1
|
Wang S, Xu W, Wang J, Hu X, Wu Z, Li C, Xiao Z, Ma B, Cheng L. Tracing the evolving dynamics and research hotspots of spinal cord injury and surgical decompression from 1975 to 2024: a bibliometric analysis. Front Neurol 2024; 15:1442145. [PMID: 39161868 PMCID: PMC11330800 DOI: 10.3389/fneur.2024.1442145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Exploration of the benefits and timing of surgical decompression in spinal cord injury (SCI) has been a research hotspot. However, despite the higher volume and increasing emphasis on quality there remains no bibliometric view on SCI and surgical decompression. In this study, we aimed to perform bibliometric analysis to reveal the core countries, affiliations, journals, authors, and developmental trends in SCI and surgical decompression across the past 50 years. Methods Articles and reviews were retrieved from web of science core collection between 1975 and 2024. The bibliometrix package in R was used for data analysis and visualizing. Results A total of 8,688 documents were investigated, indicating an ascending trend in annual publications. The USA and China played as the leaders in scientific productivity. The University of Toronto led in institutional productions. Core authors, such as Michael G. Fehlings, showed high productivity, and occasional authors showed widespread interests. Core journals like Spine and Spinal Cord served as beacons in this field. The interaction of core authors and international collaboration accentuated the cross-disciplinary feature of the field. Prominent documents emphasized the clinical significance of early decompression in 24 h post SCI. Conclusion Based on comprehensive bibliometric analysis and literature review, we identified the hotspots and future directions of this field: (1) further investigation into the molecular and cellular mechanisms to provide pre-clinical evidence for biological effects of early surgical decompression in SCI animal models; (2) further evaluation and validation of the optimal time window of surgical decompression based on large cohort, considering the inherent heterogeneity of subpopulations in complicated immune responses post SCI; (3) further exploration on the benefits of early decompression on the neurological, functional, and clinical outcomes in acute SCI; (4) evaluation of the optimal surgical methods and related outcomes; (5) applications of artificial intelligence-based technologies in spinal surgical decompression.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Vijayakumar Sreelatha H, Palekkodan H, Fasaludeen A, K. Krishnan L, Abelson KSP. Refinement of the motorised laminectomy-assisted rat spinal cord injury model by analgesic treatment. PLoS One 2024; 19:e0294720. [PMID: 38227583 PMCID: PMC10790998 DOI: 10.1371/journal.pone.0294720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/06/2023] [Indexed: 01/18/2024] Open
Abstract
Usage and reporting of analgesia in animal models of spinal cord injury (SCI) have been sparse and requires proper attention. The majority of experimental SCI research uses rats as an animal model. This study aimed to probe into the effects of some commonly used regimens with NSAIDs and opioids on well-being of the rats as well as on the functional outcome of the model. This eight-week study used forty-two female Wistar rats (Crl: WI), randomly and equally divided into 6 treatment groups, viz. I) tramadol (5mg/kg) and buprenorphine (0.05mg/kg); II) carprofen (5mg/kg) and buprenorphine (0.05mg/kg); III) carprofen (5mg/kg); IV) meloxicam (1mg/kg) and buprenorphine (0.05mg/kg); V) meloxicam (1mg/kg); and VI) no analgesia (0.5 ml sterile saline). Buprenorphine was administered twice daily whereas other treatments were given once daily for five days post-operatively. Injections were given subcutaneously. All animals underwent dental burr-assisted laminectomy at the T10-T11 vertebra level. A custom-built calibrated spring-loaded 200 kilodynes force deliverer was used to induce severe SCI. Weekly body weight scores, Rat Grimace Scale (RGS), and dark-phase home cage activity were used as markers for well-being. Weekly Basso Beattie and Bresnahan (BBB) scores served as markers for functionality together with Novel Object Recognition test (NOR) at week 8 and terminal histopathology using area of vacuolisation and live neuronal count from the ventral horns of spinal cord. It was concluded that the usage of analgesia improved animal wellbeing while having no effects on the functional aspects of the animal model in comparison to the animals that received no analgesics.
Collapse
Affiliation(s)
- Harikrishnan Vijayakumar Sreelatha
- Department of Applied Biology, Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamza Palekkodan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Ansar Fasaludeen
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Lissy K. Krishnan
- Biological Research and Innovation Wing, Dr. Moopen’s Medical College, Wayanad, Kerala, India
| | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 PMCID: PMC11684398 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Butler MB, Vellaiyappan SK, Bhatti F, Syed FEM, Rafati Fard A, Teh JQ, Grodzinski B, Akhbari M, Adeeko S, Dilworth R, Bhatti A, Waheed U, Robinson S, Osunronbi T, Walker B, Ottewell L, Suresh G, Kuhn I, Davies BM, Kotter MRN, Mowforth OD. The impact of phosphodiesterase inhibition on neurobehavioral outcomes in preclinical models of traumatic and non-traumatic spinal cord injury: a systematic review. Front Med (Lausanne) 2023; 10:1237219. [PMID: 37675134 PMCID: PMC10479944 DOI: 10.3389/fmed.2023.1237219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Study design Systematic review. Objective The objective of this study was to evaluate the impact of phosphodiesterase (PDE) inhibitors on neurobehavioral outcomes in preclinical models of traumatic and non-traumatic spinal cord injury (SCI). Methods A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered with PROSPERO (CRD42019150639). Searches were performed in MEDLINE and Embase. Studies were included if they evaluated the impact of PDE inhibitors on neurobehavioral outcomes in preclinical models of traumatic or non-traumatic SCI. Data were extracted from relevant studies, including sample characteristics, injury model, and neurobehavioral assessment and outcomes. Risk of bias was assessed using the SYRCLE checklist. Results The search yielded a total of 1,679 studies, of which 22 met inclusion criteria. Sample sizes ranged from 11 to 144 animals. PDE inhibitors used include rolipram (n = 16), cilostazol (n = 4), roflumilast (n = 1), and PDE4-I (n = 1). The injury models used were traumatic SCI (n = 18), spinal cord ischemia (n = 3), and degenerative cervical myelopathy (n = 1). The most commonly assessed outcome measures were Basso, Beattie, Bresnahan (BBB) locomotor score (n = 13), and grid walking (n = 7). Of the 22 papers that met the final inclusion criteria, 12 showed a significant improvement in neurobehavioral outcomes following the use of PDE inhibitors, four papers had mixed findings and six found PDE inhibitors to be ineffective in improving neurobehavioral recovery following an SCI. Notably, these findings were broadly consistent across different PDE inhibitors and spinal cord injury models. Conclusion In preclinical models of traumatic and non-traumatic SCI, the administration of PDE inhibitors appeared to be associated with statistically significant improvements in neurobehavioral outcomes in a majority of included studies. However, the evidence was inconsistent with a high risk of bias. This review provides a foundation to aid the interpretation of subsequent clinical trials of PDE inhibitors in spinal cord injury. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=150639, identifier: CRD42019150639.
Collapse
Affiliation(s)
- Max B. Butler
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sundar K. Vellaiyappan
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Fazal-E-Momin Syed
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jye Quan Teh
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ben Grodzinski
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Melika Akhbari
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sylva Adeeko
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rory Dilworth
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aniqah Bhatti
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Unaiza Waheed
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Robinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Temidayo Osunronbi
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Benn Walker
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Luke Ottewell
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Gayathri Suresh
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Isla Kuhn
- Medical Library, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin M. Davies
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. N. Kotter
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Oliver D. Mowforth
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Garcia TA, Jonak CR, Binder DK. The Role of Aquaporins in Spinal Cord Injury. Cells 2023; 12:1701. [PMID: 37443735 PMCID: PMC10340765 DOI: 10.3390/cells12131701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue-fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes.
Collapse
Affiliation(s)
- Terese A. Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for Glial-Neuronal Interactions, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Birch NC, Cheung JPY, Takenaka S, El Masri WS. Which treatment provides the best neurological outcomes in acute spinal cord injury? Bone Joint J 2023; 105-B:347-355. [PMID: 36924170 DOI: 10.1302/0301-620x.105b4.bjj-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents.
Collapse
Affiliation(s)
- Nick C Birch
- Spine and Bone Heath Department, Bragborough Hall Health Centre, Daventry, UK
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Shota Takenaka
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wagih S El Masri
- Keele University, Keele, UK
- Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, UK
| |
Collapse
|
7
|
Zou Z, Kang S, Hou Y, Chen K. Pediatric spinal cord injury with radiographic abnormality: the Beijing experience. Spine J 2023; 23:403-411. [PMID: 36064092 DOI: 10.1016/j.spinee.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) without radiographic abnormality (SCIWORA) is a syndrome that usually occurs in children primarily because of the unique biomechanics of the pediatric spine. We recently found that the histopathological and behavioral effects of SCI with radiographic abnormality (SCIWRA) and SCIWORA are very different from each other in animal models. Although numerous studies were conducted to understand the epidemiological and clinical characteristics of the overall pediatric SCI population and the pediatric SCIWORA population, the characteristics of the pediatric SCIWRA population and their differences from those of the SCIWORA population are poorly understood. PURPOSE To describe the epidemiology and clinical outcomes of pediatric patients with SCIWRA and their differences from those with SCIWORA. STUDY DESIGN/SETTING Retrospective study. PATIENT SAMPLE A total of 47 pediatric SCIWRA patients. OUTCOME MEASURES Epidemiological characteristics, injury severities, functional deficits, and management and recovery outcomes. METHODS Review of all cases with SCIWRA at Beijing Children's Hospital between July 2007 and December 2019 and comparison between the present data and our previous SCIWORA data. RESULTS Of the 187 pediatric SCI patients, 47 had SCIWRA (age: 7.06 ± 3.75 years, male-to-female ratio: 3:2). Main causes of SCIWRA were fall (38%) and traffic accidents (38%). Lesions were often located at multiple levels (62%). Incubation period was 3 ± 18 hours. According to the American Spinal Injury Association impairment scale (AIS), many SCIWRA patients had incomplete impairment (AIS B, 9%; AIS C, 9%; AIS D, 32%). Specifically, many of them had abnormal upper and lower limb muscle powers (55% and 60%), upper and lower limb muscle tones (34% and 49%), sensation (38%), and knee, ankle, and abdominal reflexes (47%, 34%, and 36%). 72% of SCIWRA patients were treated with methylprednisolone, dexamethasone, or both. 81% of them showed neurological improvement before discharge. There was no association between corticosteroid therapy and neurological improvement. Moreover, functional outcomes of their upper and lower limb muscle powers were significantly associated with functional outcomes of their upper and lower limb muscle tones (p < 0.01), respectively. In comparison to the SCIWRA population, the SCIWORA population had a higher ratio of younger and female patients of sports-related thoracic injuries with long incubation period leading to lower-body deficits and complete impairment (p<0.05 or p<0.01). Despite all the differences, their neurological improvement was similar (p>0.05). CONCLUSIONS Demographic differences exist in the SCIWRA population. Corticosteroids do not appear to be effective in the different types of pediatric SCI. Limb muscle tone may be used to evaluate the functional status of limb muscle power. The epidemiological and clinical characteristics of SCIWRA and SCIWORA are very different from each other. It is important to formulate tailor-made prevention, evaluation, and management strategies for the pediatric population to optimize the SCI outcomes.
Collapse
Affiliation(s)
- Zhewei Zou
- Department of Neurology, Beijing Children's Hospital, 56 Nanlishi Road, Xicheng, Beijing, 100045, China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China
| | - Yuxin Hou
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China
| | - Kinon Chen
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China.
| |
Collapse
|
8
|
Salazar BH, Hoffman KA, Fraizer AM, Humes F, Hogan MK, Horner MA, Yadegar T, Trusler S, Hamilton GF, Horner PJ. Rigor and reproducibility in analysis of rodent behavior utilizing the forelimb reaching task following a cervical spinal cord injury. Behav Brain Res 2023; 439:114188. [PMID: 36395979 DOI: 10.1016/j.bbr.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) research with animals aims to understand the neurophysiological responses resultant of injury and to identify effective interventions that can translate into clinical treatments in the future. Consistent and reliable assessments to properly measure outcomes are essential to achieve this aim and avoid issues with reproducibility. The objective of this study was to establish a baseline for implementing the forelimb reaching task (FRT) assessment and analysis that increased reproducibility of our studies. For this study, we implemented a weekly FRT training program for six weeks. During this time the language of the scoring rubric for movement elements that comprise a reaching task was simplified and expanded. We calculated intra- and inter-rater variability among participants of the study both before and after training to determine the effect changes made had on rigor and reproducibility of this behavioral assessment in a cervical SCI rodent model. All animals (n = 19) utilized for FRT behavioral assessments received moderate contusion injuries using the Ohio State University device and were tested for a period of 5 weeks post-SCI. Videos used for scoring were edited and shared with all participants of this study to test FRT score variability and the effect simplification of the scoring rubric had on overall inter-rater reliability. From our results we determined training for a minimum of three weeks in FRT analysis is necessary for rigor and reproducibility of our behavioral studies, as well as the need for two raters to be assigned per animal to ensure accuracy of results.
Collapse
Affiliation(s)
- Betsy H Salazar
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Kristopher A Hoffman
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Allison M Fraizer
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Frances Humes
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Matthew K Hogan
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Maddalena A Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Timothy Yadegar
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Sarah Trusler
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Gillian F Hamilton
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, USA.
| |
Collapse
|
9
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
Terheyden-Keighley D, Leibinger M, Zeitler C, Fischer D. Transneuronal Delivery of Cytokines to Stimulate Mammalian Spinal Cord Regeneration. Methods Mol Biol 2023; 2636:85-99. [PMID: 36881297 DOI: 10.1007/978-1-0716-3012-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The spinal cord contains multiple fiber tracts necessary for locomotion. However, as a part of the central nervous system, they are extremely limited in regenerating after injury. Many of these key fiber tracts originate from deep brain stem nuclei that are difficult to access. Here we detail a new methodology that achieves functional regeneration in mice after a complete spinal cord crush, describing the crushing procedure itself, intracortical treatment application, and a set of appropriate validation steps. The regeneration is achieved by the one-time transduction of neurons in the motor cortex with a viral vector expressing the designer cytokine hIL-6. This potent stimulator of the JAK/STAT3 pathway and regeneration is transported in axons and then transneuronally delivered to critical deep brain stem nuclei via collateral axon terminals, resulting in previously paralyzed mice walking again after 3-6 weeks. With no previously known strategy accomplishing this degree of recovery, this model is well suited to studying the functional impact of compounds/treatments currently only known to promote anatomical regeneration.
Collapse
Affiliation(s)
- Daniel Terheyden-Keighley
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany
| | - Marco Leibinger
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany.,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charlotte Zeitler
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany.,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany. .,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model. J Neuroinflammation 2022; 19:134. [PMID: 35668451 PMCID: PMC9169394 DOI: 10.1186/s12974-022-02491-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.
Collapse
|
13
|
Laycock C, Kieser D, Fitz-Gerald C, Soltani S, Frampton C. A systematic review of large animal and human studies of stem cell therapeutics for acute adult traumatic spinal cord injury. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2022. [DOI: 10.1177/22104917221087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (TSCI) is a devastating condition and the search for a cure remains one of the most tenacious healthcare challenges to date. Current therapies are limited in their efficacy to restore full neurological function – resulting in lifelong disability and loss of autonomy. Whilst there remains a necessity to refine therapeutic protocols, stem cell (SC) studies have shown promise in the mending and re-establishment of the spinal cord neuroanatomy. Objectives: We conducted a systematic review of functional outcomes in stem cell therapeutics over the last three decades in large animals and humans. Methods: Medline, Embase, Cochrane and SCOPUS databases were searched for potentially pertinent articles from 1990 to 2020. Studies published in English were included if the stem cells were directly injected into the intraspinal, epidural or intrathecal compartments within two weeks of a traumatic mechanism of injury, including acute intervertebral disc prolapse. The participants were either large animals – defined as canine, porcine or non-human primate in-vivo models – or human patients. Results: Nine studies were included in this review. Statistically significant improvements in motor function and deep pain perception were seen at 8 weeks to 6 months post-SC injection compared to controls. Limitations: Functional outcomes are variably measured across studies. Almost all studies used experimentally induced trauma, which may not accurately represent the complexity of human spinal cord injury. Due to the exclusion criteria, there were no non-human primate studies included, yet these animal models are considered a closer anatomical match to humans than other large mammals. No human studies were included. Conclusions and Implications: Autologous and allogeneic stem cells have been trialled for the reconstitution of damaged and lost cells, remyelination of axons and remodelling of the pathophysiological microenvironment within the injured spinal cord, with some promising outcome data. This may translate to more successful future Phase I/II human clinical trials into the use of stem cells after TSCI in adults.
Collapse
Affiliation(s)
- Charlotte Laycock
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - David Kieser
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Connor Fitz-Gerald
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Sherry Soltani
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Chris Frampton
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| |
Collapse
|
14
|
Shang Z, Li D, Chen J, Wang R, Wang M, Zhang B, Wang X, Wanyan P. What Is the Optimal Timing of Transplantation of Neural Stem Cells in Spinal Cord Injury? A Systematic Review and Network Meta-Analysis Based on Animal Studies. Front Immunol 2022; 13:855309. [PMID: 35371014 PMCID: PMC8965614 DOI: 10.3389/fimmu.2022.855309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The optimal transplantation timing of neural stem cells in spinal cord injury is fully explored in animal studies to reduce the risk of transformation to clinical practice and to provide valuable reference for future animal studies and clinical research. Method Seven electronic databases, namely, PubMed, Web of Science, Embase, Wanfang, Chinese Scientific Journal Database (CSJD-VIP), China Biomedical Literature Database (CBM), and China National Knowledge Infrastructure (CNKI), were searched. The studies were retrieved from inception to November 2021. Two researchers independently screened the literature, extracted data, and evaluated the methodological quality based on the inclusion criteria. Results and Discussion Thirty-nine studies were incorporated into the final analyses. Based on the subgroup of animal models and transplantation dose, the results of network meta-analysis showed that the effect of transplantation in the subacute phase might be the best. However, the results of traditional meta-analysis were inconsistent. In the moderate-dose group of moderate spinal cord injury model and the low-dose group of severe spinal cord injury model, transplantation in the subacute phase did not significantly improve motor function. Given the lack of evidence for direct comparison between different transplantation phases, the indirectness of our network meta-analysis, and the low quality of evidence in current animal studies, our confidence in recommending cell transplantation in the subacute phase is limited. In the future, more high-quality, direct comparative studies are needed to explore this issue in depth.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - RuiRui Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China.,Chengren Institute of Traditional Chinese Medicine, Lanzhou, China.,Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Pingping Wanyan
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Hulme CH, Fuller HR, Riddell J, Shirran SL, Botting CH, Osman A, Wright KT. Investigation of the blood proteome in response to spinal cord injury in rodent models. Spinal Cord 2022; 60:320-325. [PMID: 34601498 PMCID: PMC8989679 DOI: 10.1038/s41393-021-00692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022]
Abstract
STUDY DESIGN Explanatory and mechanistic study. OBJECTIVES A better understanding of the 'whole-body' response following spinal cord injury (SCI) is needed to guide future research aimed at developing novel therapeutic interventions and identifying prognostic indicators for SCI. This study aimed to characterise the blood proteome following contusion or complete SCI compared to a sham injury in rat models. SETTING United Kingdom. METHODS Pooled blood samples from one and seven days after a contusion (serum; n = 5) or from 14 days and 112 days post-complete transection SCI (plasma; n = 8) and their sham-injured counterparts were subjected to independent iTRAQ nanoflow liquid chromatography tandem mass-spectrometry proteomic analyses. Pathway analyses of the proteins that were differentially abundant between SCI and their matched sham injured counterparts were completed to indicate biological pathways that may be changed in response to SCI. RESULTS Eleven and 42 proteins were differentially abundant (≥±2.0 FC; p ≤ 0.05) between the contusion SCI and sham injured animals at 24 h and seven days post-injury, respectively. Seven and tweleve proteins were differentially abundant between complete and sham injured rats at 14 and 112 days post-injury, respectively. Acute-phase response signalling and Liver X Receptor/Retinoic X Receptor activation were identified as differentially regulated pathways in both models of SCI. CONCLUSIONS We have utilised longitudinal preclinical SCI models to provide an insight into the blood proteome changes that result following SCI and to highlight a number of biological pathways of interest for future studies.
Collapse
Affiliation(s)
- Charlotte H Hulme
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, UK
- Midlands Centre for Spinal Injuries, RJAH Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, UK
| | - John Riddell
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, North Haugh, St Andrews, UK
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, North Haugh, St Andrews, UK
| | - Aheed Osman
- Midlands Centre for Spinal Injuries, RJAH Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Karina T Wright
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, UK.
- Midlands Centre for Spinal Injuries, RJAH Orthopaedic Hospital, Oswestry, Shropshire, UK.
| |
Collapse
|
16
|
Bhatti FI, Mowforth OD, Butler MB, Bhatti AI, Adeeko S, Akhbari M, Dilworth R, Grodzinski B, Osunronbi T, Ottewell L, Teh JQ, Robinson S, Suresh G, Waheed U, Walker B, Kuhn I, Smith L, Bartlett RD, Davies BM, Kotter MRN. Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury. Spinal Cord 2021; 59:1221-1239. [PMID: 34392312 PMCID: PMC8629762 DOI: 10.1038/s41393-021-00680-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients. METHODS A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO (CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic SCI were included. Data extracted from relevant studies, included sample characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the SYRCLE checklist was used to assess risk of bias. RESULTS The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies. CONCLUSION Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.
Collapse
Affiliation(s)
- Faheem I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Oliver D Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Max B Butler
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aniqah I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | - Ben Grodzinski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Jye Quan Teh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Isla Kuhn
- Cambridge University Medical Library, Cambridge, UK
| | | | - Richard D Bartlett
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Benjamin M Davies
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Mark R N Kotter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
18
|
Wu X, Xu X, Liu Q, Ding J, Liu J, Huang Z, Huang Z, Wu X, Li R, Yang Z, Jiang H, Liu J, Zhu Q. Unilateral cervical spinal cord injury induces bone loss and metabolic changes in non-human primates ( Macaca fascicularis). J Orthop Translat 2021; 29:113-122. [PMID: 34178602 PMCID: PMC8193057 DOI: 10.1016/j.jot.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/14/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND/OBJECTIVE The deleterious effects of chronic spinal cord injury (SCI) on the skeleton in rats, especially the lower extremities, has been proved previously. However, the long-term skeletal changes after SCI in non-human primates (NHP) have been scarcely studied. This study aimed to evaluate the bone loss in limbs and vertebrae and the bone metabolic changes in NHP after unilateral cervical spinal cord contusion injury. METHODS Twelve Macaca fascicularis were randomly divided into the SCI (n=8) and the Sham (n=4) groups. The SCI models were established using hemi-contusion cervical spinal cord injury on fifth cervical vertebra (C5), and were further evaluated by histological staining and neurophysiological monitoring. Changes of bone microstructures, bone biomechanics, and bone metabolism markers were assessed by micro-CT, micro-FEA and serological kit. RESULTS The NHP hemi-contusion cervical SCI model led to consistent unilateral limb dysfunction and potential plasticity in the face of loss of spinal cord. Furthermore, the cancellous bone mass of ipsilateral humerus and radius decreased significantly compared to the contralateral side. The bone volume fraction of humerus and radius were 17.2% and 20.1% on the ipsilateral while 29.0% and 30.1% on the contralateral respectively. Similarly, the thickness of the cortical bone in the ipsilateral forelimbs was significantly decreased, as well as the bone strength of the ipsilateral forelimbs. These changes were accompanied by diminished concentration of osteocalcin and total procollagen type 1 N-terminal propeptide (t-P1NP) as well as increased level of β-C-terminal cross-linking telopeptide of type 1collagen (β-CTX) in serological testing. CONCLUSIONS The present study demonstrated that hemi-SCI induced loss of bone mass and compromised biomechanical performance in ipsilateral forelimbs, which could be indicated by both muscle atrophy and serological changes of bone metabolism, and associated with a consistent loss of large-diameter cells of sensory neurons in the dorsal root ganglia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our study, for the first time, demonstrated the bone loss in limbs and vertebrae as well as the bone metabolic changes in non-human primates after unilateral spinal cord injury (SCI). This may help to elucidate the role of muscle atrophy, serological changes and loss of sensory neurons in the mechanisms of SCI-induced osteoporosis, which would be definitely better compared with rodent models.
Collapse
Affiliation(s)
- Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Xu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianyang Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, BritishColumbia, Canada
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Saadoun S, Jeffery ND. Acute Traumatic Spinal Cord Injury in Humans, Dogs, and Other Mammals: The Under-appreciated Role of the Dura. Front Neurol 2021; 12:629445. [PMID: 33613434 PMCID: PMC7887286 DOI: 10.3389/fneur.2021.629445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
We review human and animal studies to determine whether, after severe spinal cord injury (SCI), the cord swells against the inelastic dura. Evidence from rodent models suggests that the cord swells because of edema and intraparenchymal hemorrhage and because the pia becomes damaged and does not restrict cord expansion. Human cohort studies based on serial MRIs and measurements of elevated intraspinal pressure at the injury site also suggest that the swollen cord is compressed against dura. In dogs, SCI commonly results from intervertebral disc herniation with evidence that durotomy provides additional functional benefit to conventional (extradural) decompressive surgery. Investigations utilizing rodent and pig models of SCI report that the cord swells after injury and that durotomy is beneficial by reducing cord pressure, cord inflammation, and syrinx formation. A human MRI study concluded that, after extensive bony decompression, cord compression against the dura may only occur in a small number of patients. We conclude that the benefit of routinely opening the dura after SCI is only supported by animal and level III human studies. Two randomized, controlled trials, one in humans and one in dogs, are being set up to provide Level I evidence.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Nicolas D Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Cellular therapy for treatment of spinal cord injury in Zebrafish model. Mol Biol Rep 2021; 48:1787-1800. [PMID: 33459959 DOI: 10.1007/s11033-020-06126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Collapse
|
21
|
McCann MM, Fisher KM, Ahloy-Dallaire J, Darian-Smith C. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat. J Comp Neurol 2020; 528:1293-1306. [PMID: 31769033 PMCID: PMC7102935 DOI: 10.1002/cne.24826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
The corticospinal tract (CST) is the major descending pathway controlling voluntary hand function in primates, and though less dominant, it mediates voluntary paw movements in rats. As with primates, the CST in rats originates from multiple (albeit fewer) cortical sites, and functionally different motor and somatosensory subcomponents terminate in different regions of the spinal gray matter. We recently reported in monkeys that following a combined cervical dorsal root/dorsal column lesion (DRL/DCL), both motor and S1 CSTs sprout well beyond their normal terminal range. The S1 CST sprouting response is particularly dramatic, indicating an important, if poorly understood, somatosensory role in the recovery process. As rats are used extensively to model spinal cord injury, we asked if the S1 CST response is conserved in rodents. Rats were divided into sham controls, and two groups surviving post-lesion for ~6 and 10 weeks. A DRL/DCL was made to partially deafferent one paw. Behavioral testing showed a post-lesion deficit and recovery over several weeks. Three weeks prior to ending the experiment, S1 cortex was mapped electrophysiologically, for tracer injection placement to determine S1 CST termination patterns within the cord. Synaptogenesis was also assessed for labeled S1 CST terminals within the dorsal horn. Our findings show that the affected S1 CST sprouts well beyond its normal range in response to a DRL/DCL, much as it does in macaque monkeys. This, along with evidence for increased synaptogenesis post-lesion, indicates that CST terminal sprouting following a central sensory lesion, is a robust and conserved response.
Collapse
Affiliation(s)
- Margaret M. McCann
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
- Margaret M. McCann, Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Criss II, Omaha NE 68178
| | - Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Jamie Ahloy-Dallaire
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, Québec, Canada G1V 0A6
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
22
|
Reshamwala R, Shah M, St John J, Ekberg J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant 2019; 28:132S-159S. [PMID: 31726863 PMCID: PMC7016467 DOI: 10.1177/0963689719883823] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Jenny Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Lai B, Che M, Feng B, Bai Y, Li G, Ma Y, Wang L, Huang M, Wang Y, Jiang B, Ding Y, Zeng X, Zeng Y. Tissue-Engineered Neural Network Graft Relays Excitatory Signal in the Completely Transected Canine Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901240. [PMID: 31763143 PMCID: PMC6864506 DOI: 10.1002/advs.201901240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Indexed: 05/10/2023]
Abstract
Tissue engineering produces constructs with defined functions for the targeted treatment of damaged tissue. A complete spinal cord injury (SCI) model is generated in canines to test whether in vitro constructed neural network (NN) tissues can relay the excitatory signal across the lesion gap to the caudal spinal cord. Established protocols are used to construct neural stem cell (NSC)-derived NN tissue characterized by a predominantly neuronal population with robust trans-synaptic activities and myelination. The NN tissue is implanted into the gap immediately following complete transection SCI of canines at the T10 spinal cord segment. The data show significant motor recovery of paralyzed pelvic limbs, as evaluated by Olby scoring and cortical motor evoked potential (CMEP) detection. The NN tissue survives in the lesion area with neuronal phenotype maintenance, improves descending and ascending nerve fiber regeneration, and synaptic integration with host neural circuits that allow it to serve as a neuronal relay to transmit excitatory electrical signal across the injured area to the caudal spinal cord. These results suggest that tissue-engineered NN grafts can relay the excitatory signal in the completely transected canine spinal cord, providing a promising strategy for SCI treatment in large animals, including humans.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Yu‐Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Huan Ma
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ya‐Qiong Wang
- Department of Electron MicroscopeZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ying Ding
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
24
|
V. S. H, Krishnan LK, Abelson KSP. A novel technique to develop thoracic spinal laminectomy and a methodology to assess the functionality and welfare of the contusion spinal cord injury (SCI) rat model. PLoS One 2019; 14:e0219001. [PMID: 31265469 PMCID: PMC6605676 DOI: 10.1371/journal.pone.0219001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
This study reports the advantage of a novel technique employing a motorised dental burr to assist laminectomy over the conventional manual technique at T10-T11 vertebra level in a rat model of spinal cord injury. Twenty-four female rats were randomly assigned to four groups: (1) conventionally laminectomised, (2) dental burr assisted laminectomised, (3) conventionally laminectomised with spinal cord contusion and (4) dental burr assisted laminectomised with spinal cord contusion. Basso Beattie Bresnahan (BBB) score, postoperative body weights, rat grimace scale (RGS), open cage activity and rearing was studied at 1, 7, 14, 21 and 28 days postoperatively, and area of spinal tissue affected was evaluated histologically. Laminectomised and spinal cord injured rats from dental burr groups showed significantly more weight gain and less weight loss respectively in comparison with respective conventionally laminectomised groups at various time points. Significantly higher RGS score was noticed in conventionally laminectomised animals on Day 1 in comparison to burr assisted laminectomy and presence of pain was evident until Day 7 in the conventionally spinal cord injured group. BBB score did not differ between techniques, whereas laminectomy groups showed more resting time than spinal injury groups. High rearing score was significantly higher in groups which underwent dental burr assisted technique at various time points with respect to their conventional counterparts. This study suggests that the use of dental burr assisted technique to perform laminectomy will bring refinement by producing less pain, aiding in better recovery, removing procedural artefacts without affecting the outcome of the model.
Collapse
Affiliation(s)
- Harikrishnan V. S.
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lissy K. Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Mobini S, Song YH, McCrary MW, Schmidt CE. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019; 198:146-166. [PMID: 29880219 PMCID: PMC6957334 DOI: 10.1016/j.biomaterials.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The technologies related to ex vivo models and lab-on-a-chip devices for studying the regeneration of brain, spinal cord, and peripheral nerve tissues are essential tools for neural tissue engineering and regenerative medicine research. The need for ex vivo systems, lab-on-a-chip technologies and disease models for neural tissue engineering applications are emerging to overcome the shortages and drawbacks of traditional in vitro systems and animal models. Ex vivo models have evolved from traditional 2D cell culture models to 3D tissue-engineered scaffold systems, bioreactors, and recently organoid test beds. In addition to ex vivo model systems, we discuss lab-on-a-chip devices and technologies specifically for neural tissue engineering applications. Finally, we review current commercial products that mimic diseased and normal neural tissues, and discuss the future directions in this field.
Collapse
Affiliation(s)
- Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Ahmed RU, Alam M, Zheng YP. Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 2019; 5:e01324. [PMID: 30906898 PMCID: PMC6411514 DOI: 10.1016/j.heliyon.2019.e01324] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in some serious neurophysiological consequences that alter healthy body functions and devastate the quality of living of individuals. To find a cure for SCI, researchers around the world are working on different neurorepair and neurorehabilitation modalities. To test a new treatment for SCI as well as to understand the mechanism of recovery, animal models are being widely used. Among them, SCI rat models are arguably the most prominent. Furthermore, it is important to select a suitable behavioral test to evaluate both the motor and sensory recovery following any therapeutic intervention. In this paper, we review the rat models of spinal injury and commonly used behavioral tests to serve as a useful guideline for neuroscientists in the field of SCI research.
Collapse
|
27
|
Tanabe N, Kuboyama T, Tohda C. Matrine promotes neural circuit remodeling to regulate motor function in a mouse model of chronic spinal cord injury. Neural Regen Res 2019; 14:1961-1967. [PMID: 31290454 PMCID: PMC6676875 DOI: 10.4103/1673-5374.259625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine (100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous matrine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama (approval No. A2013INM-1 and A2016INM-3) on May 7, 2013 and May 17, 2016, respectively.
Collapse
Affiliation(s)
- Norio Tanabe
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
28
|
Chen H, Zheng J, Ma J. Vanillin ameliorates changes in HIF-1α expression and neuronal apoptosis in a rat model of spinal cord injury. Restor Neurol Neurosci 2019; 37:21-29. [PMID: 30741707 DOI: 10.3233/rnn-180879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the search for treating neurological dysfunctions after spinal cord injury (SCI), methods of neuroprotection are of interest to intervene with the caspase pathway. OBJECTIVE To evaluate the neuroprotective effects of vanillin in a rat model of spinal cord injury (SCI). METHODS Rats were randomly assigned to one of three groups: a sham-operated group, and two groups where SCI was produced by ischemia/reperfusion which received either saline or vanillin (286 mg/kg, intraperitoneal [i.p.] 30 min prior to surgery). Neurological function was estimated by the Tarlov scale at 1, 12, and 24 h after surgery. Additionally, we estimated the levels of oxidative stress, inflammatory cytokines, and mitochondrial proteins in the homogenates of spinal tissues and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) and immunohistochemical assays of spinal tissues. RESULTS Motor dysfunction was found to be significantly improved in the vanillin treated group compared to SCI rats. This was accompanied by altered levels of oxidative stress, inflammatory cytokines, and expressions of mitochondrial proteins in the SCI rats which were ameliorated by the vanillin treatment. Vanillin also significantly reduced the number of TUNEL-positive cells in spinal cord tissues compared to the sham group (p < 0.01) and decreased the number of hypoxia-inducible factor (HIF)-1α-positive cells. CONCLUSIONS In the SCI rat model vanillin exerted neuroprotective effects of reducing apoptosis and attenuating the expression of HIF-1α in spinal tissues.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, Henan, China
| | - Jiuqin Zheng
- Department of Central Sterile Supply, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, Henan, China
| | - Junjie Ma
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, Henan, China
| |
Collapse
|
29
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
30
|
Lanza M, Campolo M, Casili G, Filippone A, Paterniti I, Cuzzocrea S, Esposito E. Sodium Butyrate Exerts Neuroprotective Effects in Spinal Cord Injury. Mol Neurobiol 2018; 56:3937-3947. [PMID: 30229438 DOI: 10.1007/s12035-018-1347-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Sodium butyrate (SB) is a dietary microbial fermentation product and serves as an important neuromodulator in the central nervous system. Recent experimental evidence has suggested potential therapeutic applications for butyrate, including its utility in treating metabolic and inflammatory diseases. The aim of the present study was to evaluate the potential beneficial effects of SB in a mouse model of spinal cord injury (SCI) and its possible mechanism of action. SCI was induced by extradural compression for 1 min of the spinal cord at the T6-7 level using an aneurysm clip, and SB (10-30-100 mg/kg) was administered by oral gavage 1 and 6 h after SCI. For locomotor activity, study mice were treated with SB once daily for 10 days. Morphological examination was performed by light microscopy through hematoxylin-eosin (H&E) staining. In addition, NF-κB, IκB-α, COX-2, and iNOS expressions were assayed by western blot analysis and IL-1β and TNF-α levels by immunohistochemistry analysis. The results showed that SB treatment significantly ameliorated histopathology changes and improved recovery of motor function changes in spinal cord injury in a dose-dependent manner. Moreover, we demonstrated that SB modulated the NF-κB pathway showing a significant reduction in cytokine expression. Thus, this study showed that SB exerts neuroprotective effects anti-inflammatory properties following spinal cord injury suggesting that SB may serve as a potential candidate for future treatment of spinal cord injury.
Collapse
Affiliation(s)
- M Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - M Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - G Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - A Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - I Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - S Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy.
| |
Collapse
|
31
|
Wu X, Qu W, Bakare AA, Zhang YP, Fry CME, Shields LBE, Shields CB, Xu XM. A Laser-Guided Spinal Cord Displacement Injury in Adult Mice. J Neurotrauma 2018; 36:460-468. [PMID: 29893166 DOI: 10.1089/neu.2018.5756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse models are unique for studying molecular mechanisms of neurotrauma because of the availability of various genetic modified mouse lines. For spinal cord injury (SCI) research, producing an accurate injury is essential, but it is challenging because of the small size of the mouse cord and the inconsistency of injury production. The Louisville Injury System Apparatus (LISA) impactor has been shown to produce precise contusive SCI in adult rats. Here, we examined whether the LISA impactor could be used to create accurate and graded contusive SCIs in mice. Adult C57BL/6 mice received a T10 laminectomy followed by 0.2, 0.5, and 0.8 mm displacement injuries, guided by a laser, from the dorsal surface of the spinal cord using the LISA impactor. Basso Mouse Scale (BMS), grid-walking, TreadScan, and Hargreaves analyses were performed for up to 6 weeks post-injury. All mice were euthanized at the 7th week, and the spinal cords were collected for histological analysis. Our results showed that the LISA impactor produced accurate and consistent contusive SCIs corresponding to mild, moderate, and severe injuries to the cord. The degree of injury severities could be readily determined by the BMS locomotor, grid-walking, and TreadScan gait assessments. The cutaneous hyperalgesia threshold was also significantly increased as the injury severity increased. The terminal lesion area and the spared white matter of the injury epicenter were strongly correlated with the injury severities. We conclude that the LISA device, guided by a laser, can produce reliable graded contusive SCIs in mice, resulting in severity-dependent behavioral and histopathological deficits.
Collapse
Affiliation(s)
- Xiangbing Wu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenrui Qu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adewale A Bakare
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yi Ping Zhang
- 4 Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky
| | - Collin M E Fry
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa B E Shields
- 4 Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky
| | | | - Xiao-Ming Xu
- 1 Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,3 Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana.,6 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
32
|
Minakov AN, Chernov AS, Asutin DS, Konovalov NA, Telegin GB. Experimental Models of Spinal Cord Injury in Laboratory Rats. Acta Naturae 2018; 10:4-10. [PMID: 30397521 PMCID: PMC6209407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/15/2022] Open
Abstract
Pathologies associated with spinal cord injury are some of the leading diseases in the world. The search for new therapeutic agents and 3D biodegradable materials for the recovery of spinal cord functions is a topical issue. In this review, we have summarized the literature data on the most common experimental models of spinal cord injury in laboratory rats and analyzed the experience of using 3D biodegradable materials (scaffolds) in experimental studies of spinal trauma. The advantages and disadvantages of the described models are systematically analyzed in this review.
Collapse
Affiliation(s)
- A. N. Minakov
- Branch of Shemyakin and Ovchinnikov institute of bioorganic chemistry Russian academy of sciences, Prospekt Nauki, 6, Moscow region, Pushchino, 142290, Russia
| | - A. S. Chernov
- Branch of Shemyakin and Ovchinnikov institute of bioorganic chemistry Russian academy of sciences, Prospekt Nauki, 6, Moscow region, Pushchino, 142290, Russia
| | - D. S. Asutin
- Federal State Autonomous Institution «N .N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, 4th Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - N. A. Konovalov
- Federal State Autonomous Institution «N .N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, 4th Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - G. B. Telegin
- Branch of Shemyakin and Ovchinnikov institute of bioorganic chemistry Russian academy of sciences, Prospekt Nauki, 6, Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
33
|
Bridges NR, Meyers M, Garcia J, Shewokis PA, Moxon KA. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. J Neurosci Methods 2018; 306:103-114. [PMID: 29859878 DOI: 10.1016/j.jneumeth.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. NEW METHOD A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. RESULTS This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. CONCLUSIONS The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance.
Collapse
Affiliation(s)
- Nathaniel R Bridges
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Michael Meyers
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Jonathan Garcia
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patricia A Shewokis
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Drexel University, Nutrition Sciences Department, College of Nursing and Health Professions, 1601 Cherry St., 382 Parkway Building, Philadelphia, PA, 19102, USA
| | - Karen A Moxon
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; University of California Davis, Department of Biomedical Engineering, 451 E. Health Sciences Drive, GBSF 2303, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Tanabe N, Kuboyama T, Tohda C. Matrine Directly Activates Extracellular Heat Shock Protein 90, Resulting in Axonal Growth and Functional Recovery in Spinal Cord Injured-Mice. Front Pharmacol 2018; 9:446. [PMID: 29867458 PMCID: PMC5949560 DOI: 10.3389/fphar.2018.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
After spinal cord injury (SCI), reconstruction of neuronal tracts is very difficult because an inhibitory scar is formed at the lesion site, in which several axonal growth inhibitors, such as chondroitin sulfate proteoglycans (CSPG), accumulate. We previously found that matrine, a major alkaloid in Sophora flavescens, enhanced axonal growth in neurons seeded on CSPG coating. The aims of this study were to investigate therapeutic effects of matrine in SCI mice and to clarify the underlying mechanism. Matrine was orally administered to contusion SCI mice. In the matrine-treated mice, motor dysfunction of the hindlimbs was improved, and the density of 5-HT-positive tracts was increased in the injured spinal cord. We explored putative direct binding proteins of matrine in cultured neurons using drug affinity responsive target stability (DARTS). As a result, heat shock protein 90 (HSP90) was identified, and matrine enhanced HSP90 chaperon activity. We then presumed that extracellular HSP90 is a matrine-targeting signaling molecule, and found that specific blocking of extracellular HSP90 by a neutralizing antibody completely diminished matrine-induced axonal growth and SCI amelioration. Our results suggest that matrine enhances axonal growth and functional recovery in SCI mice by direct activation of extracellular HSP90. Matrine could be a significant candidate for therapeutic drugs for SCI with a novel mechanism.
Collapse
Affiliation(s)
- Norio Tanabe
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
35
|
Borges PA, Cristante AF, de Barros-Filho TEP, Natalino RJM, dos Santos GB, Marcon RM. Standardization of a spinal cord lesion model and neurologic evaluation using mice. Clinics (Sao Paulo) 2018; 73:e293. [PMID: 29561931 PMCID: PMC5833014 DOI: 10.6061/clinics/2018/e293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To standardize a spinal cord lesion mouse model. METHODS Thirty BALB/c mice were divided into five groups: four experimental groups and one control group (sham). The experimental groups were subjected to spinal cord lesion by a weight drop from different heights after laminectomy whereas the sham group only underwent laminectomy. Mice were observed for six weeks, and functional behavior scales were applied. The mice were then euthanized, and histological investigations were performed to confirm and score spinal cord lesion. The findings were evaluated to prove whether the method of administering spinal cord lesion was effective and different among the groups. Additionally, we correlated the results of the functional scales with the results from the histology evaluations to identify which scale is more reliable. RESULTS One mouse presented autophagia, and six mice died during the experiment. Because four of the mice that died were in Group 5, Group 5 was excluded from the study. All the functional scales assessed proved to be significantly different from each other, and mice presented functional evolution during the experiment. Spinal cord lesion was confirmed by histology, and the results showed a high correlation between the Basso, Beattie, Bresnahan Locomotor Rating Scale and the Basso Mouse Scale. The mouse function scale showed a moderate to high correlation with the histological findings, and the horizontal ladder test had a high correlation with neurologic degeneration but no correlation with the other histological parameters evaluated. CONCLUSION This spinal cord lesion mouse model proved to be effective and reliable with exception of lesions caused by a 10-g drop from 50 mm, which resulted in unacceptable mortality. The Basso, Beattie, Bresnahan Locomotor Rating Scale and Basso Mouse Scale are the most reliable functional assessments, and but the horizontal ladder test is not recommended.
Collapse
Affiliation(s)
- Paulo Alvim Borges
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Tarcísio Eloy Pessoa de Barros-Filho
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Renato Jose Mendonça Natalino
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gustavo Bispo dos Santos
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Raphael Marcus Marcon
- Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
36
|
Kwon D, Ahn HJ, Kang KS. Generation of Human Neural Stem Cells by Direct Phenotypic Conversion. Results Probl Cell Differ 2018; 66:103-121. [PMID: 30209656 DOI: 10.1007/978-3-319-93485-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human neural stem cells (hNSC) are multipotent adult stem cells. Various studies are underway worldwide to identify new methods for treatment of neurological diseases using hNSC. This chapter summarizes the latest research trends in and fields for application of patient-specific hNSC using direct phenotypic conversion technology. The aim of the study was to analyze the advantages and disadvantages of current technology and to suggest relevant directions for future hNSC research.
Collapse
Affiliation(s)
- Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea.
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
37
|
Abstract
Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.
Collapse
|
38
|
Chen HSM, Holmes N, Liu J, Tetzlaff W, Kozlowski P. Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. Neuroimage 2017; 153:122-130. [PMID: 28377211 DOI: 10.1016/j.neuroimage.2017.03.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022] Open
Abstract
Myelin content is an important marker for neuropathology and MRI generated myelin water fraction (MWF) has been shown to correlate well with myelin content. However, because MWF is based on the amount of signal from myelin water, that is, the water trapped between the myelin lipid bilayers, the reading may depend heavily on myelin morphology. This is of special concern when there is a mix of intact myelin and myelin debris, as in the case of injury. To investigate what MWF measures in the presence of debris, we compared MWF to transmission electron microscopy (TEM) derived myelin fraction that measures the amount of compact appearing myelin. A rat spinal cord injury model was used with time points at normal (normal myelin), 3 weeks post-injury (myelin debris), and 8 weeks post-injury (myelin debris, partially cleared). The myelin period between normal and 3 or 8 weeks post-injury cords did not differ significantly, suggesting that as long as the bilayer structure is intact, myelin debris has the same water content as intact myelin. The MWF also correlated strongly with the TEM-derived myelin fraction, suggesting that MWF measures the amount of compact appearing myelin in both intact myelin and myelin debris. From the TEM images, it appears that as myelin degenerates, it tends to form large watery spaces within the myelin sheaths that are not classified as myelin water. The results presented in this study improve our understanding and allows for better interpretation of MWF in the presence of myelin debris.
Collapse
Affiliation(s)
- Henry Szu-Meng Chen
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; University of British Columbia MRI Research Centre, Vancouver, Canada.
| | - Nathan Holmes
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada.
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada.
| | - Piotr Kozlowski
- University of British Columbia MRI Research Centre, Vancouver, Canada; International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Radiology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Schomberg DT, Miranpuri GS, Chopra A, Patel K, Meudt JJ, Tellez A, Resnick DK, Shanmuganayagam D. Translational Relevance of Swine Models of Spinal Cord Injury. J Neurotrauma 2017; 34:541-551. [DOI: 10.1089/neu.2016.4567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dominic T. Schomberg
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | - Gurwattan S. Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abhishek Chopra
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kush Patel
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer J. Meudt
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | | | - Daniel K. Resnick
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| |
Collapse
|
40
|
The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 2016; 55:114-125. [DOI: 10.1038/sc.2016.174] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023]
|
41
|
Bellanti F. Ischemia-reperfusion injury: evidences for translational research. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S55. [PMID: 27868023 PMCID: PMC5104605 DOI: 10.21037/atm.2016.10.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
42
|
Amirmohseni S, Wachsmuth L, Just N, Faber C. Performance of MRS in metabolic profiling of the lumbar spinal cord in rat and mice. Magn Reson Imaging 2016; 34:1155-60. [DOI: 10.1016/j.mri.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/03/2016] [Indexed: 01/24/2023]
|
43
|
Filippi M, Boido M, Pasquino C, Garello F, Boffa C, Terreno E. Successful in vivo MRI tracking of MSCs labeled with Gadoteridol in a Spinal Cord Injury experimental model. Exp Neurol 2016; 282:66-77. [DOI: 10.1016/j.expneurol.2016.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023]
|
44
|
Yang JH, Lv JG, Wang H, Nie HY. Electroacupuncture promotes the recovery of motor neuron function in the anterior horn of the injured spinal cord. Neural Regen Res 2016; 10:2033-9. [PMID: 26889195 PMCID: PMC4730831 DOI: 10.4103/1673-5374.172323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury. However, the mechanism of action remains unclear. In this study, a rat model of spinal cord injury was established by compressing the T8–9 segments using a modified Nystrom method. Twenty-four hours after injury, Zusanli (ST36), Xuanzhong (GB39), Futu (ST32) and Sanyinjiao (SP6) were stimulated with electroacupuncture. Rats with spinal cord injury alone were used as controls. At 2, 4 and 6 weeks after injury, acetylcholinesterase (AChE) activity at the site of injury, the number of medium and large neurons in the spinal cord anterior horn, glial cell line-derived neurotrophic factor (GDNF) mRNA expression, and Basso, Beattie and Bresnahan locomotor rating scale scores were greater in the electroacupuncture group compared with the control group. These results demonstrate that electroacupuncture increases AChE activity, up-regulates GDNF mRNA expression, and promotes the recovery of motor neuron function in the anterior horn after spinal cord injury.
Collapse
Affiliation(s)
- Jian-Hui Yang
- Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian-Guo Lv
- Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Wang
- Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui-Yong Nie
- Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
45
|
Pandamooz S, Salehi MS, Nabiuni M, Dargahi L, Pourghasem M. Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform. Folia Biol (Praha) 2016; 62:263-267. [PMID: 28189150 DOI: 10.14712/fb2016062060263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Among various strategies employed for spinal cord injury, stem cell therapy is a potential treatment. So far, a variety of stem cells have been evaluated in animal models and humans with spinal cord injury, and epidermal neural crest stem cells represent one of the attractive types in this area. Although these multipotent stem cells have been assessed in several spinal cord injury models by independent laboratories, extensive work remains to be done to ascertain whether these cells can safely improve the outcome following human spinal cord injury. Among the models that closely mimic human spinal cord injury, the in vitro model of injury in organotypic spinal cord slice culture has been identified as one of the faithful platforms for injury-related investigations. In this study, green fluorescent protein-expressing stem cells were grafted into injured organotypic spinal cord slice culture and their survival was examined by confocal microscope seven days after transplantation. Data obtained from this preliminary study showed that these stem cells can survive on top of the surface of injured slices, as observed on day seven following their transplantation. This result revealed that this in vitro model of injury can be considered as a suitable context for further evaluation of epidermal neural crest stem cells before their application in large animals.
Collapse
Affiliation(s)
- S Pandamooz
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - M S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - L Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pourghasem
- Department of Anatomy and Embryology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
46
|
Kwon BK, Streijger F, Hill CE, Anderson AJ, Bacon M, Beattie MS, Blesch A, Bradbury EJ, Brown A, Bresnahan JC, Case CC, Colburn RW, David S, Fawcett JW, Ferguson AR, Fischer I, Floyd CL, Gensel JC, Houle JD, Jakeman LB, Jeffery ND, Jones LAT, Kleitman N, Kocsis J, Lu P, Magnuson DSK, Marsala M, Moore SW, Mothe AJ, Oudega M, Plant GW, Rabchevsky AS, Schwab JM, Silver J, Steward O, Xu XM, Guest JD, Tetzlaff W. Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp Neurol 2015; 269:154-68. [PMID: 25902036 DOI: 10.1016/j.expneurol.2015.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/28/2022]
Abstract
Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted.
Collapse
Affiliation(s)
- Brian K Kwon
- University of British Columbia, ICORD, Room 6196, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC V5Z 1 M9, Canada.
| | - Femke Streijger
- University of British Columbia, ICORD, Room 6196, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC V5Z 1 M9, Canada.
| | - Caitlin E Hill
- Burke Medical Research Institute/Weill Cornell Medical College, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| | | | - Mark Bacon
- International Spinal Research Trust, International Spinal Research Trust, Bramley Business Centre, Station Road, Bramley, Guildford, Surrey GU5 0AZ, UK.
| | - Michael S Beattie
- University of California at San Francisco, 1001 Potrero Ave., Bldg 1 Rm 101, San Francisco, CA 94110, USA.
| | - Armin Blesch
- Heidelberg University Hospital, Spinal Cord Injury Center, Germany.
| | - Elizabeth J Bradbury
- King's College London, The Wolfson Centre for Age-Related Diseases, Wolfson Wing, Hodgkin Building, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | - Arthur Brown
- University of Western Ontario, Robarts Research Institute, University of Western Ontario, Department of Anatomy and Cell Biology, 1151 Richmond Street, North, N6A 5B7, Canada.
| | - Jacqueline C Bresnahan
- University of California at San Francisco, 1001 Potrero Ave., Bldg 1 Rm 101, San Francisco, CA 94110, USA.
| | - Casey C Case
- Asterias Biotherapeutics, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| | - Raymond W Colburn
- Acorda Therapeutics, Acorda Therapeutics, Inc., 420 Saw Mill River Road, Ardsley, NY 10502, USA.
| | - Samuel David
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - James W Fawcett
- University of Cambridge, John van Geest Centre for Brain Repair, Robinson Way, Cambridge CB2 0PY, UK.
| | - Adam R Ferguson
- University of California, San Francisco (UCSF), Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, USA.
| | - Itzhak Fischer
- Drexel University College of Medicine, Dept. of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | - Candace L Floyd
- University of Alabama at Birmingham, 529C Spain Rehabilitation Center, 1717 6th Avenue South, Birmingham, AL 35249, USA.
| | - John C Gensel
- University of Kentucky, Spinal Cord and Brain Injury Research Center, B463 Biomedical & Biological Sciences Research Building (BBSRB), 741 S. Limestone, Lexington, KY 40536, USA.
| | - John D Houle
- Drexel University College of Medicine, Spinal Cord Research Center, Philadelphia, PA 19129, USA.
| | - Lyn B Jakeman
- National Institutes of Health/NINDS, 6001 Executive Blvd. North, Bethesda, MD 20852, USA.
| | - Nick D Jeffery
- Iowa State University, Lloyd Veterinary Medical Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | - Naomi Kleitman
- Craig H. Neilsen Foundation, 16830 Ventura Blvd. Suite 352, Encino, CA 91436, USA.
| | - Jeffery Kocsis
- Yale University and VA CT Healthcare System, Neuroscience Center (127A), VA CT Healthcare Center, 950 Campbell Ave., West Haven, CT 06516, USA.
| | - Paul Lu
- VA-San Diego Healthcare System, University of California at San Diego, BMF2, Room 2126, 9500 Gilman Dr., La Jolla, CA 92093-0626, USA.
| | - David S K Magnuson
- University of Louisville School of Medicine, 511 S. Floyd St., MDR Rm 616, USA.
| | - Martin Marsala
- University of California, San Diego, Department of Anesthesiology SCRM, Room 4009, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA.
| | - Simon W Moore
- InVivo Therapeutics Corporation, One Kendall Square, Suite B14402, Cambridge, MA 02139, USA.
| | - Andrea J Mothe
- Toronto Western Research Institute, Krembil Discovery Tower, 60 Leonard Ave. , 7KD-406, Toronto ON M5T 2S8, Canada.
| | - Martin Oudega
- University of Miami Miller School of Medicine, LPLC, 1095 NW 14 Terrace, Miami, FL 33136, USA.
| | - Giles W Plant
- Stanford University, Lorry I. Lokey Stem Cell Research Building, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA.
| | | | | | - Jerry Silver
- Case Western Reserve University, Dept. of Neurosciences, School of Medicine, 2109 Adelbert Rd., Cleveland, OH 44106, USA.
| | - Oswald Steward
- University of California Irvine, Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA 92697, USA.
| | - Xiao-Ming Xu
- Indiana University School of Medicine, 320 W. 15th St., Indianapolis, IN 46202, USA.
| | | | - Wolfram Tetzlaff
- University of British Columbia, ICORD, Room 6196, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC V5Z 1 M9, Canada.
| |
Collapse
|