Lin B, Bhandari A, Zheng D, Kong L, Wang Y, Wang O, Chen Y. Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer. J Cell Mol Med 2020; 24:14059-14072. [PMID: 33094920 PMCID: PMC7754061 DOI: 10.1111/jcmm.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Danni Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
32
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
33
|
Sammarco A, Gomiero C, Sacchetto R, Beffagna G, Michieletto S, Orvieto E, Cavicchioli L, Gelain ME, Ferro S, Patruno M, Zappulli V. Wnt/β-Catenin and Hippo Pathway Deregulation in Mammary Tumors of Humans, Dogs, and Cats. Vet Pathol 2020; 57:774-790. [PMID: 32807036 DOI: 10.1177/0300985820948823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammary cancer is a common neoplasm in women, dogs, and cats that still represents a therapeutic challenge. Wnt/β-catenin and Hippo pathways are involved in tumor progression, cell differentiation, and metastasis. The aim of this study was to evaluate mRNA and protein expression of molecules involved in these pathways in human (HBC), canine (CMT), and feline mammary tumors (FMT). Real-time quantitative polymerase chain reaction (qPCR) for β-catenin, CCND1, YAP, TAZ, CTGF, and ANKRD1, western blotting for YAP, TAZ, and β-catenin, and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), ERBB2, β-catenin, and YAP/TAZ were performed on mammary tumor tissues. The protein expression of active β-catenin was higher in tumors than in healthy tissues in all 3 species. The mRNA expression of the downstream gene CCND1 was increased in HBC ER+ and CMTs compared to healthy tissues. Membranous and cytoplasmic protein expression of β-catenin were strongly negatively correlated in all 3 species. Tumors showed an increased protein expression of YAP/TAZ when compared to healthy tissues. Notably, YAP/TAZ expression was higher in triple negative breast cancers when compared to HBC ER+ and in FMTs when compared to CMTs. The mRNA expression of β-catenin, YAP, TAZ, CTGF, and ANKRD1 was not different between tumors and healthy mammary gland in the 3 species. This study demonstrates deregulation of Wnt/β-catenin and Hippo pathways in mammary tumors, which was more evident at the protein rather than the mRNA level. Wnt/β-catenin and Hippo pathways seem to be involved in mammary carcinogenesis and therefore represent interesting therapeutic targets that should be further investigated.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Biomedical Sciences, 9308University of Padua, Italy.,Neuroscience Institute - Italian National Research Council (CNR), Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Cardio-Thoraco-Vascular Sciences and Public Health, 9308University of Padua, Italy
| | | | - Enrico Orvieto
- Department of Pathology, Azienda Ospedaliera di Padova, Padua, Italy.,Department of Pathology, 18674Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| |
Collapse
|
34
|
Fallah S, Beaulieu JF. The Hippo Pathway Effector YAP1 Regulates Intestinal Epithelial Cell Differentiation. Cells 2020; 9:1895. [PMID: 32823612 PMCID: PMC7463744 DOI: 10.3390/cells9081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
35
|
HUANG Y, YANG F, ZHOU T, XIE S. [Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:35-43. [PMID: 32621422 PMCID: PMC8800705 DOI: 10.3785/j.issn.1008-9292.2020.02.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 06/11/2023]
Abstract
Hippo signaling pathway is highly conservative in evolution. MST1/2, LATS1/2, and the effector protein YAP/TAZ are the core members of this signaling pathway in mammalian cells. There have been many studies on YAP/TAZ and its downstream, however, the upstream regulatory factors of the Hippo signaling pathway remain unclear, and become one of the hot research directions of this pathway at present. In addition, Hippo signaling pathway can cross-talk with other signaling pathways such as Wnt and Notch signaling pathways, and plays an important role in controlling organ size, maintaining tissue homeostasis, and promoting tissue repair and regeneration. Abnormal Hippo signaling pathway may lead to the occurrence of a variety of tumors, especially gastrointestinal cancers such as liver cancer, colorectal cancer and gastric cancer. The abnormal expression of its members in gastrointestinal cancers is related to cancer cell proliferation, apoptosis, invasion and migration. Hippo signaling pathway is vital for liver repair and regeneration. Its inactivation will lead to the occurrence of primary liver cancer. The mechanism of YAP in liver cancer mainly depends on TEAD-mediated gene transcription. Hippo signaling pathway is also important for maintaining intestinal homeostasis, and its imbalance can lead to the occurrence and recurrence of colorectal cancer. In primary and metastatic gastric cancer, the expression of YAP/TAZ is significantly up-regulated, but the specific molecular mechanism is unclear. This article summarizes the recent progress on Hippo signaling pathway and its upstream regulatory factors, its roles in the development of gastrointestinal cancers and related molecular mechanisms; and also discusses the future research directions of Hippo signaling pathway.
Collapse
|
36
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 PMCID: PMC11448948 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
37
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
38
|
Impact of Taurine on the proliferation and apoptosis of human cervical carcinoma cells and its mechanism. Chin Med J (Engl) 2019; 132:948-956. [PMID: 30958437 PMCID: PMC6595772 DOI: 10.1097/cm9.0000000000000162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Cervical cancer has the fourth highest incidence and mortality rate of all cancers in women worldwide; it seriously harms their physical and mental health. The aim of this study was to observe the roles and preliminary mechanism of Taurine (Tau)-induced apoptosis in cervical cancer cells. METHODS Cells from the human cervical cancer cell line SiHa were transfected with the recombinant plasmid pEGFP-N1-MST1 (mammalian sterile 20-like kinase 1); then, the cell proliferation activity was analyzed by the MTT assay, cell apoptosis by flow cytometry, and the related protein levels by Western blotting. RESULTS Tau inhibited the proliferation of SiHa cells and induced apoptosis in these cells (the apoptotic rate was 21.95% in the Tau 160 mmol/L group and 30% in the Tau 320 mmol/L group), upregulated the expression of the MST1 (control, 0.53; Tau 40-320 mmol/L groups, 0.84-1.45) and Bax (control, 0.45; Tau 40-320 mmol/L groups, 0.64-1.51) proteins (P < 0.01), and downregulated the expression of Bcl-2 (control, 1.28, Tau 40-320 mmol/L groups, 0.93-0.47) (P < 0.01). The overexpression of MST1 promoted the apoptosis of SiHa cells, enhanced the apoptosis-inductive effects of Tau (P < 0.01), upregulated the expression of the proapoptotic proteins p73, p53, PUMA (p53 upregulated modulator of apoptosis), and caspase-3, and promoted the phosphorylation of YAP (Yes-associated protein). CONCLUSIONS Tau inhibited the proliferation and induced the apoptosis of cervical cancer SiHa cells. The MST1 protein plays an important role in the Tau-induced apoptosis of cervical cancer cells.
Collapse
|
39
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
40
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
41
|
Abstract
Cancer is a serious health issue in the world due to a large body of cancer-related human deaths, and there is no current treatment available to efficiently treat the disease as the tumor is often diagnosed at a serious stage. Moreover, Cancer cells are often resistant to chemotherapy, radiotherapy, and molecular-targeted therapy. Upon further knowledge of mechanisms of tumorigenesis, aggressiveness, metastasis, and resistance to treatments, it is necessary to detect the disease at an earlier stage and for a better response to therapy. The hippo pathway possesses the unique capacity to lead to tumorigenesis. Mutations and altered expression of its core components (MST1/2, LATS1/2, YAP and TAZ) promote the migration, invasion, malignancy of cancer cells. The biological significance and deregulation of it have received a large body of interests in the past few years. Further understanding of hippo pathway will be responsible for cancer treatment. In this review, we try to discover the function of hippo pathway in different diversity of cancers, and discuss how Hippo pathway contributes to other cellular signaling pathways. Also, we try to describe how microRNAs, circRNAs, and ZNFs regulate hippo pathway in the process of cancer. It is necessary to find new therapy strategies for cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
42
|
Dominguez-Berrocal L, Cirri E, Zhang X, Andrini L, Marin GH, Lebel-Binay S, Rebollo A. New Therapeutic Approach for Targeting Hippo Signalling Pathway. Sci Rep 2019; 9:4771. [PMID: 30886324 PMCID: PMC6423280 DOI: 10.1038/s41598-019-41404-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Nuclear localization signals are short amino acid sequences that target proteins for nuclear import. In this manuscript, we have generated a chimeric tri-functional peptide composed of a cell penetrating peptide (CPP), a nuclear localization sequence and an interfering peptide blocking the interaction between TEAD and YAP, two transcription factors involved in the Hippo signalling pathway, whose deregulation is related to several types of cancer. We have validated the cell penetration and nuclear localization by flow cytometry and fluorescence microscopy and shown that the new generated peptide displays an apoptotic effect in tumor cell lines thanks to the specific nuclear delivery of the cargo, which targets a protein/protein interaction in the nucleus. In addition, the peptide has an anti-tumoral effect in vivo in xenograft models of breast cancer. The chimeric peptide designed in the current study shows encouraging prospects for developing nuclear anti- neoplastic drugs.
Collapse
Affiliation(s)
| | - Erica Cirri
- PEP Therapy, 45 rue du Cardinal Lemoine, 75005, Paris, France
| | - Xiguang Zhang
- CIMI Paris, Inserm U1135, 91, bd de l'hôpital, 75013, Paris, France
| | - Laura Andrini
- Facultad de Ciencias Medicas, UNLP-CONICET, 60 and 120, Code, 1900, La Plata, Argentina
| | - Gustavo H Marin
- Facultad de Ciencias Medicas, UNLP-CONICET, 60 and 120, Code, 1900, La Plata, Argentina
| | | | - Angelita Rebollo
- CIMI Paris, Inserm U1135, 91, bd de l'hôpital, 75013, Paris, France.
| |
Collapse
|
43
|
YAP1 Is Involved in Tumorigenic Properties of Prostate Cancer Cells. Pathol Oncol Res 2019; 26:867-876. [DOI: 10.1007/s12253-019-00634-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
|
44
|
Liu Z, Xia Y, Zhang X, Liu L, Tu S, Zhu W, Yu L, Wan H, Yu B, Wan F. Roles of the MST1-JNK signaling pathway in apoptosis of colorectal cancer cells induced by Taurine. Libyan J Med 2018; 13:1500346. [PMID: 30035680 PMCID: PMC6060381 DOI: 10.1080/19932820.2018.1500346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to observe the impact of the mammalian sterile 20-like kinase 1-c-Jun N-terminal kinase (MST1-JNK) signaling pathway on apoptosis in colorectal cancer (CRC) cells induced by Taurine (Tau). Caco-2 and SW620 cells transfected with p-enhanced green fluorescent protein (EGFP)-MST1 or short interfering RNA (siRNA)-MST1 were treated with Tau for 48 h. Apoptosis was detected by flow cytometry, and the levels of MST1 and JNK were detected by western blotting. Compared with the control group, 80 mM Tau could significantly induce apoptosis of CRC cells, and the apoptotic rate increased with increasing Tau concentration (P < 0.01). Meanwhile, the protein levels of MST1 and phosphorylated (p)-JNK in Caco-2 cells increased significantly (P < 0.01). The apoptotic rate of the p-EGFP-MST1 plasmid-transfected cancer cells was significantly higher than that of the control group (P < 0.05); however, the apoptotic rate of the p-EGFP-MST1+Tau group was increased further (P < 0.01). Silencing the MST1 gene could decrease the apoptotic rate of cancer cells, and Tau treatment could reverse this decrease. Blocking the JNK signaling pathway significantly reduced the Tau-induced apoptotic rate of CRC cells. Thus, the MST1-JNK pathway plays an important role in Tau-induced apoptosis of CRC cells.
Collapse
Affiliation(s)
- Zhuoqi Liu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Yanqin Xia
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Xiali Zhang
- b Laboratory Animal Science Center , Nanchang University , Nanchang , China
| | - Liqiao Liu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Shuo Tu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Weifeng Zhu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Lehan Yu
- c Medical Experiment Teaching Center , Nanchang University , Nanchang , China
| | - Huifang Wan
- c Medical Experiment Teaching Center , Nanchang University , Nanchang , China
| | - Bo Yu
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| | - Fusheng Wan
- a Department of Biochemistry and Molecular Biology , School of Basic Medical Sciences, Nanchang University , Nanchang China
| |
Collapse
|
45
|
Affiliation(s)
- Eekhoon Jho
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
46
|
IFN-γ-response mediator GBP-1 represses human cell proliferation by inhibiting the Hippo signaling transcription factor TEAD. Biochem J 2018; 475:2955-2967. [PMID: 30120107 PMCID: PMC6156764 DOI: 10.1042/bcj20180123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts important functions in inflammation, infectious diseases, and cancer. The large GTPase human guanylate-binding protein 1 (GBP-1) is among the most strongly IFN-γ-induced cellular proteins. Previously, it has been shown that GBP-1 mediates manifold cellular responses to IFN-γ including the inhibition of proliferation, spreading, migration, and invasion and through this exerts anti-tumorigenic activity. However, the mechanisms of GBP-1 anti-tumorigenic activities remain poorly understood. Here, we elucidated the molecular mechanism of the human GBP-1-mediated suppression of proliferation by demonstrating for the first time a cross-talk between the anti-tumorigenic IFN-γ and Hippo pathways. The α9-helix of GBP-1 was found to be sufficient to inhibit proliferation. Protein-binding and molecular modeling studies revealed that the α9-helix binds to the DNA-binding domain of the Hippo signaling transcription factor TEA domain protein (TEAD) mediated by the 376VDHLFQK382 sequence at the N-terminus of the GBP-1-α9-helix. Mutation of this sequence resulted in abrogation of both TEAD interaction and suppression of proliferation. Further on, the interaction caused inhibition of TEAD transcriptional activity associated with the down-regulation of TEAD-target genes. In agreement with these results, IFN-γ treatment of the cells also impaired TEAD activity, and this effect was abrogated by siRNA-mediated inhibition of GBP-1 expression. Altogether, this demonstrated that the α9-helix is the proliferation inhibitory domain of GBP-1, which acts independent of the GTPase activity through the inhibition of the Hippo transcription factor TEAD in mediating the anti-proliferative cell response to IFN-γ.
Collapse
|
47
|
Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol 2018; 10:244-259. [PMID: 30254720 PMCID: PMC6147765 DOI: 10.4251/wjgo.v10.i9.244] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis (CRC) imposes a major health burden in developing countries. It is the third major cause of cancer deaths. Despite several treatment strategies, novel drugs are warranted to reduce the severity of this disease. Adenomatous polyps in the colon are the major culprits in CRC and found in 45% of cancers, especially in patients 60 years of age. Inflammatory polyps are currently gaining attention in CRC, and a growing body of evidence denotes the role of inflammation in CRC. Several experimental models are being employed to investigate CRC in animals, which include the APCmin/+ mouse model, Azoxymethane, Dimethyl hydrazine, and a combination of Dextran sodium sulphate and dimethyl hydrazine. During CRC progression, several signal transduction pathways are activated. Among the major signal transduction pathways are p53, Transforming growth factor beta, Wnt/β-catenin, Delta Notch, Hippo signalling, nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-associated protein 1 pathways. These signalling pathways collaborate with cell death mechanisms, which include apoptosis, necroptosis and autophagy, to determine cell fate. Extensive research has been carried out in our laboratory to investigate these signal transduction and cell death mechanistic pathways in CRC. This review summarizes CRC pathogenesis and the related cell death and signal transduction pathways.
Collapse
Affiliation(s)
- Ashok kumar Pandurangan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaivani Kumar
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Vadivel Dineshbabu
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Bakthavatchalam Velavan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
48
|
Zhang Z, Fang C, Wang Y, Zhang J, Yu J, Zhang Y, Wang X, Zhong J. COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. Int J Oncol 2018; 53:1869-1880. [PMID: 30132520 PMCID: PMC6192778 DOI: 10.3892/ijo.2018.4536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) treatment primarily relies on chemotherapy along with surgery, radiotherapy and, more recently, targeted therapy at the late stages. However, chemotherapeutic drugs have high cytotoxicity, and the similarity between the effects of these drugs on cancerous and healthy cells limits their wider use in clinical settings. Targeted monoclonal antibody treatment may compensate for this deficiency. Epidermal growth factor receptor (EGFR)-targeted drugs have a positive effect on CRC with intact KRAS proto-oncogene GTPase (KRAS or KRASWT), but may be ineffective or harmful in patients with KRAS mutations (KRASMUT). Therefore, it is important to identify drug target genes that are uniformly effective with regards to KRASWT and KRASMUT CRC. The present study performed gene expression analysis, and identified 294 genes upregulated in KRASWT and KRASMUT CRC samples. Collagen type I α 1 (COL1A1) was identified as the hub gene through STRING and Cytoscape analyses. Consistent with results obtained from Oncomine, a cancer microarray database and web-based data-mining platform, it was demonstrated that the expression of COL1A1 was significantly upregulated in CRC tissues and cell lines regardless of KRAS status. Inhibition of COL1A1 in KRASWT and KRASMUT CRC cell lines significantly decreased cell proliferation and invasion. In addition, increased COL1A1 expression in CRC was significantly associated with serosal invasion, lymph metastases and hematogenous metastases. Taken together, the findings of the present study indicated that COL1A1 may serve as a candidate diagnostic biomarker and a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Cheng Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yongxia Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
49
|
Li Q, Qi F, Meng X, Zhu C, Gao Y. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biol Toxicol 2018; 34:263-277. [PMID: 29063978 DOI: 10.1007/s10565-017-9417-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
The Hippo-Mst1 pathway is associated with tumor development and progression. However, little evidence is available for its role in colorectal cancer (CRC) stress response via mitochondrial homeostasis. In this study, we conducted gain-of function assay about Mst1 in CRC via adenovirus transfection. Then, cellular viability and apoptosis were measured via MTT, TUNEL assay, and typan blue staining. Mitochondrial function was detected via JC1 staining, mPTP opening assay, and immunofluorescence of cyt-c. Mitophagy was observed via western blots and immunofluorescence. Cell migration and proliferation were evaluated via Transwell and BrdU assay. Western blots were used to analyze the signaling pathways with JNK inhibitors or p53 siRNA. We found that Mst1 was down-regulated in CRC. Overexpression of Mst1 induced CRC apoptosis and impaired cell proliferation and migration. Functional studies have illustrated that recovery of Mst1 could activate JNK pathway which upregulated the p53 expression. The latter repressed Bnip3 transcription and activity, leading to the mitophagy arrest. The defective mitophagy impaired mitochondrial homeostasis, evoked cellular oxidative stress, and initiated the mitochondrial apoptosis. Meanwhile, bad-structured mitophagy also hindered the cancer proliferation via CyclinD/E. Moreover, Mst1-suppressed mitophagy was associated with CRC migration inhibition via regulation of CXCR4/7 expression. Collectively, our data described the comprehensive role of Mst1 in colorectal cancer stress response involving apoptosis, mobilization, and growth via handling mitophagy by JNK/p53/Bnip3 pathways.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Xiangchao Meng
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Chenpei Zhu
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| |
Collapse
|
50
|
Yang R, Cai TT, Wu XJ, Liu YN, He J, Zhang XS, Ma G, Li J. Tumour YAP1 and PTEN expression correlates with tumour-associated myeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology 2018; 155:263-272. [PMID: 29770434 DOI: 10.1111/imm.12949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
The expansion of myeloid-derived suppressor cells (MDSCs) correlates with tumorigenesis in colorectal cancer (CRC). Here, we found a significant association between CD33+ MDSC number and Yes-associated protein 1 (YAP1) and phosphatase and tensin homologue (PTEN) levels in CRC patients (P < 0·05). Moreover, the CD33+ MDSCs, YAP1 and PTEN were identified as predictors for the prognosis of CRC patients (P < 0·05). Notably, CD33+ MDSCs were an independent survival predictor for CRC patients through a Cox model analysis. In vitro data determined that the expression levels of YAP1 and PTEN in CRC-derived cell lines were associated with CRC-derived MDSC induction, and the blockade of YAP1 and PTEN decreased CRC-derived MDSC induction. A mechanistic analysis revealed that YAP1 promoted CRC-derived MDSC induction by suppressing PTEN expression to up-regulate COX-2, P-AKT and P-p65 in CRC-derived cells, leading to secretion of the cytokine granulocyte-macrophage colony-stimulating factor. Our findings establish a novel mechanism of pro-tumorigenic MDSC induction mediated by ectopic YAP1 and PTEN expression in CRC.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Ting-Ting Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Xiao-Jun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Colon Cancer, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Yi-Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Jia He
- Department of Biotherapy, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Gang Ma
- Intensive Care Unit Department, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| |
Collapse
|