1
|
Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Front Neurosci 2021; 14:622137. [PMID: 33510616 PMCID: PMC7835643 DOI: 10.3389/fnins.2020.622137] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Brain organoids, or cerebral organoids, have become widely used to study the human brain in vitro. As pluripotent stem cell-derived structures capable of self-organization and recapitulation of physiological cell types and architecture, brain organoids bridge the gap between relatively simple two-dimensional human cell cultures and non-human animal models. This allows for high complexity and physiological relevance in a controlled in vitro setting, opening the door for a variety of applications including development and disease modeling and high-throughput screening. While technologies such as single cell sequencing have led to significant advances in brain organoid characterization and understanding, improved functional analysis (especially electrophysiology) is needed to realize the full potential of brain organoids. In this review, we highlight key technologies for brain organoid development and characterization, then discuss current electrophysiological methods for brain organoid analysis. While electrophysiological approaches have improved rapidly for two-dimensional cultures, only in the past several years have advances been made to overcome limitations posed by the three-dimensionality of brain organoids. Here, we review major advances in electrophysiological technologies and analytical methods with a focus on advances with applicability for brain organoid analysis.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Lee K, Park TIH, Heppner P, Schweder P, Mee EW, Dragunow M, Montgomery JM. Human in vitro systems for examining synaptic function and plasticity in the brain. J Neurophysiol 2020; 123:945-965. [PMID: 31995449 DOI: 10.1152/jn.00411.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue. With recent advances in the optimization of protocols for adult human brain preparations, there is a significant opportunity for neuroscientists to validate their findings in human-based systems. This review addresses the methodological aspects, advantages, and disadvantages of human neuron in vitro systems, focusing on the unique properties of human neurons and synapses in neocortical microcircuits. These in vitro models provide the incomparable advantage of being a direct representation of the neurons that have formed part of the human brain until the point of recording, which cannot be replicated by animal models nor human stem-cell systems. Important distinct cellular mechanisms are observed in human neurons that may underlie the higher order cognitive abilities of the human brain. The use of human brain tissue in neuroscience research also raises important ethical, diversity, and control tissue limitations that need to be considered. Undoubtedly however, these human neuron systems provide critical information to increase the potential of translation of treatments from the laboratory to the clinic in a way animal models are failing to provide.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward W Mee
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, New Zealand.,Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
3
|
Trujillo CA, Muotri AR. Brain Organoids and the Study of Neurodevelopment. Trends Mol Med 2018; 24:982-990. [PMID: 30377071 PMCID: PMC6289846 DOI: 10.1016/j.molmed.2018.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
Brain organoids are 3D self-assembled structures composed of hundreds of thousands to millions of cells that resemble the cellular organization and transcriptional and epigenetic signature of a developing human brain. Advancements using brain organoids have been made to elucidate the genetic basis of certain neurodevelopmental disorders, such as microcephaly and autism; and to investigate the impact of environmental factors to the brain, such as during Zika virus infection. It remains to be explored how far brain organoids can functionally mature and process external information. An improved brain organoid model might reproduce important aspects of the human brain in a more reproducible and high-throughput fashion. This novel and complementary approach in the neuroscience toolbox opens perspectives to understand the fundamental features of the human neurodevelopment, with implications to personalize therapeutic opportunities for neurological disorders.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, CA 92037-0695, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, CA 92037-0695, USA; Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, CA 92037-0695, USA.
| |
Collapse
|