1
|
Shen K, Li X, Huang G, Yuan Z, Xie B, Chen T, He L. High rapamycin-loaded hollow mesoporous Prussian blue nanozyme targets lesion area of spinal cord injury to recover locomotor function. Biomaterials 2023; 303:122358. [PMID: 37951099 DOI: 10.1016/j.biomaterials.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Scavenging free radicals and reducing inflammatory reaction to relieve the secondary damage are important issues in the spinal cord injury (SCI) therapeutic strategy. Nanozymes attract more attention in the drug development of SCI due to the high stability, long-lasting catalytic capacity, and multienzyme-like properties. Herein, we constructed a Rapamycin (Rapa)-loaded and hollow mesoporous Prussian blue (HMPB)-based nanozyme (RHPAzyme) to realize the combined antioxidation and anti-inflammation combination therapy of SCI. Furthermore, activated cell penetrating peptide (ACPP) is modified onto nanozyme to endow the effectively ability of lesion area-targeting. This RHPAzyme exhibits ROS scavenging capacity with the transformation of Fe2+/Fe3+ valance and cyanide group of HMPB to achieve multienzyme-like activity. As expected, RHPAzyme scavenges the ROS overproduction and reduces inflammation in oxygen-glucose deprivation (OGD)-induced damage via inhibiting MAPK/AKT signaling pathway. Furtherly, RHPAzyme exhibits the combined antioxidant and anti-inflammatory activity in vivo, which can effectively alleviate neuronal damage and promote motor function recovery in SCI mice. Overall, this study demonstrates the RHPAzyme induces an effective treatment of SCI by inhibiting oxygen-mediated cell apoptosis and suppressing inflammation-induced injury, thus reduces the nervous impairment and promotes motor function recovery.
Collapse
Affiliation(s)
- Kui Shen
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaowei Li
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guanning Huang
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zhongwen Yuan
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Lizhen He
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
2
|
Lebenstein-Gumovski MV, Bashakhanov RM, Kovalev DA, Zhirov AM, Shatohkin AA, Botasheva VS, Grin AA. [Recovery of spinal cord functions after experimental complete crossection under the effect of chitosan polymeric compounds]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:36-44. [PMID: 37830467 DOI: 10.17116/neiro20238705136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Currently, there is no effective method of treating complete spinal cord intersection. One of the promising experimental approaches is substances promoting repair and fusion of axonal membranes. OBJECTIVE To study clinical and functional recovery in experimental animals with transected spinal cord after management with photo-cross-linked chitosan in a homogeneous mixture with polyethylene glycol. MATERIAL AND METHODS We studied 20 rabbits with a model of complete spinal cord transection at the level of Th9. There were control and experimental groups (n=10; n=10). In the experimental group, we intraoperatively injected photo-cross-linked chitosan in a homogeneous mixture with polyethylene glycol. Neurological status was assessed using the modified Basso Beattie Bresnahan scale. Histological examination was performed after removing the animals from the experiment. RESULTS In the experimental group, significant regression of neurological disorders was accompanied by partial recovery of movements, sensitivity and control of pelvic functions by the 30th day of the experiment. There was no mortality in the experimental group. Paraplegia and anesthesia persisted in the control group while mortality was 40% (n=4). Histological analysis in the main group revealed axonal «bridges» in the area of injury and spread of DiI dye through this area. CONCLUSION These phenomena confirm the positive effect of chitosan and polyethylene glycol on functional recovery after experimental spinal cord injury. These data are consistent with histological findings.
Collapse
Affiliation(s)
| | | | - D A Kovalev
- Stavropol Research Institute for Plague Control, Stavropol, Russia
| | - A M Zhirov
- Stavropol Research Institute for Plague Control, Stavropol, Russia
| | - A A Shatohkin
- Stavropol State Medical University, Stavropol, Russia
| | - V S Botasheva
- Stavropol State Medical University, Stavropol, Russia
| | - A A Grin
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2022; 18:100524. [PMID: 36619202 PMCID: PMC9813796 DOI: 10.1016/j.mtbio.2022.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
Collapse
Affiliation(s)
- Weiquan Gong
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Tianhui Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Mingxue Che
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Yongjie Wang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chuanyu He
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Lidi Liu
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Zhenshan Lv
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Corresponding author.
| | - Shaokun Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China,Corresponding author. Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
4
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Is Graphene Shortening the Path toward Spinal Cord Regeneration? ACS NANO 2022; 16:13430-13467. [PMID: 36000717 PMCID: PMC9776589 DOI: 10.1021/acsnano.2c04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.
Collapse
Affiliation(s)
- André F. Girão
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (A.F.G.)
| | - María Concepcion Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (M.C.S.)
| | - António Completo
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
| | - Paula A. A. P. Marques
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- (P.A.A.P.M.)
| |
Collapse
|
5
|
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022; 16:969002. [PMID: 35990891 PMCID: PMC9385973 DOI: 10.3389/fncel.2022.969002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of neural tissue is limited following spinal cord injury (SCI). Successful regeneration of injured nerves requires the intrinsic regenerative capability of the neurons and a suitable microenvironment. However, the local microenvironment is damaged, including insufficient intraneural vascularization, prolonged immune responses, overactive immune responses, dysregulated bioenergetic metabolism and terminated bioelectrical conduction. Among them, the immune microenvironment formed by immune cells and cytokines plays a dual role in inflammation and regeneration. Few studies have focused on the role of the immune microenvironment in spinal cord regeneration. Here, we summarize those findings involving various immune cells (neutrophils, monocytes, microglia and T lymphocytes) after SCI. The pathological changes that occur in the local microenvironment and the function of immune cells are described. We also summarize and discuss the current strategies for treating SCI with tissue-engineered biomaterials from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jing Jie,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Yumin Yang,
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- *Correspondence: Pengxiang Yang,
| |
Collapse
|
6
|
De I, Sharma P, Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur J Pharm Biopharm 2022; 173:73-91. [DOI: 10.1016/j.ejpb.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023]
|
7
|
Ren S, Zhang W, Liu H, Wang X, Guan X, Zhang M, Zhang J, Wu Q, Xue Y, Wang D, Liu Y, Liu J, Ren X. Transplantation of a vascularized pedicle of hemisected spinal cord to establish spinal cord continuity after removal of a segment of the thoracic spinal cord: A proof-of-principle study in dogs. CNS Neurosci Ther 2021; 27:1182-1197. [PMID: 34184402 PMCID: PMC8446222 DOI: 10.1111/cns.13696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Glial scar formation impedes nerve regeneration/reinnervation after spinal cord injury (SCI); therefore, removal of scar tissue is essential for SCI treatment. Aims To investigate whether removing a spinal cord and transplanting a vascularized pedicle of hemisected spinal cord from the spinal cord caudal to the transection can restore motor function, to aid in the treatment of future clinical spinal cord injuries. We developed a canine model. After removal of a 1‐cm segment of the thoracic (T10–T11) spinal cord in eight beagles, a vascularized pedicle of hemisected spinal cord from the first 1.5 cm of the spinal cord caudal to the transection (cut along the posterior median sulcus of the spinal cord) was transplanted to bridge the transected spinal cord in the presence of a fusogen (polyethylene glycol, PEG) in four of the eight dogs. We used various forms of imaging, electron microscopy, and histologic data to determine that after our transplantation of a vascular pedicled hemisection to bridge the transected spinal cord, electrical continuity across the spinal bridge was restored. Results Motor function was restored following our transplantation, as confirmed by the re‐establishment of anatomic continuity along with interfacial axonal sprouting. Conclusion Taken together, our findings suggest that SCI patients—who have previously been thought to have irreversible damage and/or paralysis—may be treated effectively with similar operative techniques to re‐establish electrical and functional continuity following SCI.
Collapse
Affiliation(s)
- Shuai Ren
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA
| | - Weihua Zhang
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA.,Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.,Institute of Orthopedic, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - HongMiao Liu
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Xin Wang
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Xiangchen Guan
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Mingzhe Zhang
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Qiong Wu
- Department of MR Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Xue
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, China
| | - Dan Wang
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Yong Liu
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, China
| | - Jianyu Liu
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Xiaoping Ren
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA.,Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.,Institute of Orthopedic, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
8
|
Yari-Ilkhchi A, Ebrahimi-Kalan A, Farhoudi M, Mahkam M. Design of graphenic nanocomposites containing chitosan and polyethylene glycol for spinal cord injury improvement. RSC Adv 2021; 11:19992-20002. [PMID: 35479903 PMCID: PMC9033813 DOI: 10.1039/d1ra00861g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/09/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced therapeutic strategies include the incorporation of biomaterials, which has been identified as an effective method in treating unsolved diseases, such as spinal cord injury. During the acute phase, cascade responses involving cystic cavitation, fibrous glial scar formation, and myelin-associated dissuasive accumulation occur in the microenvironment of the spinal cord lesion. Graphene oxide (GO)-based materials, due to their extraordinary chemical, electrical and mechanical properties and easy to modify structure, are considered as rising stars in biomaterial and tissue engineering. In order to enhance the biodegradability and biocompatibility of GO, cell proliferation may be appropriately designed and situated at the lesion site. In this study, chitosan (CS) and polyethylene glycol (PEG) were grafted onto GO sheets. CS is a natural non-toxic polymer with good solubility and high biocompatible potential that has been used as an anti-inflammatory and anti-oxidant agent. Furthermore, PEG, a synthetic neuroprotective polymer, was used to develop the pharmacokinetic activity and reduce the toxicity of GO. Herein we report a novel nanocomposite consisting of PEG and CS with a potential advantage in spinal tissue regeneration. The preliminary in vitro study on mesenchymal stem cells (MSCs) has demonstrated that the prepared nanocomposites are not only non-toxic but also increase (by nearly 10%) cell growth. Finally, the use of mixed nanocomposites in the spinal cord injury (SCI) model resulted in good repair and inflammation decline after two weeks, such that walking and functional recovery scores of the hind limbs of mice were improved by an average of 6 points in the treatment group. Herein we report a novel nanocomposite consisting of PEG and CS with a potential advantage in spinal tissue regeneration.![]()
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC)
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Mehrdad Mahkam
- Chemistry Department
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
9
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
10
|
Stoica SI, Tănase I, Ciobanu V, Onose G. Initial researches on neuro-functional status and evolution in chronic ethanol consumers with recent traumatic spinal cord injury. J Med Life 2019; 12:97-112. [PMID: 31406510 PMCID: PMC6685305 DOI: 10.25122/jml-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/01/2022] Open
Abstract
We found differences related to the neuro-functional deficiency and clinical progress, among non-consumers and chronic consumers of ethanol, with recent traumatic spinal cord injury (SCI). We present a synthesis of related data on lesion mechanisms in post-traumatic myelogenous disorders, namely some of the alcohols and their actions on the nervous system, with details on the influences exerted, in such afflictions, by the chronic consumption of ethanol. The subject is not frequently approached - according to a literature review with systematic elements, which we have done before - thus constituting a niche that deserves to be further explored. The applicative component of the article highlights statistical data resulted from a retrospective study regarding the specialized casuistry from the Neuromuscular Recovery Clinic of the "Bagdasar Arseni" Emergency Clinical Hospital, following the comparative analysis of two groups of patients with recent SCI: non-consumers - the control group (n=780) - and chronic ethanol consumers - the study group (n=225) - with the addition of a prospective pilot component. Data processing has been achieved with SPSS 24. The American Spinal Injury Association Impairment Scale (AIS) mean motor scores differ significantly (tests: Mann-Whitney and t) between the control and study group in favor of the second, both at admission (p<0.001) and at discharge (p<0.001). AIS mean sensitive scores differ between the two lots, and also in favor of the study, but statistically significant only at discharge (p=0.048); the difference at admission is not significant (p=0.51) - possibly because of alcoholic-nutritional polyneuropathy. These findings, with numerous related details, later presented in the text, are surprising, which requires further studies and attempts of understanding.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Ioana Tănase
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest (PUB), Bucharest, Romania
| | - Gelu Onose
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| |
Collapse
|
11
|
Ren X, Kim CY, Canavero S. Bridging the gap: Spinal cord fusion as a treatment of chronic spinal cord injury. Surg Neurol Int 2019; 10:51. [PMID: 31528389 PMCID: PMC6743693 DOI: 10.25259/sni-19-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of animal experimentation, human translation with cell grafts, conduits, and other strategies has failed to cure patients with chronic spinal cord injury (SCI). Recent data show that motor deficits due to spinal cord transection in animal models can be reversed by local application of fusogens, such as Polyethylene glycol (PEG). Results proved superior at short term over all other treatments deployed in animal studies, opening the way to human trials. In particular, removal of the injured spinal cord segment followed by PEG fusion of the two ends along with vertebral osteotomy to shorten the spine holds the promise for a cure in many cases.
Collapse
Affiliation(s)
- Xiaoping Ren
- Hand and Microsurgery Center, Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Nangang, Harbin, China
- Heilongjiang Medical Science Institute, Harbin Medical University, Nangang, Harbin, China
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sergio Canavero
- HEAVEN-GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
12
|
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7:2652-2674. [DOI: 10.1039/c9bm00423h] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of inorganic nanoparticles has generated considerable expectation for solving various biomedical issues including wound healing and tissue regeneration. This review article highlights the role and recent advancements of inorganic nanoparticles for wound healing and tissue regeneration along with their advantages, clinical status, challenges and future directions.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology
- College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| | - Sourav Das
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Department of Applied Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|