1
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 PMCID: PMC11877619 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R. Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J. Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Tam PK, Oey NE, Tang N, Ramamurthy G, Chew E. Facilitating Corticomotor Excitability of the Contralesional Hemisphere Using Non-Invasive Brain Stimulation to Improve Upper Limb Motor Recovery from Stroke-A Scoping Review. J Clin Med 2024; 13:4420. [PMID: 39124687 PMCID: PMC11313572 DOI: 10.3390/jcm13154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Upper limb weakness following stroke poses a significant global psychosocial and economic burden. Non-invasive brain stimulation (NIBS) is a potential adjunctive treatment in rehabilitation. However, traditional approaches to rebalance interhemispheric inhibition may not be effective for all patients. The supportive role of the contralesional hemisphere in recovery of upper limb motor function has been supported by animal and clinical studies, particularly for those with severe strokes. This review aims to provide an overview of the facilitation role of the contralesional hemisphere for post-stroke motor recovery. While more studies are required to predict responses and inform the choice of NIBS approach, contralesional facilitation may offer new hope for patients in whom traditional rehabilitation and NIBS approaches have failed.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Nicodemus Edrick Oey
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Ning Tang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
4
|
Chen S, Zhang X, Chen X, Zhou Z, Cong W, Chong K, Xu Q, Wu J, Li Z, Lin W, Shan C. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke. Front Neurosci 2023; 17:1231693. [PMID: 37655011 PMCID: PMC10466792 DOI: 10.3389/fnins.2023.1231693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Objective To investigate changes in interhemispheric imbalance of cortical excitability during motor recovery after stroke and to clarify the relationship between motor function recovery and alterations in interhemispheric imbalance, with the aim to establish more effective neuromodulation strategies. Methods Thirty-one patients underwent assessments of resting motor threshold (RMT) using transcranial magnetic stimulation (TMS); the cortical activity of the primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA) using functional near-infrared spectroscopy (fNIRS); as well as motor function using upper extremity Fugl-Meyer (FMA-UE). The laterality index (LI) of RMT and fNIRS were also calculated. All indicators were measured at baseline(T1) and 1 month later(T2). Correlations between motor function outcome and TMS and fNIRS metrics at baseline were analyzed using bivariate correlation. Results All the motor function (FMA-UE1, FMA-UE2, FMA-d2) and LI-RMT (LI-RMT1 and LI-RMT2) had a moderate negative correlation. The higher the corticospinal excitability of the affected hemisphere, the better the motor outcome of the upper extremity, especially in the distal upper extremity (r = -0.366, p = 0.043; r = -0.393, p = 0.029). The greater the activation of the SMA of the unaffected hemisphere, the better the motor outcome, especially in the distal upper extremity (r = -0.356, p = 0.049; r = -0.367, p = 0.042). There was a significant moderate positive correlation observed between LI-RMT2 and LI-SMA1 (r = 0.422, p = 0.018). The improvement in motor function was most significant when both LI-RMT1 and LI-SMA1 were lower. Besides, in patients dominated by unaffected hemisphere corticospinal excitability during motor recovery, LI-(M1 + SMA + PMC)2 exhibited a significant moderate positive association with the proximal upper extremity function 1 month later (r = 0.642, p = 0.007). Conclusion The combination of both TMS and fNIRS can infer the prognosis of motor function to some extent. Which can infer the role of both hemispheres in recovery and may contribute to the development of effective individualized neuromodulation strategies.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiqin Cong
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - KaYee Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Xu
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Jiali Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyuan Li
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Institute of rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Pila O, Duret C, Koeppel T, Jamin P. Performance-Based Robotic Training in Individuals with Subacute Stroke: Differences between Responders and Non-Responders. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094304. [PMID: 37177508 PMCID: PMC10181678 DOI: 10.3390/s23094304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The high variability of upper limb motor recovery with robotic training (RT) in subacute stroke underscores the need to explore differences in responses to RT. We explored differences in baseline characteristics and the RT dose between responders (ΔFugl-Meyer Assessment (FMA) score ≥ 9 points; n = 20) and non-responders (n = 16) in people with subacute stroke (mean [SD] poststroke time at baseline, 54 (26) days, baseline FMA score, 23 (17) points) who underwent 16 RT sessions combined with conventional therapies. Baseline characteristics were compared between groups. During RT sessions, the actual practice time (%), number of movements performed, and total distance covered (cm) in assisted and unassisted modalities were compared between groups. At baseline, participant characteristics and FMA scores did not differ between groups. During the RT, non-responders increased practice time (+15%; p = 0.02), performed more movements (+285; p = 0.004), and covered more distance (+4037 cm; p < 10-3), with no difference between physical modalities. In contrast, responders decreased practice time (-21%; p = 0.01) and performed fewer movements (-338; p = 0.03) in the assisted modality while performing more movements (+328; p < 0.05) and covering a greater distance (+4779 cm; p = 0.01) in unassisted modalities. Despite a large amount of motor practice, motor outcomes did not improve in non-responders compared to responders: the difficulty level in RT may have been too low for them. Future studies should combine robot-based parameters to describe the treatment dose, especially in people with severe-to-moderate arm paresis, to optimize the RT and improve the recovery prognosis.
Collapse
Affiliation(s)
- Ophélie Pila
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Typhaine Koeppel
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France
| | - Pascal Jamin
- Institut Robert Merle d'Aubigné, Rééducation et Appareillage, 94460 Valenton, France
| |
Collapse
|
6
|
Qin Y, Li X, Qiao Y, Zou H, Qian Y, Li X, Zhu Y, Huo W, Wang L, Zhang M. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front Neurosci 2023; 17:1132393. [PMID: 37065921 PMCID: PMC10102345 DOI: 10.3389/fnins.2023.1132393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeBrain glymphatic dysfunction is involved in the pathologic process of acute ischemic stroke (IS). The relationship between brain glymphatic activity and dysfunction in subacute IS has not been fully elucidated. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was used in this study to explore whether glymphatic activity was related to motor dysfunction in subacute IS patients.MethodsTwenty-six subacute IS patients with a single lesion in the left subcortical region and 32 healthy controls (HCs) were recruited in this study. The DTI-ALPS index and DTI metrics (fractional anisotropy, FA, and mean diffusivity, MD) were compared within and between groups. Spearman's and Pearson's partial correlation analyses were performed to analyze the relationships of the DTI-ALPS index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST) integrity in the IS group, respectively.ResultsSix IS patients and two HCs were excluded. The left DTI-ALPS index of the IS group was significantly lower than that of the HC group (t = −3.02, p = 0.004). In the IS group, a positive correlation between the left DTI-ALPS index and the simple Fugl-Meyer motor function score (ρ = 0.52, p = 0.019) and a significant negative correlation between the left DTI-ALPS index and the FA (R = −0.55, p = 0.023) and MD (R = −0.48, p = 0.032) values of the right CST were found.ConclusionsGlymphatic dysfunction is involved in subacute IS. DTI-ALPS could be a potential magnetic resonance (MR) biomarker of motor dysfunction in subacute IS patients. These findings contribute to a better understanding of the pathophysiological mechanisms of IS and provide a new target for alternative treatments for IS.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xin Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yanqiang Qiao
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Huili Zou
- Department of Rehabilitation Medicine, Xi'an Daxing Hospital, Xi'an, China
| | - Yifan Qian
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xiaoshi Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yinhu Zhu
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Wenli Huo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
- Lei Wang
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Ming Zhang
| |
Collapse
|
7
|
Jamin P, Duret C, Hutin E, Bayle N, Koeppel T, Gracies JM, Pila O. Using Robot-Based Variables during Upper Limb Robot-Assisted Training in Subacute Stroke Patients to Quantify Treatment Dose. SENSORS 2022; 22:s22082989. [PMID: 35458975 PMCID: PMC9026756 DOI: 10.3390/s22082989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
In post-stroke motor rehabilitation, treatment dose description is estimated approximately. The aim of this retrospective study was to quantify the treatment dose using robot-measured variables during robot-assisted training in patients with subacute stroke. Thirty-six patients performed fifteen 60 min sessions (Session 1−Session 15) of planar, target-directed movements in addition to occupational therapy over 4 (SD 2) weeks. Fugl−Meyer Assessment (FMA) was carried out pre- and post-treatment. The actual time practiced (percentage of a 60 min session), the number of repeated movements, and the total distance traveled were analyzed across sessions for each training modality: assist as needed, unassisted, and against resistance. The FMA score improved post-treatment by 11 (10) points (Session 1 vs. Session 15, p < 0.001). In Session 6, all modalities pooled, the number of repeated movements increased by 129 (252) (vs. Session 1, p = 0.043), the total distance traveled increased by 1743 (3345) cm (vs. Session 1, p = 0.045), and the actual time practiced remained unchanged. In Session 15, the actual time practiced showed changes only in the assist-as-needed modality: −13 (23) % (vs. Session 1, p = 0.013). This description of changes in quantitative-practice-related variables when using different robotic training modalities provides comprehensive information related to the treatment dose in rehabilitation. The treatment dose intensity may be enhanced by increasing both the number of movements and the motor difficulty of performing each movement.
Collapse
Affiliation(s)
- Pascal Jamin
- Institut Robert Merle d’Aubigné, Rééducation et Appareillage, 94460 Valenton, France;
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France; (C.D.); (T.K.)
| | - Emilie Hutin
- Laboratoire Analyse et Restauration Du Mouvement (ARM), Hôpital Henri MONDOR, Université Paris-Est, 94000 Créteil, France; (E.H.); (N.B.); (J.-M.G.)
- Bioingénierie, Tissus et Neuroplasticité (BIOTN), Université Paris-Est Créteil, 94000 Créteil, France
| | - Nicolas Bayle
- Laboratoire Analyse et Restauration Du Mouvement (ARM), Hôpital Henri MONDOR, Université Paris-Est, 94000 Créteil, France; (E.H.); (N.B.); (J.-M.G.)
- Bioingénierie, Tissus et Neuroplasticité (BIOTN), Université Paris-Est Créteil, 94000 Créteil, France
| | - Typhaine Koeppel
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France; (C.D.); (T.K.)
| | - Jean-Michel Gracies
- Laboratoire Analyse et Restauration Du Mouvement (ARM), Hôpital Henri MONDOR, Université Paris-Est, 94000 Créteil, France; (E.H.); (N.B.); (J.-M.G.)
- Bioingénierie, Tissus et Neuroplasticité (BIOTN), Université Paris-Est Créteil, 94000 Créteil, France
| | - Ophélie Pila
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 77310 Boissise-Le-Roi, France; (C.D.); (T.K.)
- Correspondence:
| |
Collapse
|
8
|
Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is the second most common cause of death and third most common cause of disability worldwide. Therefore, it is an important disease from a medical standpoint. For this reason, various studies have developed diagnostic and therapeutic techniques for stroke. Among them, developments and applications of optical modalities are being extensively studied. In this article, we explored three important optical modalities for research, diagnostic, and therapeutics for stroke and the brain injuries related to it: (1) photochemical thrombosis to investigate stroke animal models; (2) optical imaging techniques for in vivo preclinical studies on stroke; and (3) optical neurostimulation based therapy for stroke. We believe that an exploration and an analysis of previous studies will help us proceed from research to clinical applications of optical modalities for research, diagnosis, and treatment of stroke.
Collapse
|
9
|
Kerr AL. Contralesional plasticity following constraint-induced movement therapy benefits outcome: contributions of the intact hemisphere to functional recovery. Rev Neurosci 2021; 33:269-283. [PMID: 34761646 DOI: 10.1515/revneuro-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 11/15/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. A common, chronic deficit after stroke is upper limb impairment, which can be exacerbated by compensatory use of the nonparetic limb. Resulting in learned nonuse of the paretic limb, compensatory reliance on the nonparetic limb can be discouraged with constraint-induced movement therapy (CIMT). CIMT is a rehabilitative strategy that may promote functional recovery of the paretic limb in both acute and chronic stroke patients through intensive practice of the paretic limb combined with binding, or otherwise preventing activation of, the nonparetic limb during daily living exercises. The neural mechanisms that support CIMT have been described in the lesioned hemisphere, but there is a less thorough understanding of the contralesional changes that support improved functional outcome following CIMT. Using both human and non-human animal studies, the current review explores the role of the contralesional hemisphere in functional recovery of stroke as it relates to CIMT. Current findings point to a need for a better understanding of the functional significance of contralesional changes, which may be determined by lesion size, location, and severity as well stroke chronicity.
Collapse
Affiliation(s)
- Abigail L Kerr
- Departments of Psychology and Neuroscience, Illinois Wesleyan University, 1312 Park Street, Bloomington, IL 61701, USA
| |
Collapse
|
10
|
Nuñez M, Guillotte A, Faraji AH, Deng H, Goldschmidt E. Blood supply to the corticospinal tract: A pictorial review with application to cranial surgery and stroke. Clin Anat 2021; 34:1224-1232. [PMID: 34478213 DOI: 10.1002/ca.23782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
The corticospinal tract (CST) is the main neural pathway responsible for conducting voluntary motor function in the central nervous system. The CST condenses into fiber bundles as it descends from the frontoparietal cortex, traveling down to terminate at the anterior horn of the spinal cord. The CST is at risk of injury from vascular insult from strokes and during neurosurgical procedures. The aim of this article is to identify and describe the vasculature associated with the CST from the cortex to the medulla. Dissection of cadaveric specimens was carried out in a manner, which exposed and preserved the fiber tracts of the CST, as well as the arterial systems that supply them. At the level of the motor cortex, the CST is supplied by terminal branches of the anterior cerebral artery and middle cerebral artery. The white matter tracts of the corona radiata and internal capsule are supplied by small perforators including the lenticulostriate arteries and branches of the anterior choroidal artery. In the brainstem, the CST is supplied by anterior perforating branches from the basilar and vertebral arteries. The caudal portions of the CST in the medulla are supplied by the anterior spinal artery, which branches from the vertebral arteries. The non-anastomotic nature of the vessel systems of the CST highlights the importance of their preservation during neurosurgical procedures. Anatomical knowledge of the CST is paramount to clinical diagnosis and treatment of heterogeneity of neurodegenerative, neuroinflammatory, cerebrovascular, and skull base tumors.
Collapse
Affiliation(s)
- Maximilano Nuñez
- Hospital El Cruce, Buenos Aires University Medical School, Florencio Varela, Argentina
| | - Andrew Guillotte
- University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist, Houston, Texas, USA
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ezequiel Goldschmidt
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Tsai SY, Schreiber JA, Adamczyk NS, Wu JY, Ton ST, Hofler RC, Walter JS, O'Brien TE, Kartje GL, Nockels RP. Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke. Front Neurol 2021; 12:610434. [PMID: 33959086 PMCID: PMC8093517 DOI: 10.3389/fneur.2021.610434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients.
Collapse
Affiliation(s)
- Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Jennifer A Schreiber
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | | | - Joanna Y Wu
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Ryan C Hofler
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | - James S Walter
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Timothy E O'Brien
- Department of Mathematics and Statistics and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Science Division, Chicago, IL, United States
| | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
12
|
Takase H, Regenhardt RW. Motor tract reorganization after acute central nervous system injury: a translational perspective. Neural Regen Res 2021; 16:1144-1149. [PMID: 33269763 PMCID: PMC8224132 DOI: 10.4103/1673-5374.300330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acute central nervous system injuries are among the most common causes of disability worldwide, with widespread social and economic implications. Motor tract injury accounts for the majority of this disability; therefore, there is impetus to understand mechanisms underlying the pathophysiology of injury and subsequent reorganization of the motor tract that may lead to recovery. After acute central nervous system injury, there are changes in the microenvironment and structure of the motor tract. For example, ischemic stroke involves decreased local blood flow and tissue death from lack of oxygen and nutrients. Traumatic injury, in contrast, causes stretching and shearing injury to microstructures, including myelinated axons and their surrounding vessels. Both involve blood-brain barrier dysfunction, which is an important initial event. After acute central nervous system injury, motor tract reorganization occurs in the form of cortical remapping in the gray matter and axonal regeneration and rewiring in the white matter. Cortical remapping involves one cortical region taking on the role of another. cAMP-response-element binding protein is a key transcription factor that can enhance plasticity in the peri-infarct cortex. Axonal regeneration and rewiring depend on complex cell-cell interactions between axons, oligodendrocytes, and other cells. The RhoA/Rho-associated coiled-coil containing kinase signaling pathway plays a central role in axon growth/regeneration through interactions with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics. Oligodendrocytes and their precursors play a role in myelination, and neurons are involved through their voltage-gated calcium channels. Understanding the pathophysiology of injury and the biology of motor tract reorganization may allow the development of therapies to enhance recovery after acute central nervous system injury. These include targeted rehabilitation, novel pharmacotherapies, such as growth factors and axonal growth inhibitor blockade, and the implementation of neurotechnologies, such as central nervous system stimulators and robotics. The translation of these advances depends on careful alignment of preclinical studies and human clinical trials. As experimental data mount, the future is one of optimism.
Collapse
Affiliation(s)
- Hajime Takase
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Duret C, Breuckmann P, Louchart M, Kyereme F, Pepin M, Koeppel T. Adapted physical activity in community-dwelling adults with neurological disorders: design and outcomes of a fitness-center based program. Disabil Rehabil 2020; 44:536-541. [PMID: 32490706 DOI: 10.1080/09638288.2020.1771439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To describe and evaluate an adapted physical activity-based program (APA-program) designed for community-dwelling patients with neurological diseases in local fitness centers.Materials and methods: The APA-program consisted of individual and group activities supervised by an adapted physical activity (APA) instructor twice a week for 6 months. Clinical evaluations before and after the APA-program included strength tests on gym machines, the six-minute walk test (6MWT), the single-leg stance test, and the Short Form-36 (SF-36).Results: Between January 2017 and May 2019, 79 individuals participated in the APA-program (33 women, mean age 59 ± 14 years, 47 stroke, 13 multiple sclerosis, and 19 other neurological diseases). All physical outcomes improved significantly: upper body strength increased by 49%, lower body strength by 37%, 6MWT by 22%, single-leg stance time by 86%, and SF-36 Mental and Physical scores by 23%. Sixty-eight percent of participants completed the 6-month program and 83% of completers then purchased a one-year subscription in the fitness center.Conclusions: The 6-month APA-program improved participant's physical abilities and quality of life. More than half of participants decided to subscribe personally to the fitness center at the end of the program, supporting the development of community APA-programs for people with chronic neurological diseases, in collaboration with rehabilitation hospitals.Implications for rehabilitationA physical activity-based-program implemented in a fitness center is effective in improving physical fitness and quality of life in people suffering from neurological disorders such as stroke and multiple sclerosis.Close coordination between rehabilitation hospitals and local fitness centers, training by skilled adapted physical activity instructors and group activities are critical determinants of successful participation.
Collapse
Affiliation(s)
- Christophe Duret
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France.,Centre Hospitalier Sud Francilien, Neurologie, Corbeil-Essonnes, France
| | - Petra Breuckmann
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France
| | - Melanie Louchart
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France
| | - Forster Kyereme
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France
| | - Mickael Pepin
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France
| | - Typhaine Koeppel
- CRF Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Rééducation Neurologique, Boissise-Le-Roi, France
| |
Collapse
|
14
|
da Silva ESM, Ocamoto GN, Santos-Maia GLD, de Fátima Carreira Moreira Padovez R, Trevisan C, de Noronha MA, Pereira ND, Borstad A, Russo TL. The Effect of Priming on Outcomes of Task-Oriented Training for the Upper Extremity in Chronic Stroke: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2020; 34:479-504. [PMID: 32452242 DOI: 10.1177/1545968320912760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background. Priming results in a type of implicit memory that prepares the brain for a more plastic response, thereby changing behavior. New evidence in neurorehabilitation points to the use of priming interventions to optimize functional gains of the upper extremity in poststroke individuals. Objective. To determine the effects of priming on task-oriented training on upper extremity outcomes (body function and activity) in chronic stroke. Methods. The PubMed, CINAHL, Web of Science, EMBASE, and PEDro databases were searched in October 2019. Outcome data were pooled into categories of measures considering the International Classification Functional (ICF) classifications of body function and activity. Means and standard deviations for each group were used to determine group effect sizes by calculating mean differences (MDs) and 95% confidence intervals via a fixed effects model. Heterogeneity among the included studies for each factor evaluated was measured using the I2 statistic. Results. Thirty-six studies with 814 patients undergoing various types of task-oriented training were included in the analysis. Of these studies, 17 were associated with stimulation priming, 12 with sensory priming, 4 with movement priming, and 3 with action observation priming. Stimulation priming showed moderate-quality evidence of body function. Only the Wolf Motor Function Test (time) in the activity domain showed low-quality evidence. However, gains in motor function and in use of extremity members were measured by the Fugl-Meyer Assessment (UE-FMA). Regarding sensory priming, we found moderate-quality evidence and effect size for UE-FMA, corresponding to the body function domain (MD 4.77, 95% CI 3.25-6.29, Z = 6.15, P < .0001), and for the Action Research Arm Test, corresponding to the activity domain (MD 7.47, 95% CI 4.52-10.42, Z = 4.96, P < .0001). Despite the low-quality evidence, we found an effect size (MD 8.64, 95% CI 10.85-16.43, Z = 2.17, P = .003) in movement priming. Evidence for action observation priming was inconclusive. Conclusion. Combining priming and task-oriented training for the upper extremities of chronic stroke patients can be a promising intervention strategy. Studies that identify which priming techniques combined with task-oriented training for upper extremity function in chronic stroke yield effective outcomes in each ICF domain are needed and may be beneficial for the recovery of upper extremities poststroke.
Collapse
Affiliation(s)
| | | | - Gabriela Lopes Dos Santos-Maia
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.,Alfredo Nasser College, Aparecida de Goiânia, Goiás, Brazil
| | | | - Claudia Trevisan
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | | | | | - Thiago Luiz Russo
- Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Wang Q, Zhang D, Zhao YY, Hai H, Ma YW. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: A randomized clinical trial. Brain Stimul 2020; 13:979-986. [PMID: 32380449 DOI: 10.1016/j.brs.2020.03.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The contralesional hemisphere compensation may play a critical role in the recovery of stroke when there is extensive damage to one hemisphere. There is little research on the treatment of hemiplegia by high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to the contralesional cortex. OBJECTIVE We conducted a 2-week randomized, sham-controlled, single-blind trial to determine whether high-frequency rTMS (HF-rTMS) over the contralesional motor cortex can improve motor function in severe stroke patients. METHODS Forty-five patients with ischemic or hemorrhagic stroke in the middle cerebral artery territory were randomly assigned to treatment with 10 Hz rTMS (HF group), 1 Hz rTMS (LF group) or sham rTMS (sham group) applied over the contralesional motor cortex (M1) before physiotherapy daily for two weeks. The primary outcome was the change in the Fugl-Meyer Motor Assessment (FMA) Scale score from baseline to 2 weeks. The secondary endpoints included root mean square of surface electromyography (RMS-SEMG), Barthel Index (BI), and contralesional hemisphere cortical excitability. RESULTS The HF group showed a more significant improvement in FMA score (p < 0.05), BI (p < 0.005), contralesional hemisphere cortical excitability and conductivity (p < 0.05), and RMS-SEMG of the key muscles (p < 0.05) compared with the LF group and sham group. There were no significant differences between the LF group and sham group. There was a positive correlation between cortical conductivity of the uninjured hemisphere and recovery of motor impairment (p = 0.039). CONCLUSIONS HF-rTMS over the contralesional cortex was superior to low-frequency rTMS and sham stimulation in promoting motor recovery in patients with severe hemiplegic stroke by acting on contralesional cortex plasticity. TRIAL REGISTRATION Clinical trial registered with the Chinese Clinical Trial Registry at http://www.chictr.org.cn/showproj.aspx?proj=23264 (ChiCTR-IPR-17013580).
Collapse
Affiliation(s)
- Qi Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dai Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying-Yu Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Hai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue-Wen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Sequential Transcriptome Changes in the Penumbra after Ischemic Stroke. Int J Mol Sci 2019; 20:ijms20246349. [PMID: 31888302 PMCID: PMC6940916 DOI: 10.3390/ijms20246349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/18/2023] Open
Abstract
To investigate the changes in the expression of specific genes that occur during the acute-to-chronic post-stroke phase, we identified differentially expressed genes (DEGs) between naive cortical tissues and peri-infarct tissues at 1, 4, and 8 weeks after photothrombotic stroke. The profiles of DEGs were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology analyses, followed by string analysis of the protein-protein interactions (PPI) of the products of these genes. We found 3771, 536, and 533 DEGs at 1, 4, and 8 weeks after stroke, respectively. A marked decrease in biological-process categories, such as brain development and memory, and a decrease in neurotransmitter synaptic and signaling pathways were observed 1 week after stroke. The PPI analysis showed the downregulation of Dlg4, Bdnf, Gria1, Rhoa, Mapk8, and glutamatergic receptors. An increase in biological-process categories, including cell population proliferation, cell adhesion, and inflammatory responses, was detected at 4 and 8 weeks post-stroke. The KEGG pathways of complement and coagulation cascades, phagosomes, antigen processing, and antigen presentation were also altered. CD44, C1, Fcgr2b, Spp1, and Cd74 occupied a prominent position in network analyses. These time-dependent changes in gene profiles reveal the unique pathophysiological characteristics of stroke and suggest new therapeutic targets for this disease.
Collapse
|
17
|
Poinsatte K, Betz D, Torres VO, Ajay AD, Mirza S, Selvaraj UM, Plautz EJ, Kong X, Gokhale S, Meeks JP, Ramirez DMO, Goldberg MP, Stowe AM. Visualization and Quantification of Post-stroke Neural Connectivity and Neuroinflammation Using Serial Two-Photon Tomography in the Whole Mouse Brain. Front Neurosci 2019; 13:1055. [PMID: 31636534 PMCID: PMC6787288 DOI: 10.3389/fnins.2019.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/19/2019] [Indexed: 01/14/2023] Open
Abstract
Whole-brain volumetric microscopy techniques such as serial two-photon tomography (STPT) can provide detailed information on the roles of neuroinflammation and neuroplasticity throughout the whole brain post-stroke. STPT automatically generates high-resolution images of coronal sections of the entire mouse brain that can be readily visualized in three dimensions. We developed a pipeline for whole brain image analysis that includes supervised machine learning (pixel-wise random forest models via the "ilastik" software package) followed by registration to a standardized 3-D atlas of the adult mouse brain (Common Coordinate Framework v3.0; Allen Institute for Brain Science). These procedures allow the detection of cellular fluorescent signals throughout the brain in an unbiased manner. To illustrate our imaging techniques and automated image quantification, we examined long-term post-stroke motor circuit connectivity in mice that received a motor cortex photothrombotic stroke. Two weeks post-stroke, mice received intramuscular injections of pseudorabies virus (PRV-152), a trans-synaptic retrograde herpes virus driving expression of green fluorescent protein (GFP), into the affected contralesional forelimb to label neurons in descending tracts to the forelimb musculature. Mice were sacrificed 3 weeks post-stroke. We also quantified sub-acute neuroinflammation in the post-stroke brain in a separate cohort of mice following a 60 min transient middle cerebral artery occlusion (tMCAo). Naive e450+-labeled splenic CD8+ cytotoxic T cells were intravenously injected at 7, 24, 48, and 72 h post-tMCAo. Mice were sacrificed 4 days after stroke. Detailed quantification of post-stroke neural connectivity and neuroinflammation indicates a role for remote brain regions in stroke pathology and recovery. The workflow described herein, incorporating STPT and automated quantification of fluorescently labeled features of interest, provides a framework by which one can objectively evaluate labeled neuronal or lymphocyte populations in healthy and injured brains. The results provide region-specific quantification of neural connectivity and neuroinflammation, which could be a critical tool for investigating mechanisms of not only stroke recovery, but also a wide variety of brain injuries or diseases.
Collapse
Affiliation(s)
- Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Dene Betz
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Vanessa O. Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Apoorva D. Ajay
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Shazia Mirza
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Uma M. Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Erik J. Plautz
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Xiangmei Kong
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Sankalp Gokhale
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Julian P. Meeks
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States
| | - Denise M. O. Ramirez
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Mark P. Goldberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Ann M. Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, United States
- Department of Neurology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
18
|
da Silva ESM, Santos GL, Catai AM, Borstad A, Furtado NPD, Aniceto IAV, Russo TL. Effect of aerobic exercise prior to modified constraint-induced movement therapy outcomes in individuals with chronic hemiparesis: a study protocol for a randomized clinical trial. BMC Neurol 2019; 19:196. [PMID: 31416436 PMCID: PMC6694597 DOI: 10.1186/s12883-019-1421-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recovery of upper limb function in individuals after a stroke remains challenging. Modified constraint-induced movement therapy (m-CIMT) has strong evidence for increasing the use and recovery of sensorimotor function of the paretic upper limb. Recent studies have shown that priming with aerobic exercise prior to task-specific training potentiates upper limb recovery in individuals with stroke. This protocol describes a randomized clinical trial designed to determine whether priming with moderate-high intensity aerobic exercise prior to m-CIMT will improve the manual dexterity of the paretic upper limb in individuals with chronic hemiparesis. METHODS Sixty-two individuals with chronic hemiparesis will be randomized into two groups: Aerobic exercise + m-CIMT or Stretching + m-CIMT. m-CIMT includes 1) restraint of the nonparetic upper limb for 90% of waking hours, 2) intensive task-oriented training of the paretic upper limb for 3 h/day for 10 days and 3) behavior interventions for improving treatment adherence. Aerobic exercise will be conducted on a stationary bicycle at intervals of moderate to high intensity. Participants will be evaluated at baseline, 3, 30, and 90 days postintervention by the following instruments: Motor Activity Log, Nottingham Sensory Assessment, Wolf Motor Function Test, Box and Block Test, Nine-Hole Peg Test, Stroke Specific Quality of Life Scale and three-dimensional kinematics. The data will be tested for normality and homogeneity. Parametric data will be analyzed by two-way ANOVA with repeated measures and Bonferroni's adjustment. For nonparametric data, the Friedman test followed by the Wilcoxon test with Bonferroni's adjustment will be used to compare the ratings for each group. To compare the groups in each assessment, the Mann-Whitney test will be used. DISCUSSION This study will provide valuable information about the effect of motor priming for fine upper limb skill improvement in people with chronic poststroke hemiparesis, bringing new evidence about the association of two therapies commonly used in clinical practice. TRIAL REGISTRATION This trial was retrospectively registered (registration number RBR-83pwm3 ) on 07 May 2018.
Collapse
Affiliation(s)
- Erika Shirley Moreira da Silva
- Department of Physiotherapy, Laboratory of Neurological Physiotherapy Research, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Gabriela Lopes Santos
- Department of Physiotherapy, Laboratory of Neurological Physiotherapy Research, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.,Health science Institute, Faculty Alfredo Nasse, Aparecida de Goiânia, Goiás, Brazil
| | - Aparecida Maria Catai
- Department of Physiotherapy, Cardiovascular Physical Therapy Laboratory, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Natália Pereira Duarte Furtado
- Department of Physiotherapy, Laboratory of Neurological Physiotherapy Research, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | | | - Thiago Luiz Russo
- Department of Physiotherapy, Laboratory of Neurological Physiotherapy Research, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
19
|
Zeiler SR. Should We Care About Early Post-Stroke Rehabilitation? Not Yet, but Soon. Curr Neurol Neurosci Rep 2019; 19:13. [DOI: 10.1007/s11910-019-0927-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Zhou J, Chen L, Chen B, Huang S, Zeng C, Wu H, Chen C, Long F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol 2018; 18:198. [PMID: 30514242 PMCID: PMC6278025 DOI: 10.1186/s12883-018-1196-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The exosomal miRNAs have been emerged as biomarkers and therapeutic targets for various diseases, however, the function of exosomal miRNAs in stroke remains largely unknown. METHODS The blood samples from acute ischemic stroke (AIS) patients and normal controls were collected. The exosomes were isolated from the blood samples, which were confirmed by electron microscopy and western blot with the specific exosomes biomarker CD9, CD63 and Tsg101. RESULTS RT-qPCR analysis showed that exosomal miR-134 was significantly increased in AIS patients within 24 h after stroke onset compared with that of control group. Highly expressed exosomal miR-134 was correlated with the National Institutes of Health Stroke Scale (NIHSS) scores, infarct volume and positively associated with the worse prognosis of the stroke patients. Additionally, the exosomal miR-134 was strong positively correlated with the expression of serum interleukin 6 (IL-6) and plasma high-sensitivity C relative protein (hs-CRP). The receiver operating characteristic (ROC) curve suggested that miR-134 might be a potential factor to discriminate AIS patients from non-stroke controls. CONCLUSIONS The exosomal miR-134 as a possible novel biomarker for the diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Jingxia Zhou
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Bocan Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Shaozhu Huang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Chaosheng Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hairong Wu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Cong Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Faqing Long
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
21
|
Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Transl Stroke Res 2017; 8:529-540. [PMID: 28691140 DOI: 10.1007/s12975-017-0551-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as "latent" projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.
Collapse
|