1
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Muhammad F, Liu Y, Zhou Y, Yang H, Li H. Antioxidative role of Traditional Chinese Medicine in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114821. [PMID: 34838943 DOI: 10.1016/j.jep.2021.114821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroprotective Traditional Chinese Medicine (TCM) has been practiced in alternative medicine from early days. TCM-derived neuroprotective compounds, such as Chrysin, Cannabidiol, Toonasinoids, and β-asaron, exert significant effectiveness's towards Parkinson's disease (PD). Further, these neuroprotective TCM showed antioxidative, anti-inflammatory, anti-tumor, anti-septic, analgesic properties. Recent research showed that the reduction in the reactive oxygen species (ROS) decreased the α-synuclein (α-syn) toxicity and enhanced the dopaminergic neuron regenerations, the main hallmarks of PD. Therefore, the neuroprotective effects of novel TCM due to its antiradical activities needed deep investigations. AIMS OF THE STUDY This review aims to enlighten the neuroprotective TCM and its components with their antioxidative properties to the scientific community for future research. METHOD The relevant information on the neuroprotective TCM was gathered from scientific databases (PubMed, Web of Science, Google Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, and CNKI). Information was also gained from MS and Ph.D. thesis, books, and online databases. The literature cited in this review dates from 2001 to June 2, 0201. RESULTS Novel therapies for PD are accessible, mostly rely on Rivastigmine and Donepezil, offers to slow down the progression of disease at an early stage but embraces lots of disadvantages. Researchers are trying to find a potential drug against PD, which is proficient at preventing or curing the disease progress, but still needed to be further identified. Oxidative insult and mitochondrial dysfunction are thought to be the main culprit of neurodegenerations. Reactive oxygen species (ROS) are the only causative agent in all interactions, leading to PD, from mitochondrial dysfunctions, α-syn aggregative toxicity, and DA neurons degenerations. It is evident from the redox balance, which seems an imperative therapeutic approach against PD and was necessary for the significant neuronal activities. CONCLUSION Our study is explaining the newly discovered TCM and their neuroprotective and antioxidative properties. But also bring up the possible treatment approaches against PD for future researchers.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Hui Yang
- Instiute of Biology Gansu Academy of Sciences, China.
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China.
| |
Collapse
|
3
|
Erekat NS, Al-Jarrah MD. Endurance exercise training suppresses myostatin upregulation and nuclear factor-kappa B activation in a mouse model of Parkinson's disease. Vet World 2022; 15:383-389. [PMID: 35400955 PMCID: PMC8980372 DOI: 10.14202/vetworld.2022.383-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Muscle atrophy is common in Parkinson’s disease (PD). Although myostatin has been implicated in muscle atrophy, its expression in PD skeletal muscle has not been investigated. Therefore, this study aimed to elucidate the influence of PD induction and exercise training on myostatin expression in the gastrocnemius skeletal muscle. Materials and Methods: Thirty albino mice were randomly selected and separated into three groups of 10 mice each: Sedentary control, sedentary PD (SPD), and exercised PD (EPD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid were used to induce chronic parkinsonism in the PD groups. Immunohistochemistry was used to investigate the expression of myostatin and nuclear factor kappa B (NF-kB) in gastrocnemius muscles of all three groups. Results: Myostatin expression and NF-kB nuclear localization, indicative of its activation, were significantly (p<0.01) higher in gastrocnemius skeletal muscle in the SPD group than in the control and EPD groups. Concomitantly, the average cross-sectional area of gastrocnemius muscle fibers in the SPD albino mice was significantly smaller (p<0.01) than in the control and EPD groups, indicating muscle atrophy. Conclusion: The present data are the first to indicate a correlation between PD induction and myostatin overexpression and NF-kB activation in the gastrocnemius muscle, potentially promoting the muscle atrophy commonly seen in PD. Additionally, the current data are the first to indicate the beneficial effects of exercise training on PD-associated myostatin overexpression, NF-κB activation, and muscle atrophy. Thus, our data are the first to suggest that myostatin and NF-κB might be regarded as potential therapeutic targets in an attempt to ameliorate skeletal muscle abnormalities commonly observed in PD.
Collapse
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Muhammed D. Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Irbid 22110, Jordan
| |
Collapse
|
4
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Al-Jarrah MD, Erekat NS. Endurance exercise training suppresses Parkinson disease-induced overexpression of apoptotic mediators in the heart. NeuroRehabilitation 2021; 48:315-320. [PMID: 33814475 DOI: 10.3233/nre-201650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUNDWe have shown elevated levels of p53 and active caspase-3 in the heart with Parkinson disease (PD). The main aim of this study is to examine the effect of treadmill training on the cardiac expression of p53 and active caspase-3 in the mouse with induced Parkinsonism. METHODS Thirty randomly selected normal albino mice were equally divided into the following 3 groups: sedentary control (SC), sedentary Parkinson diseased (SPD), and exercised Parkinson diseased (EPD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p) were used to induce chronic Parkinson disease in the SPD and EPD animals. The expression of p53 and active caspase-3 was investigated, using immunohistochemistry, in the heart in each animal group. RESULTS Both p53 and active caspase-3 expression was significantly (p value < 0.05) reduced in the PD heart following endurance exercise training. CONCLUSION Our present data suggest that chronic exercise training reduced PD-induced upregulation of p53 and active caspase-3 in the heart. Thus, our study suggests that inhibiting p53 and/or active caspase-3 may be considered as a therapeutic approach to ameliorate PD cardiomyopathy.
Collapse
Affiliation(s)
- Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour S Erekat
- Department of Anatomy. Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Hentschel A, Czech A, Münchberg U, Freier E, Schara-Schmidt U, Sickmann A, Reimann J, Roos A. Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 2021; 16:73. [PMID: 33563298 PMCID: PMC7874489 DOI: 10.1186/s13023-020-01669-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these "discovery studies" are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. METHODS Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach. In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. RESULTS To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. CONCLUSIONS Our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jens Reimann
- Muscle Laboratory, Department of Neurology, University of Bonn, Medical Centre, Bonn, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
7
|
The Compound Expression of HSP90 and INOS in the Testis of Diabetic Rats as Cellular and Pathologic Adverse Effects of Diabetes. Anal Cell Pathol (Amst) 2020; 2020:3906583. [PMID: 32676275 PMCID: PMC7336198 DOI: 10.1155/2020/3906583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Diabetes is increasingly prevalent at global level and associated with various impacts including the male reproductive system. Aims This research is aimed at investigating the influence of diabetes on the localization and expression of HSP90 and iNOS in the testicular tissue of diabetic rats. Methods A diabetic model was developed through a single injection of alloxan monohydrate intraperitoneally (purchased from Sigma-Aldrich) 120 mg/kg body weight following fasting for 12 hrs. The experiment involved two groups, the control and diabetic groups with 10 albino rats in each group. Diabetes was considered if glucose concentration was ≥200 mg/dl. The experiment duration was for one month. After the experiment had finished, all rats were terminated and prepared for routine histological and immunohistochemical examination. Results The results revealed that diabetes caused morphological changes at histological level in testicular tissue. Immunohistochemical examination showed that diabetes significantly upregulated the expression of both HSP90 and iNOS in the testicular tissue of diabetic rats as compared with that of the control group (p < 0.001). Conclusion Diabetes may induce adverse health effects on the male reproduction through upregulation of HSP90 and iNOS in the testicular tissue of diabetic rats.
Collapse
|
8
|
Alm-Eldeen A, Khamis A, Elfiky N, Ahmad R. Quercetin modulates age-induced changes in the transcript levels of some apoptosis related genes in the skeletal muscles of male rats. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-979020200003180861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
9
|
Al-Jarrah MD, Erekat NS. Treadmill exercise training could attenuate the upregulation of Interleukin-1 beta and tumor necrosis factor alpha in the skeletal muscle of mouse model of chronic/progressive Parkinson disease. NeuroRehabilitation 2019; 43:501-507. [DOI: 10.3233/nre-182492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muhammed D. Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Erekat NS. Cerebellar Upregulation of Cell Surface Death Receptor-Mediated Apoptotic Factors in Harmaline-Induced Tremor: An Immunohistochemistry Study. J Cell Death 2018; 11:1179066018809091. [PMID: 30450003 PMCID: PMC6236486 DOI: 10.1177/1179066018809091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 11/24/2022] Open
Abstract
Active caspase-3-mediated apoptosis has been implicated in the pathogenesis of
harmaline-induced tremor. The aim of this study is to illustrate the impact of
tremor induction on the expression of factors mediating the cell surface death
receptor–dependent apoptosis. A total of 20 normal Wistar rats were randomly
selected and equally divided into control and experimental groups. Tremor was
induced in the experimental group by injecting the rats with a single dose of
harmaline (50 mg/kg). After that, cerebellar tissues were evaluated by
immunohistochemistry to examine the expression of tumor necrosis factor α
(TNF-α) and active caspase-8 in the 2 groups of animals. TNF-α and active
caspase-8 expression was significantly higher in cerebella from experimental
rats compared with that in those from the control rats (P
value < .01). Thus, our present data suggest the association of tremor
induction with the cerebellar overexpression of TNF-α and active caspase-8,
correlative with Purkinje cell (PC) loss indicated by loss of calbindin
immunoreactivity, indicating the induction of the cell surface death
receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Erekat N, Al-Jarrah MD. Interleukin-1 Beta and Tumor Necrosis Factor Alpha Upregulation and Nuclear Factor Kappa B Activation in Skeletal Muscle from a Mouse Model of Chronic/Progressive Parkinson Disease. Med Sci Monit 2018; 24:7524-7531. [PMID: 30344306 PMCID: PMC6402272 DOI: 10.12659/msm.909032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy has been reported in patients with Parkinson disease (PD). The purpose of this study was to examine the potential implication of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and nuclear factor kappa B (NF kappa B) in skeletal muscle atrophy following PD induction. MATERIAL AND METHODS Chronic Parkinsonism was induced in 10 albino mice by MPTP/probenecid treatment, while 10 other albino mice remained without treatment and were subsequently used as controls. Gastrocnemius muscles were examined for the expression of IL-1β and TNF-α, as well as the nuclear localization of NF kappa B, indicative of its activation, using immunohistochemistry in the 2 different groups. RESULTS IL-1β and TNF-α expression and NF kappa B nuclear localization were significantly higher in the PD skeletal muscle compared with those in the controls (P value <0.01). CONCLUSIONS The present data are indicative of an association of PD with IL-1β and TNF-α upregulation and NF kappa B activation in gastrocnemius muscles, potentially promoting the atrophy frequently observed in PD.
Collapse
Affiliation(s)
- Nour Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
Erekat NS, Al-Jarrah MD. Association of Parkinson Disease Induction with Cardiac Upregulation of Apoptotic Mediators P53 and Active Caspase-3: An Immunohistochemistry Study. Med Sci Monit Basic Res 2018; 24:120-126. [PMID: 30135418 PMCID: PMC6118164 DOI: 10.12659/msmbr.910307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Apoptosis plays a key role in the pathogenesis of Parkinson disease (PD). Active caspase-3, which is a proapoptotic factor, has been shown to reduce cardiac contractility, causing cardiac dysfunction in many pathological diseases. Reduced cardiac contractility and cardiac autonomic dysfunction have been reported in PD patients and PD mice treated with MPTP. The aim of this study was to show the impact of PD induction on the expression of the apoptotic mediators p53 and active caspase-3 in the heart. MATERIAL AND METHODS Equal control and PD groups were formed by 20 randomly selected normal albino mice. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) (MPTP/p) to induce chronic Parkinsonism in the PD group. Immunohistochemistry was performed to investigate the expression of p53, active caspase-3, and β-adrenergic receptor in hearts from the 2 animal groups. RESULTS P53 and active caspase-3 expression was significantly higher in PD hearts than in the control hearts (p value <0.01). β-adrenergic receptor expression was significantly lower in PD hearts than in control hearts (p value <0.01). CONCLUSIONS Our results show an association of PD with p53 and active caspase-3 overexpression and β-adrenergic receptor underexpression in the heart, potentially promoting the cardiac autonomic dysfunction frequently observed in PD.
Collapse
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed D. Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Erekat N, Al-Jarrah A, Shotar A, Al-Hourani Z. Hepatic Upregulation of Tumor Necrosis Factor Alpha and Activation of Nuclear Factor Kappa B Following Methyl Methacrylate Administration in the Rat. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.889.895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Al-Jarrah MD, Erekat NS. Parkinson disease-induced upregulation of apoptotic mediators could be attenuated in the skeletal muscle following chronic exercise training. NeuroRehabilitation 2018; 41:823-830. [PMID: 29254117 DOI: 10.3233/nre-172196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We have shown elevated levels of p53 and active caspase-3 in gastrocnemius skeletal muscle with Parkinson's disease (PD). The main aim of this study is to examine the impact of endurance exercise training on the expression of p53 and active caspase-3 in the skeletal muscle of mouse with induced Parkinsonism. METHODS Sedentary control (SC), sedentary Parkinson diseased (SPD), and exercised Parkinson diseased (EPD) groups were formed; each consisting of 10 randomly selected normal albino mice. Chronic Parkinson disease was induced in the SPD and EPD animals using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p). The expression of p53 and active caspase-3 was investigated, using immunohistochemistry, in the gastrocnemius muscle in each animal group. RESULTS Both p53 and active caspase-3 expression was significantly (p value < 0.05) reduced in the PD gastrocnemius skeletal muscle following endurance exercise training. CONCLUSION Our present data suggest that chronic exercise training reduced Parkinson disease-induced upregulation of p53 and active caspase-3 in gastrocnemius skeletal muscle. Thus, our study suggests that inhibiting p53 and/or active caspase-3 may be considered as a therapeutic approach to ameliorate PD skeletal muscle abnormalities.
Collapse
Affiliation(s)
- Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, JUST, Irbid, Jordan
| | - Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
15
|
Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 2016; 21:1021-1035. [PMID: 27511024 PMCID: PMC5083671 DOI: 10.1007/s12192-016-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK.
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK.
| | - James A Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford, UK
| | - Peter W Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
16
|
Galt NJ, McCormick SD, Froehlich JM, Biga PR. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids. Gen Comp Endocrinol 2016; 237:19-26. [PMID: 27444129 DOI: 10.1016/j.ygcen.2016.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/05/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon mammalian stress responses.
Collapse
Affiliation(s)
- Nicholas J Galt
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen D McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Erekat NS. Apoptotic Mediators are Upregulated in the Skeletal Muscle of Chronic/Progressive Mouse Model of Parkinson's Disease. Anat Rec (Hoboken) 2015; 298:1472-8. [DOI: 10.1002/ar.23124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy; Faculty of Medicine; Jordan University of Science and Technology (JUST); Irbid Jordan
| |
Collapse
|