1
|
Forszt D, Gerreth K, Karpienko K, Zalewska A, Hojan K, Marchewka R, Bielas M, Maciejczyk M. Salivary chemokines and growth factors in patients with ischemic stroke. Sci Rep 2025; 15:12676. [PMID: 40221607 PMCID: PMC11993640 DOI: 10.1038/s41598-025-97974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
Stroke is a serious health problem that affects an increasing number of people. As a result of the blockage of blood flow, tissue necrosis occurs in areas of the brain supplied by the damaged vessel, and leads to the development of inflammation. Changes that occur in the brain allow molecules to enter the blood, and it has been suggested that some can also penetrate the saliva. This study is the first to assess the profile of 25 chemokines and growth factors in the saliva of stroke survivors compared to a control group. 22 stroke survivors and 22 individuals matched by age and gender were enrolled in the study. Salivary chemokines and growth factors were assessed using the multiplex ELISA method. In the unstimulated saliva of stroke patients, we demonstrated significantly higher levels of chemotactic factors (CTACK/CCL27, IL-8/CXCL8, MIG/CXCL9, MIF) and growth factors (basic FGF, G-CSF, HGF, LIF, VEGF) compared to controls. The levels of MCP-3/CCL7, eotaxin/CCL11, IP-10/CXCL10, IL-3/MCGF, and PDGF-BB were lower in the saliva of the study group. The concentration of basic FGF negatively correlated with cognitive function as measured by the Addenbrooke's Cognitive Examination (ACE) scale (p = 0.007 r = - 0.56), while salivary IL-3 and LIF levels positively correlated with scores on the Functional Independence Measure (FIM) scale (p = 0.019 r = 0.53; p = 0.033 r = 0.47, respectively). Receiver Operating Characteristic (ROC) analysis showed that salivary basic FGF, HGF, IL-3 and LIF can distinguish ischemic stroke patients from the control group with high sensitivity and specificity. In conclusion, disruptions in chemokine and growth factor levels in saliva may suggest an inflammatory etiology of ischemic stroke. Salivary basic FGF, HGF, IL-3 and LIF could serve as potential biomarkers for stroke. Further research is needed to illuminate the differences in salivary inflammatory mediator profiles in stroke and to evaluate the diagnostic utility of chemokines and growth factors in clinical practice.
Collapse
Affiliation(s)
- Dominika Forszt
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamila Karpienko
- Students Scientific Club "Biochemistry of Civilization Diseases" at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Marchewka
- Neurorehabilitation Ward, Greater Poland Provincial Hospital, 60-480, Poznan, Poland
| | - Marzena Bielas
- Department of Family Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-089, Bialystok, Poland.
| |
Collapse
|
2
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Yasui K, Ogawa Y, Saino O, Akamatsu R, Fuchizaki A, Irie Y, Nabetani M, Tanaka M, Takihara Y, Taguchi A, Kimura T. X-irradiated umbilical cord blood cells retain their regenerative effect in experimental stroke. Sci Rep 2024; 14:6907. [PMID: 38519559 PMCID: PMC10959937 DOI: 10.1038/s41598-024-57328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Although regenerative therapy with stem cells is believed to be affected by their proliferation and differentiation potential, there is insufficient evidence regarding the molecular and cellular mechanisms underlying this regenerative effect. We recently found that gap junction-mediated cell-cell transfer of small metabolites occurred very rapidly after stem cell treatment in a mouse model of experimental stroke. This study aimed to investigate whether the tissue repair ability of umbilical cord blood cells is affected by X-irradiation at 15 Gy or more, which suppresses their proliferative ability. In this study, X-irradiated mononuclear (XR) cells were prepared from umbilical cord blood. Even though hematopoietic stem/progenitor cell activity was diminished in the XR cells, the regenerative activity was surprisingly conserved and promoted recovery from experimental stroke in mice. Thus, our study provides evidence regarding the possible therapeutic mechanism by which damaged cerebrovascular endothelial cells or perivascular astrocytes may be rescued by low-molecular-weight metabolites supplied by injected XR cells in 10 min as energy sources, resulting in improved blood flow and neurogenesis in the infarction area. Thus, XR cells may exert their tissue repair capabilities by triggering neo-neuro-angiogenesis, rather than via cell-autonomous effects.
Collapse
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Akihiro Fuchizaki
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Yoriko Irie
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | - Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, Japan
| | - Mitsunobu Tanaka
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe city, Hyogo, Japan
| | - Takafumi Kimura
- Japanese Red Cross Kinki Block Blood Center, Ibaraki city, Osaka, Japan.
| |
Collapse
|
4
|
Qin W, Liu K, Su H, Hou J, Yang S, Pan K, Yang S, Liu J, Zhou P, Lin Z, Zhen P, Mo Y, Fan B, Li Z, Kuang X, Nie X, Hua Q. Tibial cortex transverse transport promotes ischemic diabetic foot ulcer healing via enhanced angiogenesis and inflammation modulation in a novel rat model. Eur J Med Res 2024; 29:155. [PMID: 38449025 PMCID: PMC10918950 DOI: 10.1186/s40001-024-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Tibial Cortex Transverse Transport (TTT) represents an innovative surgical method for treating lower extremity diabetic foot ulcers (DFUs), yet its underlying mechanisms remain elusive. Establishing an animal model that closely mirrors clinical scenarios is both critical and novel for elucidating the mechanisms of TTT. METHODS We established a diabetic rat model with induced hindlimb ischemia to mimic the clinical manifestation of DFUs. TTT was applied using an external fixator for regulated bone movement. Treatment efficacy was evaluated through wound healing assessments, histological analyses, and immunohistochemical techniques to elucidate biological processes. RESULTS The TTT group demonstrated expedited wound healing, improved skin tissue regeneration, and diminished inflammation relative to controls. Marked neovascularization and upregulation of angiogenic factors were observed, with the HIF-1α/SDF-1/CXCR4 pathway and an increase in EPCs being pivotal in these processes. A transition toward anti-inflammatory M2 macrophages indicated TTT's immunomodulatory capacity. CONCLUSION Our innovative rat model effectively demonstrates the therapeutic potential of TTT in treating DFUs. We identified TTT's roles in promoting angiogenesis and modulating the immune system. This paves the way for further in-depth research and potential clinical applications to improve DFU management strategies.
Collapse
Affiliation(s)
- Wencong Qin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kaibin Liu
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongjie Su
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jun Hou
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Shenghui Yang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Kaixiang Pan
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sijie Yang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jie Liu
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Peilin Zhou
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhanming Lin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Puxiang Zhen
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Demonstration Center for Experimental (General Practice) Education, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Yongjun Mo
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Binguang Fan
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaocong Kuang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- Yulin Campus of Guangxi Medical University, Yulin, Guangxi, China
| | - Xinyu Nie
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qikai Hua
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bio-Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Shariatzadeh M, Binda TR, van Holten-Neelen C, ten Berge JC, Martinez Ciriano JP, Wong KT, Dik WA, Leenen PJ. Aberration in myeloid-derived pro-angiogenic cells in type-2 diabetes mellitus; implication for diabetic retinopathy? FRONTIERS IN OPHTHALMOLOGY 2023; 3:1119050. [PMID: 38983045 PMCID: PMC11182312 DOI: 10.3389/fopht.2023.1119050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Diabetic retinopathy (DR) is a major microvascular complication of type 2 diabetes mellitus (T2DM). Myelomonocytic proangiogenic cells (PAC) have been implicated in DR pathogenesis, but their functional and developmental abnormalities are unclear. In this study we assessed PAC characteristics from healthy controls, T2DM patients with DR (DR) and without (NoDR) in order to determine the consequence of the diabetic condition on PAC phenotype and function, and whether these differ between DR and NoDR patients. Methods PAC were generated by culturing PBMC on fibronectin coating and then immunophenotyped using flow cytometry. Furthermore, cells were sorted based on CD14, CD105, and CD133 expression and added to an in vitro 3-D endothelial tubule formation assay, containing GFP-expressing human retinal endothelial cells (REC), pericytes, and pro-angiogenic growth factors. Tubule formation was quantified by fluorescence microscopy and image analysis. Moreover, sorted populations were analyzed for angiogenic mediator production using a multiplex assay. Results The expression of CD16, CD105 and CD31, but not CD133, was lower in PAC from T2DM patients with or without DR. Myeloid and non-myeloid T2DM-derived sorted populations increased REC angiogenesis in vitro as compared to control cultures. They also showed increased S100A8 secretion, decreased VEGF-A secretion, and similar levels of IL-8, HGF, and IL-3 as compared to healthy control (HC)-derived cell populations. Conclusion T2DM PAC are phenotypically and functionally altered compared to PAC from HC. Differences between DR and NoDR PAC are limited. We propose that impaired T2DM PAC provide inadequate vascular support and promote compensatory, albeit pathological, retinal neovascularization.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trishika R.R. Binda
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Conny van Holten-Neelen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Josianne C. ten Berge
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter J.M. Leenen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Cytokines and HIF-1α as dysregulation factors of migration and differentiation of monocyte progenitor cells of endotheliocytes in the pathogenesis of ischemic cardiomyopathy. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. Angiogenic endothelial dysfunction and progenitor endothelial cells (EPCs) in ischemic cardiomyopathy (ICMP) have not been studied enough.The aim. To establish the nature of changes in the cytokine profile and HIF-1α in blood and bone marrow associated with impaired differentiation of monocytic progenitor cells of endotheliocytes (CD14+VEGFR2+) in the bone marrow and their migration into the blood in patients with coronary heart disease (CHD), suffering and not suffering from ICMP.Materials and methods. A single-stage, single-centre, observational case-control study was conducted involving 74 patients with CHD, suffering and not suffering from ICMP (30 and 44 people, respectively), and 25 healthy donors. In patients with CHD, bone marrow was obtained during coronary bypass surgery, peripheral blood – before surgery. Healthy donors were taken peripheral blood. The number of CD14+VEGFR2+ in bone marrow and blood was determined by flow cytometry; the concentration of IL-6, TNF-α, M-CSF, GM-CSF, MCP-1 and HIF-1α – by the method of enzyme immunoassay.Results. A high content of CD14+VEGFR2+ cells in the blood of patients with CHD without cardiomyopathy was established relative to patients with ICMP against the background of a comparable number of these cells in myeloid tissue. Regardless of the presence of ICMP in the blood, patients with CHD showed an excess of TNF-α, a normal concentration of IL-6, GM-CSF, HIF-1α and a deficiency of M-CSF, and in the bone marrow supernatant, the concentration of IL-6 and TNF-α exceeded that in the blood plasma (the level of GM-CSF – only in patients without cardiomyopathy). With ICMP, the normal concentration of MCP-1 was determined in the blood plasma, and with CHD without cardiomyopathy, its elevated content was determined.Conclusion. The formation of ICMP is accompanied by insufficient activation of EPCs migration with the CD14+VEGFR2+ phenotype in blood without disruption of their differentiation in the bone marrow, which associated with the absence of an increase in the concentration of MCP-1 in blood plasma and not associated with the plasma content of M-CSF, GM-CSF, HIF-1α, IL-6 and TNF-α.
Collapse
|
7
|
Chumakova SP, Urazova OI, Shipulin VM, Denisenko OA, Kononova TE, Nevskaya KV, Andreev SL. Differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow in ischemic cardiomyopathy. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-120-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To identify disturbances of differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow associated with the features of the cytokine profile in the blood and bone marrow in patients with coronary artery disease (CAD) with and without ischemic cardiomyopathy (ICM).Materials and methods. The study included 74 patients with СAD with and without ICM (30 and 44 people, respectively) and 18 healthy donors. In all patients with СAD, peripheral blood sampling was performed immediately before coronary artery bypass grafting, and bone marrow samples were taken during the surgery via a sternal incision. In the healthy donors, only peripheral blood sampling was performed. In the bone marrow and blood samples, the number of VEGFR2+ cells (CD14+VEGFR2+ cells) and their immunophenotypes CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was determined by flow cytometry. Using enzyme-linked immunosorbent assay, the levels of VЕGF-А, TNFα, M-CSF, and IL-13, as well as the content of MCP-1 (only in the blood) and the M-CSF / IL-13 ratio (only in the bone marrow) were determined.Results. The content of CD14+VEGFR2+ cells in the blood of CAD patients with and without ICM was higher than normal values due to the greater number of CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, and CD14+CD16++VEGFR2+. In the bone marrow of the patients with ICM, the content of CD14++CD16-VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was lower than in patients with CAD without ICM, and the number of CD14++CD16+VEGFR2+ cells corresponded to that in the controls. Regardless of the presence of ICM in CAD, a high concentration of TNFα and normal levels of VEGF-A and IL-13 were observed in the blood. In CAD without ICM, an excess of MCP-1 and deficiency of M-CSF were revealed in the blood. In the bone marrow, the levels of VEGF-A, TNFα, M-CSF, and IL-13 were comparable between the groups of patients against the background of a decrease in the M-CSF / IL-13 ratio in the patients with ICM.Conclusion. Unlike CAD without cardiomyopathy, in ICM, no excess of VEGFR2+ cells and MCP-1 in the blood is observed, which hinders active migration of CD14+CD16++VEGFR2+ cells from the myeloid tissue, and a decrease in the M-CSF / IL-13 ratio in the bone marrow disrupts differentiation of other forms of VEGFR2+ cells, preventing vascular repair.
Collapse
Affiliation(s)
| | - O. I. Urazova
- Siberian State Medical University; Tomsk State University of Control Systems and Radioelectronics (TUSUR)
| | - V. M. Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - O. A. Denisenko
- Siberian State Medical University; Tomsk Regional Blood Center
| | | | | | - S. L. Andreev
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
8
|
Khodayari S, Khodayari H, Ebrahimi-Barough S, Khanmohammadi M, Islam MS, Vesovic M, Goodarzi A, Mahmoodzadeh H, Nayernia K, Aghdami N, Ai J. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front Cell Dev Biol 2022; 10:834754. [PMID: 35676930 PMCID: PMC9168222 DOI: 10.3389/fcell.2022.834754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
As an evidence-based performance, the rising incidence of various ischemic disorders has been observed across many nations. As a result, there is a growing need for the development of more effective regenerative approaches that could serve as main therapeutic strategies for the treatment of these diseases. From a cellular perspective, promoted complex inflammatory mechanisms, after inhibition of organ blood flow, can lead to cell death in all tissue types. In this case, using the stem cell technology provides a safe and regenerative approach for ischemic tissue revascularization and functional cell formation. Limb ischemia (LI) is one of the most frequent ischemic disease types and has been shown to have a promising regenerative response through stem cell therapy based on several clinical trials. Bone marrow-derived mononuclear cells (BM-MNCs), peripheral blood CD34-positive mononuclear cells (CD34+ PB-MNCs), mesenchymal stem cells (MSCs), and endothelial stem/progenitor cells (ESPCs) are the main, well-examined stem cell types in these studies. Additionally, our investigations reveal that endometrial tissue can be considered a suitable candidate for isolating new safe, effective, and feasible multipotent stem cells for limb regeneration. In addition to other teams’ results, our in-depth studies on endometrial-derived stem cells (EnSCs) have shown that these cells have translational potential for limb ischemia treatment. The EnSCs are able to generate diverse types of cells which are essential for limb reconstruction, including endothelial cells, smooth muscle cells, muscle cells, and even peripheral nervous system populations. Hence, the main object of this review is to present stem cell technology and evaluate its method of regeneration in ischemic limb tissue.
Collapse
Affiliation(s)
- Saeed Khodayari
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Hamid Khodayari
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Md Shahidul Islam
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Arash Goodarzi
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| |
Collapse
|
9
|
Sen A, Vincent V, Thakkar H, Abraham R, Ramakrishnan L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J Lipid Atheroscler 2022; 11:229-249. [PMID: 36212746 PMCID: PMC9515729 DOI: 10.12997/jla.2022.11.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. Endothelial progenitor cells (EPCs) are currently being explored in the context of CVD risk. EPCs are bone marrow derived progenitor cells involved in postnatal endothelial repair and neovascularization. A large body of evidence from clinical, animal, and in vitro studies have shown that EPC numbers in circulation and their functionality reflect endogenous vascular regenerative capacity. Traditionally vitamin D is known to be beneficial for bone health and calcium metabolism and in the last two decades, its role in influencing CVD and cancer risk has generated significant interest. Observational studies have shown that low vitamin D levels are associated with an adverse cardiovascular risk profile. Still, Mendelian randomization studies and randomized control trials (RCTs) have not shown significant effects of vitamin D on cardiovascular events. The criticism regarding the RCTs on vitamin D and CVD is that they were not designed to investigate cardiovascular outcomes in vitamin D-deficient individuals. Overall, the association between vitamin D and CVD remains inconclusive. Recent clinical and experimental studies have demonstrated the beneficial role of vitamin D in increasing the circulatory level of EPC as well as their functionality. In this review we present evidence supporting the beneficial role of vitamin D in CVD through its modulation of EPC homeostasis.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ransi Abraham
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Sandech N, Jangchart R, Komolkriengkrai M, Boonyoung P, Khimmaktong W. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp Ther Med 2021; 22:1420. [PMID: 34707702 PMCID: PMC8543180 DOI: 10.3892/etm.2021.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
The brain is a vital organ that requires a constant blood supply. Stroke occurs when the blood supply to specific parts of the brain is reduced; diabetes is an autonomous risk factor for stroke. The present study aimed to investigate the potential vascular protective effect of gymnemic acid (GM) by assessing the morphological changes of microvasculature, along with VEGFA and angiopoietin-1 (Ang-1) protein expression in the brains of diabetic rats. Rats were divided into five groups, including control, gymnemic control rats (CGM), rats that were rendered diabetic by single injection of 60 mg/kg streptozotocin (STZ), diabetic rats treated with 400 mg/kg GM (STZ + GM) and diabetic rats treated with 4 mg/kg glibenclamide (GL; STZ + GL). After 8 weeks, brain tissues were collected to examine the three-dimensional morphology of the anterior cerebral arteries by vascular corrosion casting. Western blotting was performed to determine VEGFA and Ang-1 expression. Cerebral arteries, arterioles and capillaries were depicted the diameter, thickness and collagen accumulation of the wall, and the results demonstrated narrow diameters, thickened walls and collagen accumulation in the STZ group. After receiving GM, the histopathological changes were similar to that of the control group. Through vascular corrosion casting and microscopy, signs of vessel restoration and improvement were exhibited by increased diameters, and healthy and nourished arterioles and capillaries following treatment with GM. Furthermore, VEGF expression and Ang-1 secretion decreased in the STZ + GM group compared with STZ rats. The results of the present study revealed that GM treatment decreased blood vessel damage in the brain, suggesting that it may be used as a therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rawipa Jangchart
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Manaras Komolkriengkrai
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyakorn Boonyoung
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wipapan Khimmaktong
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
11
|
Chen L, Huang Y, Yang R, Xiao J, Gao J, Zhang D, Cao D, Ke X. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability. Bioengineered 2021; 12:8031-8042. [PMID: 34670479 PMCID: PMC8806928 DOI: 10.1080/21655979.2021.1982270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to prepare a kind of controlled-releasing insulin-like growth factor 1 (IGF-1)/spider silk protein nanofibrous membrane using a electrostatic spinning method and evaluated its effect on the cell viability of endothelial progenitor cells (EPCs). Recombinant spidroin named as GMCDRSSP-IgF-1 was electro-spun into nanofibrous membrane which can be degraded by protease and be capable of sustained-release of IGF-1. The membrane can be degraded after being treated with thrombin. The release assay results showed that IGF-1 concentration could be maintained at 20 ng/ml for a long time with treatment of Tobacco Etch Virus (TEV) protease. The viability of EPCs on GMCDRSSP-IgF-1 nanofibrous membrane was significantly increased with the presence of TEV protease. The controlled and sustained release of IGF-1 from the nanofibrous membrane could promote the adhesion and viability of EPCs. In summary, the nanofibrous membrane that exhibits controlled degradation and sustained release of IGF-1 was prepared with electrostatic spinning from genetically modified recombinant spider silk protein. The nanofibrous membrane exhibited good blood compatibility and cytocompatibility. With the presence of TEV protease, the sustained-release of IGF-1 significantly promoted the adhesion and viability of EPCs. The new nanofibrous membrane can be potentially used as a scaffold for EPCs culture in vitro and future in vivo studies.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Yulang Huang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Jian Xiao
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Debao Zhang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Duanwen Cao
- Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China.,Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Sidiropoulou S, Papadaki S, Tsouka AN, Koutsaliaris IK, Chantzichristos VG, Pantazi D, Paschopoulos ME, Hansson KM, Tselepis AD. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality. Angiology 2021; 72:776-786. [PMID: 33678047 DOI: 10.1177/0003319721998895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platelets mediate circulating endothelial progenitor cell (EPC) recruitment and maturation, participating in vascular repair, however the underlying mechanism(s) remain unclear. We investigated the effect of platelet-rich plasma (PRP) on the functionality of CD34+-derived late-outgrowth endothelial cells (OECs) in culture. Confluent OECs were coincubated with PRP under platelet aggregation (with adenosine diphosphate; ADP) and nonaggregation conditions, in the presence/absence of the reversible P2Y12 platelet receptor antagonist ticagrelor. Outgrowth endothelial cell activation was evaluated by determining prostacyclin (PGI2) and monocyte chemoattractant protein-1 (MCP-1) release and intercellular adhesion molecule-1 (ICAM-1) membrane expression. Similar experiments were performed using human umbilical vein endothelial cells (HUVECs). Platelet-rich plasma increased ICAM-1 expression and PGI2 and MCP-1 secretion compared with autologous platelet-poor plasma, whereas ADP-aggregated platelets in PRP did not exhibit any effect. Platelet-rich plasma pretreated with ticagrelor prior to activation with ADP increased all markers to a similar extent as PRP. Similar results were obtained using HUVECs. In conclusion, PRP induces OEC activation, a phenomenon not observed when platelets are aggregated with ADP. Platelet inhibition with ticagrelor restores the PRP capability to activate OECs. Since EPC activation is important for endothelial regeneration and angiogenesis, we suggest that agents inhibiting platelet aggregation, such as ticagrelor, may promote platelet-EPC interaction and EPC function.
Collapse
Affiliation(s)
- Sofia Sidiropoulou
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Styliani Papadaki
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios G Chantzichristos
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Minas E Paschopoulos
- Department of Obstetrics and Gynecology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
13
|
Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials 2020; 266:120472. [PMID: 33120201 DOI: 10.1016/j.biomaterials.2020.120472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 01/15/2023]
Abstract
Human embryonic stem cells-derived endothelial progenitor cells (hEPCs) were utilized as cell therapeutics for the treatment of ischemic diseases. However, in vivo tracking of hEPCs for predicting their therapeutic efficacy is very difficult. Herein, we developed bioorthogonal labeling strategy of hEPCs that could non-invasively track them after transplantation in hind limb ischemia models. First, hEPCs were treated with tetraacylated N-azidomannosamine (Ac4ManNAz) for generating unnatural azide groups on the hEPCs surface. Second, near-infrared fluorescence (NIRF) dye, Cy5, conjugated dibenzocylooctyne (DBCO-Cy5) was chemically conjugated to the azide groups on the hEPC surface via copper-free click chemistry, resulting Cy5-hEPCs. The bioorthogonally labeled Cy5-hEPCs showed strong NIRF signal without cytotoxicity and functional perturbation in tubular formation, oxygen consumption and paracrine effect of hEPCs in vitro. In hind limb ischemia models, the distribution and migration of transplanted Cy5-hEPCs were successfully monitored via fluorescence molecular tomography (FMT) for 28 days. Notably, blood reperfusion and therapeutic neovascularization effects were significantly correlated with the initial transplantation forms of Cy5-hEPCs such as 'condensed round shape' and 'spread shape' in the ischemic lesion. The condensed transplanted Cy5-hEPCs substantially increased the therapeutic efficacy of hind limb ischemia, compared to that of spread Cy5-hEPCs. Therefore, our new stem cell labeling strategy can be used to predict therapeutic efficacy in hind limb ischemia and it can be applied a potential application in developing cell therapeutics for regenerative medicine.
Collapse
|
14
|
Golab-Janowska M, Paczkowska E, Machalinski B, Kotlega D, Meller A, Safranow K, Wankowicz P, Nowacki P. Elevated Inflammatory Parameter Levels Negatively Impact Populations of Circulating Stem Cells (CD133+), Early Endothelial Progenitor Cells (CD133+/VEGFR2+), and Fibroblast Growth Factor in Stroke Patients. Curr Neurovasc Res 2020; 16:19-26. [PMID: 30706812 DOI: 10.2174/1567202616666190129164906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endothelial Progenitor Cells (EPCs) are important players in neovascularization, mobilized through signalling by Angiogenic Growth Factors (AGFs) such as Vascular Endothelial Growth Factor (VEGF) and fibroblast growth factor (FGF). In vitro, inflammatory parameters impair the function and influence of EPCs on AGFs. However, this connection is not clear in vivo. To understand the mechanisms of augmented arteriogenesis and angiogenesis in acute ischemic stroke (AIS) patients, we investigated whether circulating stem cells (CD133+), early endothelial progenitor cells (CD133+/VEGFR2+), and endothelial cells (ECs; CD34¯/CD133¯/VEGFR2+) were increasingly mobilized during AIS, and whether there were correlations between EPC levels, growth factor levels and inflammatory parameters. METHODS Data on demographics, classical vascular risk factors, neurological deficit information (assessed using the National Institutes of Health Stroke Scale), and treatment were collected from 43 consecutive AIS patients (group I). Risk factor control patients (group II) included 22 nonstroke subjects matched by age, gender, and traditional vascular risk factors. EPCs were measured by flow cytometry and the populations of circulating stem cells (CD133+), early EPCs (CD133+/VEGFR2+), and ECs (CD34¯/CD133¯/VEGFR2+) were analysed. Correlations between EPC levels and VEGF and FGF vascular growth factor levels as well as the influence of inflammatory parameters on EPCs and AGFs were assessed. RESULTS Patient ages ranged from 54 to 92 years (mean age 75.2 ± 11.3 years). The number of circulating CD34¯/CD133¯/VEGF-R2+ cells was significantly higher in AIS patients than in control patients (p < 0.05). VEGF plasma levels were also significantly higher in AIS patients compared to control patients on day 7 (p < 0.05). FGF plasma levels in patients with AIS were significantly higher than those in the control group on day 3 (p < 0.05). There were no correlations between increased VEGF and FGF levels and the number of CD133+, CD133+/VEGFR2+, or CD34¯/CD133¯/VEGFR2+ cells. Leukocyte levels, FGF plasma levels, and the number of early EPCs were negatively correlated on day 3. High sensitivity C-reactive protein levels and the number of CD133+ and CD133+/VEGFR2+ cells were negatively correlated on day 7. In addition, there was a negative correlation between fibrinogen levels and FGF plasma levels as well as the number of early EPCs (CD133+/VEGFR2+). CONCLUSION AIS patients exhibited increased numbers of early EPCs (CD133+/VEGFR2+) and AGF (VEGF and FGF) levels. A negative correlation between inflammatory parameters and AGFs and EPCs indicated the unfavourable influence of inflammatory factors on EPC differentiation and survival. Moreover, these correlations represented an important mechanism linking inflammation to vascular disease.
Collapse
Affiliation(s)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Kotlega
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Meller
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Pawel Wankowicz
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Przemyslaw Nowacki
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Sobrino T, Rodríguez-Yáñez M, Campos F, Iglesias-Rey R, Millán M, de la Ossa NP, Dávalos A, Delgado-Mederos R, Martínez-Domeño A, Martí-Fábregas J, Castellanos M, Serena J, Lago A, Díez-Tejedor E, Castillo J. Association of High Serum Levels of Growth Factors with Good Outcome in Ischemic Stroke: a Multicenter Study. Transl Stroke Res 2019; 11:653-663. [PMID: 31768951 PMCID: PMC7340658 DOI: 10.1007/s12975-019-00747-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023]
Abstract
The main objective of this research work was to study the association of serum levels of growth factors (GF) and SDF-1α with the functional outcome and reduction of lesion volume in ischemic stroke patients. In this multicenter study, 552 patients with non-lacunar stroke (male, 62.1%; mean age, 68.2 ± 11.4) were included within 24 h from symptom onset. The main outcome variable was good functional outcome (modified Rankin Scale [mRS] ≤ 2) at 12 months. Secondary outcome variable was infarct volume (in mL) after 6 ± 3 months. Serum levels of VEGF, Ang-1, G-CSF, BDNF, and SDF-1α were measured by ELISA at admission, 7 ± 1 days, at 3 ± 1 months, and 12 ± 3 months. Except for BDNF, all GF and SDF-1α serum levels showed a peak value at day 7 and remained elevated during the first 3 months (all p < 0.01). High serum levels at day 7 of VEGF (OR, 19.3), Ang-1 (OR, 14.7), G-CSF (OR, 9.6), and SDF-1α (OR, 28.5) were independently associated with good outcome at 12 months (all p < 0.0001). On the other hand, serum levels of VEGF (B, − 21.4), G-CSF (B, − 14.0), Ang-1 (B, − 13.3), and SDF-1α (B, − 44.6) measured at day 7 were independently associated with lesion volume at 6 months (p < 0.01). In summary, high serum levels of VEGF, Ang-1, G-CSF, and SDF-1α at day 7 and 3 months after ischemic stroke are associated with good functional outcome and smaller residual lesion at 1 year of follow-up.
Collapse
Affiliation(s)
- Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Manuel Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Mónica Millán
- Department of Neurosciences - Acute Stroke Unit, Hospital Universitari Germans Trias i Pujol, Universidad Autònoma de Barcelona, Badalona, Spain
| | - Natalia Pérez de la Ossa
- Department of Neurosciences - Acute Stroke Unit, Hospital Universitari Germans Trias i Pujol, Universidad Autònoma de Barcelona, Badalona, Spain
| | - Antonio Dávalos
- Department of Neurosciences - Acute Stroke Unit, Hospital Universitari Germans Trias i Pujol, Universidad Autònoma de Barcelona, Badalona, Spain
| | - Raquel Delgado-Mederos
- Stroke Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Joan Martí-Fábregas
- Stroke Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mar Castellanos
- Department of Neurology - Stroke Unit, Biomedical Research Institute of Girona, Hospital Universitario Doctor Josep Trueta, Girona, Spain.,Department of Neurology, Complexo Hospitalario Universitario da Coruña, A Coruña, Spain
| | - Joaquín Serena
- Department of Neurology - Stroke Unit, Biomedical Research Institute of Girona, Hospital Universitario Doctor Josep Trueta, Girona, Spain
| | - Aida Lago
- Department of Neurology, Hospital Universitario La Fe, Valencia, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neurosciences Area, IdiPAZ (Health Research Institute), La Paz University Hospital, Autónoma University of Madrid, Madrid, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Lei G, Wu Z, Jiang W, Luo J, Xu H, Luo S, Peng Z, Wang W, Chen M, Yu L. Effect of CXCL12/CXCR4 on migration of decidua‐derived mesenchymal stem cells from pregnancies with preeclampsia. Am J Reprod Immunol 2019; 82:e13180. [PMID: 31397035 DOI: 10.1111/aji.13180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guo‐Qin Lei
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Zhi‐Yu Wu
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Wen‐Bin Jiang
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Jie Luo
- Department of Clinical Laboratory The 954th Hospital of Chinese People's Liberation Army Xizang China
| | - Huan Xu
- Department of Clinical Laboratory Southwest Hospital Army Medical University Chongqing China
| | - Shi‐Fu Luo
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Zhu‐Yun Peng
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Wan Wang
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Ming Chen
- Department of Clinical Laboratory Southwest Hospital Army Medical University Chongqing China
- College of Pharmacy and Laboratory Army Medical University (Third Military Medical University) Chongqing China
- State Key Laboratory of Trauma Burn and Combined Injury Army Medical University Chongqing China
| | - Li‐Li Yu
- Department of Gynaecology and Obstetrics The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
19
|
Hudetz D, Borić I, Rod E, Jeleč Ž, Kunovac B, Polašek O, Vrdoljak T, Plečko M, Skelin A, Polančec D, Zenić L, Primorac D. Early results of intra-articular micro-fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: a prospective study. Croat Med J 2019. [PMID: 31187950 PMCID: PMC6563172 DOI: 10.3325/cmj.2019.60.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim To analyze clinical and functional effects of intra-articular injection of autologous micro-fragmented lipoaspirate (MLA) in patients with late stage knee osteoarthritis (KOA). Secondary aims included classifying cell types contributing to the treatment effect, performing detailed MRI-based classification of KOA, and elucidating the predictors for functional outcomes. Methods This prospective, non-randomized study was conducted from June 2016 to February 2018 and enrolled 20 patients with late stage symptomatic KOA (Kellgren Lawrence grade III, n = 4; and IV, n = 16) who received an intra-articular injection of autologous MLA in the index knee joint. At baseline radiological KOA grade and MRI were assessed in order to classify the morphology of KOA changes. Stromal vascular fraction cells obtained from MLA samples were stained with antibodies specific for cell surface markers. Patients were evaluated at baseline and 12-months after treatment with visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS). Results Three patients (15%) received a total knee replacement and were not followed up completely. Seventeen patients (85%) showed a substantial pattern of KOOS and WOMAC improvement, significant in all accounts. KOOS score improved from 46 to 176% when compared with baseline, WOMAC decreased from 40 to 45%, while VAS rating decreased from 54% to 82% (all P values were <0.001). MLA contained endothelial progenitor cells, pericytes, and supra-adventitial adipose stromal cells as most abundant cell phenotypes. Conclusion This study is among the first to show a positive effect of MLA on patients with late stages KOA. ISRCTN registration ID: ISRCTN13337022.
Collapse
Affiliation(s)
- Damir Hudetz
- Damir Hudetz, St Catherine Specialty Hospital, Bracak 8, 49210 Zabok, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart. Genes (Basel) 2019; 10:genes10060474. [PMID: 31234442 PMCID: PMC6627838 DOI: 10.3390/genes10060474] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease accompanied by pain and loss of function. Adipose tissue harbors mesenchymal stem/stromal cells (MSC), or medicinal signaling cells as suggested by Caplan (Caplan, 2017), used in autologous transplantation in many clinical settings. The aim of the study was to characterize a stromal vascular fraction from microfragmented lipoaspirate (SVF-MLA) applied for cartilage treatment in OA and compare it to that of autologous lipoaspirate (SVF-LA). Samples were first stained using a DuraClone SC prototype tube for the surface detection of CD31, CD34, CD45, CD73, CD90, CD105, CD146 and LIVE/DEAD Yellow Fixable Stain for dead cell detection, followed by DRAQ7 cell nuclear dye staining, and analyzed by flow cytometry. In SVF-LA and SVF-MLA samples, the following population phenotypes were identified within the CD45− fraction: CD31+CD34+CD73±CD90±CD105±CD146± endothelial progenitors (EP), CD31+CD34−CD73±CD90±CD105−CD146± mature endothelial cells, CD31−CD34−CD73±CD90+CD105−CD146+ pericytes, CD31−CD34+CD73±CD90+CD105−CD146+ transitional pericytes, and CD31−CD34+CD73highCD90+CD105−CD146− supra-adventitial-adipose stromal cells (SA-ASC). The immunophenotyping profile of SVF-MLA was dominated by a reduction of leukocytes and SA-ASC, and an increase in EP, evidencing a marked enrichment of this cell population in the course of adipose tissue microfragmentation. The role of EP in pericyte-primed MSC-mediated tissue healing, as well as the observed hormonal implication, is yet to be investigated.
Collapse
|
21
|
Dimova I, Karthik S, Makanya A, Hlushchuk R, Semela D, Volarevic V, Djonov V. SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception. J Cell Mol Med 2019; 23:3916-3926. [PMID: 30950188 PMCID: PMC6533523 DOI: 10.1111/jcmm.14269] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.
Collapse
Affiliation(s)
- Ivanka Dimova
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Center of Molecular Medicine, Medical University Sofia, Sofia, Bulgaria
| | - Swapna Karthik
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Andrew Makanya
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | | | - David Semela
- Liver Biology Laboratory, Medical Research Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Vladislav Volarevic
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Center of Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | |
Collapse
|
22
|
Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD 2018; 15:536-556. [DOI: 10.1080/15412555.2018.1536116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irene Coppolino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Royal Brompton Hospital Biomedical Research Unit, Imperial College, London, UK
| | - Giuseppe Girbino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Gaetano Caramori
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
23
|
Kumar Kuna V, Xu B, Sumitran-Holgersson S. Decellularization and Recellularization Methodology for Human Saphenous Veins. J Vis Exp 2018:57803. [PMID: 30102269 PMCID: PMC6126553 DOI: 10.3791/57803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular conduits used during most vascular surgeries are allogeneic or synthetic grafts that often lead to complications caused by immunosuppression and poor patency. Tissue engineering offers a novel solution to generate personalized grafts with a natural extracellular matrix containing the recipient's cells using the method of decellularization and recellularization. We show a detailed method for performing decellularization of the human saphenous vein and recellularization by perfusion of peripheral blood. The vein was decellularized by perfusing 1% Triton X-100, 1% tri-n-butyl-phosphate (TnBP) and 2,000 Kunitz units of deoxyribonuclease (DNase). Triton X-100 and TnBP were perfused at 35 mL/min for 4 h while DNase was perfused at 10 mL/min at 37 °C for 4 h. The vein was washed in ultrapure water and PBS and then sterilized in 0.1% peracetic acid. It was washed again in PBS and preconditioned in endothelial medium. The vein was connected to a bioreactor and perfused with endothelial medium containing 50 IU/mL heparin for 1 h. Recellularization was performed by filling the bioreactor with fresh blood, diluted 1:1 in Steen solution, and adding endocrine gland-derived vascular endothelial growth factors (80 ng/mL), basic fibroblast growth factors (4 µL/mL), and acetyl salicylic acid (5 µg/mL). The bioreactor was then moved into an incubator and perfused for 48 h at 2 mL/min while maintaining glucose between 3 - 9 mmol/L. Later, the vein was washed with PBS, filled with endothelial medium and perfused for 96 h in the incubator. Treatment with Triton X-100, TnBP and DNase decellularized the saphenous vein in 5 cycles. The decellularized vein looked white in contrast to normal and recellularized veins (light red). The hematoxylin & eosin (H&E) staining showed the presence of nuclei only in normal but not in decellularized veins. In the recellularized vein, H&E-staining showed the presence of cells on the luminal surface of the vein.
Collapse
Affiliation(s)
- Vijay Kumar Kuna
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg;
| | - Bo Xu
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg
| | | |
Collapse
|
24
|
Babaei H, Alibabrdel M, Asadian S, Siavashi V, Jabarpour M, Nassiri SM. Increased circulation mobilization of endothelial progenitor cells in preterm infants with retinopathy of prematurity. J Cell Biochem 2018; 119:6575-6583. [DOI: 10.1002/jcb.26777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Homa Babaei
- Department of PediatricsImam Reza HospitalKermanshah University of Medical ScienceKermanshahIran
| | - Mahdi Alibabrdel
- Faculty of Veterinary MedicineDepartment of Clinical PathologyUniversity of TehranTehranIran
| | - Simin Asadian
- Department of PediatricsImam Reza HospitalKermanshah University of Medical ScienceKermanshahIran
| | - Vahid Siavashi
- Faculty of Veterinary MedicineDepartment of Clinical PathologyUniversity of TehranTehranIran
- Razi Drug Research CenterDepartment of pharmacologyIran University of Medical SciencesTehranIran
| | - Masoome Jabarpour
- Faculty of Veterinary MedicineDepartment of Clinical PathologyUniversity of TehranTehranIran
| | - Seyed Mahdi Nassiri
- Faculty of Veterinary MedicineDepartment of Clinical PathologyUniversity of TehranTehranIran
| |
Collapse
|
25
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
26
|
Paton MCB, McDonald CA, Allison BJ, Fahey MC, Jenkin G, Miller SL. Perinatal Brain Injury As a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies. Front Neurosci 2017; 11:200. [PMID: 28442989 PMCID: PMC5385368 DOI: 10.3389/fnins.2017.00200] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chorioamnionitis is a major cause of preterm birth and brain injury. Bacterial invasion of the chorion and amnion, and/or the placenta, can lead to a fetal inflammatory response, which in turn has significant adverse consequences for the developing fetal brain. Accordingly, there is a strong causal link between chorioamnionitis, preterm brain injury and the pathogenesis of severe postnatal neurological deficits and cerebral palsy. Currently there are no treatments to protect or repair against brain injury in preterm infants born after pregnancy compromised by intrauterine infection. This review describes the injurious cascade of events in the preterm brain in response to a severe fetal inflammatory event. We will highlight specific periods of increased vulnerability, and the potential effects of therapeutic intervention with cell-based therapies. Many clinical trials are underway to investigate the efficacy of stem cells to treat patients with cerebral palsy. Stem cells, obtained from umbilical cord tissue and cord blood, normally discarded after birth, are emerging as a safe and potentially effective therapy. It is not yet known, however, which stem cell type(s) are the most efficacious for administration to preterm infants to treat brain injury-mediated inflammation. Individual stem cell populations found in cord blood and tissue, such as mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), have a number of potential benefits that may specifically target preterm inflammatory-induced brain injury. MSCs have strong immunomodulatory potential, protecting against global and local neuroinflammatory cascades triggered during infection to the fetus. EPCs have angiogenic and vascular reparative qualities that make them ideal for neurovascular repair. A combined therapy using both MSCs and EPCs to target inflammation and promote angiogenesis for re-establishment of vital vessel networks is a treatment concept that warrants further investigation.
Collapse
Affiliation(s)
- Madison C B Paton
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash UniversityClayton, VIC, Australia
| | - Courtney A McDonald
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia
| | - Beth J Allison
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia
| | - Michael C Fahey
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Graham Jenkin
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash UniversityClayton, VIC, Australia
| | - Suzanne L Miller
- Neurodevelopment and Neuroprotection Research Group, The Ritchie Centre, Hudson Institute of Medical Research, Monash UniversityClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
27
|
Kim JS, Choi JS, Cho YW. Cell-Free Hydrogel System Based on a Tissue-Specific Extracellular Matrix for In Situ Adipose Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8581-8588. [PMID: 28233976 DOI: 10.1021/acsami.6b16783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Well-designed scaffolds provide appropriate niches that can effectively recruit host cells and induce differentiation of recruited cells into the desired cell types, facilitating in situ tissue regeneration. Here we report a tissue-specific extracellular matrix (ECM) hydrogel composed of adipose-derived soluble ECM (sECM) and methylcellulose (MC) as a cell-free scaffold system for adipose tissue regeneration. The sECM-MC hydrogels showed a thermosensitive sol-gel phase transition and rapidly formed a soft hydrogel with a stiffness of 3.8 kPa at body temperature. An in vivo study showed that the sECM-MC hydrogel facilitated the infiltration of host cell populations, particularly adipose-derived stem cells (ASCs) and adipose tissue macrophages (ATMs) that directly contribute to the adipose tissue regeneration. Moreover, the hydrogel significantly enhanced host-derived adipogenesis and angiogenesis without exogenous cells or bioactive molecules. Our results indicate that the sECM-MC hydrogels provide mechanical and biochemical cues for host-derived adipose regeneration. Overall, the sECM-MC hydrogels are a highly promising cell-free therapeutic approach for in situ adipose tissue regeneration.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| |
Collapse
|
28
|
Mou Y, Yue Z, Zhang H, Shi X, Zhang M, Chang X, Gao H, Li R, Wang Z. High quality in vitro expansion of human endothelial progenitor cells of human umbilical vein origin. Int J Med Sci 2017; 14:294-301. [PMID: 28367090 PMCID: PMC5370292 DOI: 10.7150/ijms.18137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/14/2017] [Indexed: 01/01/2023] Open
Abstract
The limited availability of qualified endothelial progenitor cells (EPCs) is a major challenge for regenerative medicine. In the present study, we isolated human EPCs from human umbilical vein endothelial cells (HUVECs) by using magnetic micro-beads coated with an antibody against human CD34. Flow cytometric assay showed that majority of these cells expressed VEGFR2 (KDR), CD34 and CD133, three molecular markers for early EPCs. It was also found that a bioreactor micro-carrier cell culture system (bio-MCCS) was superior to dish culture for in vitro expansion of EPCs. It expanded more EPCs which were in the early stage, as shown by the expression of characteristic molecular markers and had better angiogenic potential, as shown by matrix-gel based in vitro angiogenesis assay. These results suggest that HUVECs might be a novel promising resource of EPCs for regenerative medicine and that a bio-MCCS cell culture system might be broadly used for in vitro expansion of EPCs.
Collapse
Affiliation(s)
- Yan Mou
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China;; The Second Hospital of Jilin University, Changchun, China
| | - Zhen Yue
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xu Shi
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China;; The First Hospital of Jilin University, Changchun, China
| | - Mingrui Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Xiaona Chang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Hang Gao
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Ronggui Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zonggui Wang
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Zaporozhets T, Besednova N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: review. PHARMACEUTICAL BIOLOGY 2016; 54:3126-3135. [PMID: 27252012 DOI: 10.1080/13880209.2016.1185444] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/22/2015] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
CONTEXT Fucoidans are water-soluble, highly sulfated, branched homo- and hetero-polysaccharides derived from the fibrillar cell walls and intercellular spaces of brown seaweeds of the class Phaeophyceae. Fucoidans possess mimetic properties of the natural ligands of protein receptors and regulate functions of biological systems via key signaling molecules. OBJECTIVES The aim of this review was to collect and combine all available scientific literature about the potential use of the fucoidans for diseases of cardiovascular system. MATERIALS AND METHODS The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to September 2015). After obtaining all reports from database (a total number is about 580), the papers were carefully analyzed in order to find data related to the topic of this review (129 references). RESULTS An exhaustive survey of literature revealed that fucoidans possess a broad spectrum of biological activity, including anti-coagulant, hypolipidemic, anti-thrombotic, anti-inflammatory, immunomodulatory, anti-tumor, anti-adhesive and anti-hypertensive properties. Numerous investigations of fucoidans in diseases of the cardiovascular system mainly focus on pleiotropic anti-inflammatory effects. Fucoidans also possess pro-angiogenic and pro-vasculogenic properties. CONCLUSION A great number of investigations in the past years have demonstrated that fucoidans has great potential for in-depth investigation of their effects on cardiovascular system. Through this review, the authors hope to attract the attention of researchers to use fucoidan as mimetic of natural ligand receptor protein with the view of developing new formulations with an improved therapeutic value.
Collapse
Affiliation(s)
- Tatyana Zaporozhets
- a Somov Institute of Epidemiology and Microbiology , Vladivostok , Russian Federation
| | - Natalia Besednova
- a Somov Institute of Epidemiology and Microbiology , Vladivostok , Russian Federation
| |
Collapse
|
30
|
Wang J, Chen Y, Yang Y, Xiao X, Chen S, Zhang C, Jacobs B, Zhao B, Bihl J, Chen Y. Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Mol Brain 2016; 9:12. [PMID: 26842559 PMCID: PMC4738765 DOI: 10.1186/s13041-016-0193-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 01/24/2023] Open
Abstract
Background Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study, we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. Results EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production, apoptosis, and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium, and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). Conclusions Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury, via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China.
| | - Yi Yang
- Wuhan Institute of Physical Education, College of Health Science, Wuhan, 430079, Hubei, China.
| | - Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Bradley Jacobs
- Department of Neurology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA.
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China.
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA. .,Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China. .,Department of Neurology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA. .,Department of Internal Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA.
| |
Collapse
|
31
|
Mou Y, Yue Z, Wang X, Li W, Zhang H, Wang Y, Li R, Sun X. OCT4 Remodels the Phenotype and Promotes Angiogenesis of HUVECs by Changing the Gene Expression Profile. Int J Med Sci 2016; 13:386-94. [PMID: 27226779 PMCID: PMC4879770 DOI: 10.7150/ijms.15057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023] Open
Abstract
It has been shown that forced expression of four mouse stem cell factors (OCT4, Sox2, Klf4, and c-Myc) changed the phenotype of rat endothelial cells to vascular progenitor cells. The present study aimed to explore whether the expression of OCT4 alone might change the phenotype of human umbilical vein endothelial cells (HUVECs) to endothelial progenitor cells and, if so, to examine the possible mechanism involved. A Matrigel-based in vitro angiogenesis assay was used to evaluate the angiogenesis of the cells; the gene expression profile was analyzed by an oligonucleotide probe-based gene array chip and validated by RT-QPCR. The cellular functions of the mRNAs altered by OCT4 were analyzed with Gene Ontology. We found that induced ectopic expression of mouse OCT4 in HUVECs significantly enhanced angiogenesis of the cells, broadly changed the gene expression profile and particularly increased the expression of CD133, CD34, and VEGFR2 (KDR) which are characteristic marker molecules for endothelial progenitor cells (EPCs). Furthermore by analyzing the cellular functions that were targeted by the mRNAs altered by OCT4 we found that stem cell maintenance and cell differentiation were among the top functional response targeted by up-regulated and down-regulated mRNAs upon forced expression of OCT4. These results support the argument that OCT4 remodels the phenotype of HUVECs from endothelial cells to EPCs by up-regulating the genes responsible for stem cell maintenance and down-regulating the genes for cell differentiation.
Collapse
Affiliation(s)
- Yan Mou
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China.; 3. The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhen Yue
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Xiaotong Wang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Wenxue Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Haiying Zhang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Yang Wang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Ronggui Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, P.R. China
| | - Xin Sun
- 2. Life Science Research Center, Beihua University, Jilin, P.R. China
| |
Collapse
|
32
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Feng N, Zhang Z, Wang Z, Zheng H, Qu F, He X, Wang C. Insulin-Like Growth Factor Binding Protein-2 Promotes Adhesion of Endothelial Progenitor Cells to Endothelial Cells via Integrin α5β1. J Mol Neurosci 2015; 57:426-34. [DOI: 10.1007/s12031-015-0589-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023]
|
34
|
Acharya NK, Goldwaser EL, Forsberg MM, Godsey GA, Johnson CA, Sarkar A, DeMarshall C, Kosciuk MC, Dash JM, Hale CP, Leonard DM, Appelt DM, Nagele RG. Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline. Brain Res 2015; 1620:29-41. [PMID: 25960348 DOI: 10.1016/j.brainres.2015.04.054] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
Abstract
A large percentage of patients subjected to general anesthesia at 65 years and older exhibit postoperative delirium (POD). Here, we test the hypothesis that inhaled anesthetics (IAs), such as Sevoflurane and Isoflurane, act directly on brain vascular endothelial cells (BVECs) to increase blood-brain barrier (BBB) permeability, thereby contributing to POD. Rats of young (3-5 months), middle (10-12 months) and old (17-19 months) ages were anesthetized with Sevoflurane or Isoflurane for 3h. After exposure, some were euthanized immediately; others were allowed to recover for 24h before sacrifice. Immunohistochemistry was employed to monitor the extent of BBB breach, and scanning electron microscopy (SEM) was used to examine changes in the luminal surfaces of BVECs. Quantitative immunohistochemistry revealed increased BBB permeability in older animals treated with Sevoflurane, but not Isoflurane. Extravasated immunoglobulin G showed selective affinity for pyramidal neurons. SEM demonstrated marked flattening of the luminal surfaces of BVECs in anesthetic-treated rats. Results suggest an aging-linked BBB compromise resulting from exposure to Sevoflurane. Changes in the luminal surface topology of BVECs indicate a direct effect on the plasma membrane, which may weaken or disrupt their BBB-associated tight junctions. Disruption of brain homeostasis due to plasma influx into the brain parenchyma and binding of plasma components (e.g., immunoglobulins) to neurons may contribute to POD. We propose that, in the elderly, exposure to some IAs can cause BBB compromise that disrupts brain homeostasis, perturbs neuronal function and thereby contributes to POD. If unresolved, this may progress to postoperative cognitive decline and later dementia.
Collapse
Affiliation(s)
- Nimish K Acharya
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Eric L Goldwaser
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Martin M Forsberg
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - George A Godsey
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Cristina A Johnson
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Abhirup Sarkar
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Cassandra DeMarshall
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Mary C Kosciuk
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jacqueline M Dash
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Caitlin P Hale
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Douglas M Leonard
- Department of Psychiatry, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Denah M Appelt
- Philadelphia College of Osteopathic Medicine, , PA, USA, Philadelphia, PA 19131, USA
| | - Robert G Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|