1
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C. Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Haghmorad D, Yazdanpanah E, Sadighimoghaddam B, Yousefi B, Sahafi P, Ghorbani N, Rashidy-Pour A, Kokhaei P. Kombucha ameliorates experimental autoimmune encephalomyelitis through activation of Treg and Th2 cells. Acta Neurol Belg 2021; 121:1685-1692. [PMID: 32812134 DOI: 10.1007/s13760-020-01475-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS). Kombucha is produced by the fermentation of sugared tea with a symbiotic culture of bacteria and yeasts. This research was designed to reveal the therapeutic impact and the molecular and cellular processes determining the effect of kombucha on MS alleviation in an experimental autoimmune encephalomyelitis (EAE). The EAE was induced using myelin oligodendrocyte glycoprotein (MOG35-55) peptide emulsified in CFA and injected subcutaneously over two flank areas in C57BL/6 mice. In addition, pertussis toxin was injected intraperitoneally and repeated 48 h later. Treatment groups were received three different doses of kombucha (K1: low dose, K2: medium dose and K3: high dose) to obtain a maximum protection. Clinical scores and other criteria were followed daily for the 25 days. At the end of the course, T-helper-related cytokines (IFN-γ, IL-17, IL-4, and TGF-β) were measured through ELISA. Moreover, nitric oxide (NO) concentration in spinal cord tissue was detected. The severity of disease on the peak of disease in K1, K2, and K3 groups were 3.4 ± 0.18 and 2.6 ± 0.18 and 2 ± 0.14 respectively, compared to the CTRL group with 4.5 ± 0.19 (p < 0.001). Kombucha increased production of interleukin IL-4 (K1 = 95 ± 5, K2 = 110 ± 10, K3 = 115 ± 5 and CTRL = 65 ± 5; p < 0.05) and TGF-β (K1 = 1750 ± 80, K2 = 2050 ± 65, K3 = 2200 ± 75 and CTRL = 850 ± 85; p < 0.001) but concurrently resulted in a remarkable reduction in the production of IFN-γ (K1 = 950 ± 70, K2 = 890 ± 65, K3 = 850 ± 85 and CTRL = 3850 ± 115; p < 0.001) and IL-17 (K1 = 1250 ± 75, K2 = 1050 ± 90, K3 = 970 ± 80 and CTRL = 6450 ± 125; p < 0.001). Moreover, NO concentration in spinal cord tissue in the treatment groups was significantly less than the control group (K1: 35.42 ± 2.1, K2 = 31.21 ± 2.2, K3 = 28.24 ± 2.6 and CTRL = 45.25 ± 2.7; p < 0.05). These results supported that kombucha could reduce the severity of disease in an EAE model through motivating polarization of CD4+ T cells by induction of IL-4 and TGF-β as well as inhibition of IFN-γ and IL-17.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/diet therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Inflammation Mediators/metabolism
- Kombucha Tea
- Mice
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Dariush Haghmorad
- Department of Pathology and Laboratory Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Sadighimoghaddam
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pegah Sahafi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Ghorbani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Safari H, Anani Sarab G, Naseri M. Artemisia dracunculus L . modulates the immune system in a multiple sclerosis mouse model. Nutr Neurosci 2021; 24:843-849. [PMID: 31665978 DOI: 10.1080/1028415x.2019.1681742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Multiple sclerosis along with its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory and degenerative diseases of the central nervous system (CNS). Due to the unknown cause of the disease, the most common treatments of MS are targeted for the reduction of inflammation and the repairment of CNS tissue damage, especially myelin restoration. Due to the immune protective nature of herbs, it may be useful to evaluate the impact of herbs in the diet regimen of MS patients along with their immune-mediated effects. The purpose of this study was to investigate the effect of an aqueous extract of Artemisia dracunculus (Tarragon) on the treatment of EAE in C57BL/6 mice.Methods: In this experimental study, mice were divided into the following control, untreated EAE, and A. dracunculus treated EAE groups. EAE was induced by myelin oligodendrocyte glycoprotein (MOG35-55) in female C57BL/6 mice. The symptoms of the disease and the weight of the mice were recorded daily. On day 33 after EAE induction, the mice were sacrificed and the specimens were collected. Cell proliferation and cytokine release (TGF-β, IL-17 and IL-23) from mice cultured spleen cells was measured by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and ELISA respectively.Results: Administration of the extract of A. dracunculus mitigated EAE symptoms (P < 0.05). Furthermore, there was a reduction in the levels of inflammatory cytokines including IL-17 (P = 0.009) and IL-23 (P = 0.012) and confirmed increased serum antioxidant levels in A. dracunculus treated EAE mice (P = 0.008).Conclusions: These observations indicate that A. dracunculus extracts could reduce inflammatory cytokines and attenuate certain signs of EAE, suggesting the potential of a useful adjuvant therapy for MS.
Collapse
Affiliation(s)
- Hamidreza Safari
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Chauhan P, Kakkar AK, Singh H, Gautam CS. Minocycline for the management of multiple sclerosis: repositioning potential, opportunities, and challenges. Expert Rev Neurother 2020; 21:35-43. [PMID: 33059513 DOI: 10.1080/14737175.2020.1838276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic demyelinating inflammatory disorder with variable clinical and pathologic characteristics reflecting multiple underlying pathophysiologic mechanisms. Repositioning of existing drugs for the new indications offers several advantages including significant reduction in the cost and time of drug development and exemption from early phase clinical trials. Minocycline has been reported to exhibit immunomodulation in several pre-clinical and clinical studies through suppression of migratory inflammatory cells, modulation of peripheral immune response, and inhibition of microglial activation within the CNS. AREAS COVERED Here, the authors review the repositioning potential of minocycline for the treatment of MS along with appraisal of the evidence obtained from preclinical and clinical research. The authors also discuss the advantages and potential safety concerns related to the use of minocycline for the management of MS. EXPERT OPINION Minocycline offers several distinct advantages in terms of well-known safety profile, lower cost of therapy, widespread availability, and being available as an oral formulation. The authors call upon the public and private funders to facilitate well designed and adequately powered randomized clinical trials that can provide conclusive evidence regarding the safety and efficacy of minocycline in patients with MS.
Collapse
Affiliation(s)
- Prerna Chauhan
- Department of Pharmacology, All India Institute of Medical Sciences , New Delhi, India
| | - Ashish Kumar Kakkar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research , Chandigarh, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital , Chandigarh, India
| | - C S Gautam
- Department of Pharmacology, Government Medical College and Hospital , Chandigarh, India
| |
Collapse
|