1
|
Singh RK. Intranasal amyloid model of Alzheimer's disease - potential opportunities and challenges. Pharmacol Rep 2025; 77:425-433. [PMID: 39775701 DOI: 10.1007/s43440-024-00692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Amyloid beta 1-42 (Aβ1-42) peptide is one of the most studied disease-related amyloidogenic peptides implicated in the pathophysiology of Alzheimer's disease (AD). Despite significant scientific breakthroughs in the recent past, the existing non-transgenic animal models do not demonstrate accurate pathology of AD progression. This review has presented a concise mechanistic understanding of the intranasal amyloid-based animal model of AD, along with its advantages, challenges, and major limitations. Furthermore, discussions on how to combat these challenges to pave the road toward developing novel therapeutics for AD, have also been included. Preclinical exploration of repeated intranasal amyloid-beta exposure would certainly aid the translational development of a robust animal model of AD. This will also provide a better understanding of disease progression and pathology in the intranasal animal model.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli. Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
3
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
4
|
Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, Golić N. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:10156. [PMID: 39337640 PMCID: PMC11432053 DOI: 10.3390/ijms251810156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota (GM), together with its metabolites (such as SCFA, tryptophan, dopamine, GABA, etc.), plays an important role in the functioning of the central nervous system. Various neurological and psychiatric disorders are associated with changes in the composition of GM and their metabolites, which puts them in the foreground as a potential adjuvant therapy. However, the molecular mechanisms behind this relationship are not clear enough. Therefore, before considering beneficial microbes and/or their metabolites as potential therapeutics for brain disorders, the mechanisms underlying microbiota-host interactions must be identified and characterized in detail. In this review, we summarize the current knowledge of GM alterations observed in prevalent neurological and psychiatric disorders, multiple sclerosis, major depressive disorder, Alzheimer's disease, and autism spectrum disorders, together with experimental evidence of their potential to improve patients' quality of life. We further discuss the main obstacles in the study of GM-host interactions and describe the state-of-the-art solution and trends in this field, namely "culturomics" which enables the culture and identification of novel bacteria that inhabit the human gut, and models of the gut and blood-brain barrier as well as the gut-brain axis based on induced pluripotent stem cells (iPSCs) and iPSC derivatives, thus pursuing a personalized medicine agenda for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
- Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| |
Collapse
|
5
|
APOE4 Homozygotes Represent a Distinct Genetic Subtype of Alzheimer's Disease. Am J Med Genet A 2024; 194:e63280. [PMID: 38962898 DOI: 10.1002/ajmg.a.63280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 07/05/2024]
|
6
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
7
|
Muntsant A, Castillo-Ruiz MDM, Giménez-Llort L. Survival Bias, Non-Lineal Behavioral and Cortico-Limbic Neuropathological Signatures in 3xTg-AD Mice for Alzheimer's Disease from Premorbid to Advanced Stages and Compared to Normal Aging. Int J Mol Sci 2023; 24:13796. [PMID: 37762098 PMCID: PMC10531136 DOI: 10.3390/ijms241813796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Pre-clinical research in aging is hampered by the scarcity of studies modeling its heterogeneity and complexity forged by pathophysiological conditions throughout the life cycle and under the sex perspective. In the case of Alzheimer's disease, the leading cause of dementia in older adults, we recently described in female wildtype and APP23 mice a survival bias and non-linear chronology of behavioral signatures from middle age to long life. Here, we present a comprehensive and multidimensional (physical, cognitive, and neuropsychiatric-like symptoms) screening and underlying neuropathological signatures in male and female 3xTg-AD mice at 2, 4, 6, 12, and 16 months of age and compared to their non-transgenic counterparts with gold-standard C57BL/6J background. Most variables studied detected age-related differences, whereas the genotype factor was specific to horizontal and vertical activities, thigmotaxis, coping with stress strategies, working memory, and frailty index. A sex effect was predominantly observed in classical emotional variables and physical status. Sixteen-month-old mice exhibited non-linear age- and genotype-dependent behavioral signatures, with higher heterogeneity in females, and worsened in naturalistically isolated males, suggesting distinct compensatory mechanisms and survival bias. The underlying temporal and spatial progression of Aβ and tau pathologies pointed to a relevant cortico-limbic substrate roadmap: premorbid intracellular Aβ immunoreactivity and pSer202/pThr205 tau phosphorylation in the amygdala and ventral hippocampus, and the entorhinal cortex and ventral hippocampus as the areas most affected by Aβ plaques. Therefore, depicting phenotypic signatures and neuropathological correlates can be critical to unveiling preventive/therapeutic research and intervention windows and studying adaptative behaviors and maladaptive responses relevant to psychopathology.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | | | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
8
|
Wang S, Jiang X, Peng W, Yang S, Pi R, Zhou S. Acrolein Induces Retinal Abnormalities of Alzheimer's Disease in Mice. Int J Mol Sci 2023; 24:13576. [PMID: 37686379 PMCID: PMC10487815 DOI: 10.3390/ijms241713576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
It is reported that retinal abnormities are related to Alzheimer's disease (AD) in patients and animal models. However, it is unclear whether the retinal abnormities appear in the mouse model of sporadic Alzheimer's disease (sAD) induced by acrolein. We investigated the alterations of retinal function and structure, the levels of β-amyloid (Aβ) and phosphorylated Tau (p-Tau) in the retina, and the changes in the retinal vascular system in this mouse model. We demonstrated that the levels of Aβ and p-Tau were increased in the retinas of mice from the acrolein groups. Subsequently, a decreased amplitudes of b-waves in the scotopic and photopic electroretinogram (ERG), decreased thicknesses of the retinal nerve fiber layer (RNFL) in the retina, and slight retinal venous beading were found in the mice induced by acrolein. We propose that sAD mice induced by acrolein showed abnormalities in the retina, which may provide a valuable reference for the study of the retina in sAD.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiuying Jiang
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan 528000, China
| | - Weijia Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuangjian Yang
- Guangdong Provincial Institute for Vision and Eye Research, Guangzhou 510060, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Shenzhen 528406, China
| | - Shiyou Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
9
|
Li X, Le L, Shi Q, Xu H, Wang C, Xiong Y, Wang X, Wu G, Liu Q, Du X. Zinc exacerbates tau-induced Alzheimer-like pathology in C57BL/6J mice. Int J Biol Macromol 2023; 242:124652. [PMID: 37150371 DOI: 10.1016/j.ijbiomac.2023.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is highly complex and multifactorial. Compared with Aβ, the pathological changes associated with tau are more related to the clinical symptoms and more indicative of the severity of AD. Studies have shown that the direct interaction between tau and Zn2+ plays an important role in tau toxicity, however, the mechanism by which Zn2+ contributes to tau-induced neurotoxicity is not fully understood. Our previous studies have found that Zn2+ bound to the third repeat unit of the microtubule-binding domain of tau (R3) with moderate affinity and induced R3 to form oligomers, thus increased the toxicity of R3 to nerve cells. Here, we demonstrated that Zn2+ binding to R3 (Zn2++R3) significantly reduced cognitive ability and increased blood lipid and glucose levels of C57BL/6J mice. In addition, Zn2++R3, not Zn2+ or R3 alone, markedly enhanced the endogenous Aβ and tau pathology and damaged the neurons of C57BL/6J mice. The study suggests that the main reason for the toxicity of Zn2+ may be the formation of Zn2+ and tau complex. Thus, preventing the combination of Zn2+ and tau may be a potential strategy for AD treatment. Furthermore, as the C57BL/6J mice injected with Zn2++R3 complex showed behavioral deficits, deposition of Aβ plaques and tau tangles, and the death of neurons within 45 days. Thus, they can be considered as a fast sporadic AD or other tauopathies mouse model.
Collapse
Affiliation(s)
- Xuexia Li
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Linfeng Le
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China.
| | - Hao Xu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Yufang Xiong
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Xun Wang
- Shijiazhuang City Drainage Monitoring Station, Shijiazhuang 050091, China
| | - Guoli Wu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
10
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
11
|
Wang S, Zhu T, Ni W, Zhou C, Zhou H, Lin L, Hu Y, Sun X, Han J, Zhou Y, Jin G, Zu J, Shi H, Yang X, Zhang Z, Hua F. Early activation of Toll-like receptor-3 reduces the pathological progression of Alzheimer's disease in APP/PS1 mouse. Alzheimers Res Ther 2023; 15:33. [PMID: 36797783 PMCID: PMC9933297 DOI: 10.1186/s13195-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) plays an important role in the immune/inflammatory response in the nervous system and is a main pathological feature of Alzheimer's disease (AD). This study investigates the role of early activation of TLR3 in the pathophysiological process of AD. METHODS In the experiment, the agonist of TLR3, Poly(I:C), was intraperitoneally injected into the APP/PS1 mouse model of AD and wild-type control mice starting from the age of 4 to 9 months. At the age of 14 months, behavioral tests were conducted. Western blot and immunohistochemistry staining were used to evaluate the level of amyloid β-protein (Aβ), the activation of inflammatory cells, and neuron loss. In addition, the levels of inflammatory cytokines were measured using a quantitative polymerase chain reaction. RESULTS The results demonstrated that the early activation of TLR3 attenuated neuronal loss and neurobehavioral dysfunction. Moreover, the early activation of TLR3 reduced Aβ deposition, inhibited the activation of microglia and astrocytes, and decreased the transcription of pro-inflammatory factors in the hippocampus. CONCLUSIONS The results indicated that the activation of TLR3 by Poly (I:C) in the early stage of development of AD in a mouse model attenuated neuron loss and improved neurobehavioral functions. The underlying mechanisms could be attributed to its role in Aβ clearance, the inhibition of glial cells, and the regulation of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Shang Wang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.89957.3a0000 0000 9255 8984Department of Human Anatomy, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Taiyang Zhu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Lin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuting Hu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Sun
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.452511.6Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Shi
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingxing Yang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuohui Zhang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China. .,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. .,Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, 30912, USA.
| |
Collapse
|
12
|
He DL, Fan YG, Wang ZY. Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer's Disease: Current Evidence and Future Avenues. Curr Neuropharmacol 2023; 21:67-86. [PMID: 35980072 PMCID: PMC10193753 DOI: 10.2174/1570159x20666220817140737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The occult nature of the onset and the uncertainty of the etiology largely impede the development of therapeutic strategies for AD. Previous studies revealed that the disorder of energy metabolism in the brains of AD patients appears far earlier than the typical pathological features of AD, suggesting a tight association between energy crisis and the onset of AD. Energy crisis in the brain is known to be induced by the reductions in glucose uptake and utilization, which may be ascribed to the diminished expressions of cerebral glucose transporters (GLUTs), insulin resistance, mitochondrial dysfunctions, and lactate dysmetabolism. Notably, the energy sensors such as peroxisome proliferators-activated receptor (PPAR), transcription factor EB (TFEB), and AMP-activated protein kinase (AMPK) were shown to be the critical regulators of autophagy, which play important roles in regulating beta-amyloid (Aβ) metabolism, tau phosphorylation, neuroinflammation, iron dynamics, as well as ferroptosis. In this study, we summarized the current knowledge on the molecular mechanisms involved in the energy dysmetabolism of AD and discussed the interplays existing between energy crisis, autophagy, and ferroptosis. In addition, we highlighted the potential network in which autophagy may serve as a bridge between energy crisis and ferroptosis in the progression of AD. A deeper understanding of the relationship between energy dysmetabolism and AD may provide new insight into developing strategies for treating AD; meanwhile, the energy crisis in the progression of AD should gain more attention.
Collapse
Affiliation(s)
- Da-Long He
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| |
Collapse
|
13
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
14
|
Bagaria J, Moon Y, Bagyinszky E, Shim KH, An SSA, Kim S, Han SH. Whole Exome Sequencing Reveals a Novel APOE Mutation in a Patient With Sporadic Early-Onset Alzheimer's Disease. Front Neurol 2022; 13:899644. [PMID: 35756922 PMCID: PMC9226417 DOI: 10.3389/fneur.2022.899644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein (APOE) is implicated and verified as the main risk factor for early-onset Alzheimer's disease (AD). APOE is a protein that binds to lipids and is involved in cholesterol stability. Our paper reports a case of a sporadic early-onset AD (sEOAD) patient of a 54-year-old Korean man, where a novel APOE Leu159Pro heterozygous mutation was revealed upon Whole Exome Sequence analysis. The proband's CSF showed downregulated levels of Aβ42, with unchanged Tau levels. The mutation is in the Low-Density Lipoprotein Receptor (LDLR) region of the APOE gene, which mediates the clearance of APOE lipoproteins. LDLR works as a high-affinity point for APOE. Studies suggest that APOE-LDLR interplay could have varying effects. The LDLR receptor pathway has been previously suggested as a therapeutic target to treat tauopathy. However, the APOE-LDLR interaction has also shown a significant correlation with memory retention. Leu159Pro could be an interesting mutation that could be responsible for a less damaging pattern of AD by suppressing tau-association neurodegeneration while affecting the patient's memory retention and cognitive performance.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, South Korea
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam, South Korea
| | - Kyu Hwan Shim
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Budang Hospital, Seongnam-si, South Korea
| | - Seol Heui Han
- Department of Neurology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
15
|
Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Front Neurosci 2022; 16:884667. [PMID: 35464309 PMCID: PMC9023048 DOI: 10.3389/fnins.2022.884667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyu Dong
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Ping Sun
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
17
|
Navakkode S, Gaunt JR, Pavon MV, Bansal VA, Abraham RP, Chong YS, Ch'ng TH, Sajikumar S. Sex-specific accelerated decay in time/activity-dependent plasticity and associative memory in an animal model of Alzheimer's disease. Aging Cell 2021; 20:e13502. [PMID: 34796608 PMCID: PMC8672784 DOI: 10.1111/acel.13502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long‐term plasticity in a sex‐specific manner. Long‐term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing‐dependent plasticity (pSTDP) show a faster decay in AD females compared with age‐matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Department of Physiology National University of Singapore Singapore Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Maria Vazquez Pavon
- Department of Physiology National University of Singapore Singapore Singapore
| | | | - Riya Prasad Abraham
- Department of Physiology National University of Singapore Singapore Singapore
| | - Yee Song Chong
- Department of Physiology National University of Singapore Singapore Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Science Nanyang Technological University Singapore Singapore
| | - Sreedharan Sajikumar
- Department of Physiology National University of Singapore Singapore Singapore
- Healthy Longevity Translational Research Programme Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Life Sciences Institute Neurobiology Programme National University of Singapore Singapore Singapore
| |
Collapse
|
18
|
Lovergne L, Ghosh D, Schuck R, Polyzos AA, Chen AD, Martin MC, Barnard ES, Brown JB, McMurray CT. An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci Rep 2021; 11:15598. [PMID: 34341363 PMCID: PMC8329289 DOI: 10.1038/s41598-021-93686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells. Spectral phenotyping uses Fourier Transform Infrared (FTIR) spectromicroscopy to produce an absorbance signature as a rapid physiological indicator of disease state. FTIR spectromicroscopy has over the past been used in differential diagnoses of manifest disease. Here, we report that the unique FTIR chemical signature accurately predicts disease class in mouse with high probability in the absence of brain pathology. In human cells, the FTIR biomarker accurately predicts neurodegenerative disease class using fibroblasts as surrogate cells.
Collapse
Affiliation(s)
- Lila Lovergne
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Renaud Schuck
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Chen
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Michael C Martin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James B Brown
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Front Cell Dev Biol 2021; 9:681087. [PMID: 34291049 PMCID: PMC8287587 DOI: 10.3389/fcell.2021.681087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.
Collapse
Affiliation(s)
- Lakshmy Vasan
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eunjee Park
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Giménez-Llort L, Marin-Pardo D, Marazuela P, Hernández-Guillamón M. Survival Bias and Crosstalk between Chronological and Behavioral Age: Age- and Genotype-Sensitivity Tests Define Behavioral Signatures in Middle-Aged, Old, and Long-Lived Mice with Normal and AD-Associated Aging. Biomedicines 2021; 9:biomedicines9060636. [PMID: 34199476 PMCID: PMC8228433 DOI: 10.3390/biomedicines9060636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
New evidence refers to a high degree of heterogeneity in normal but also Alzheimer's disease (AD) clinical and temporal patterns, increased mortality, and the need to find specific end-of-life prognosticators. This heterogeneity is scarcely explored in very old male AD mice models due to their reduced survival. In the present work, using 915 (432 APP23 and 483 C57BL/6 littermates) mice, we confirmed the better survival curves in male than female APP23 mice and respective wildtypes, providing the chance to characterize behavioral signatures in middle-aged, old, and long-lived male animals. The sensitivity of a battery of seven paradigms for comprehensive screening of motor (activity and gait analysis), neuropsychiatric and cognitive symptoms was analyzed using a cohort of 56 animals, composed of 12-, 18- and 24-month-old male APP23 mice and wildtype littermates. Most variables analyzed detected age-related differences. However, variables related to coping with stress, thigmotaxis, frailty, gait, and poor cognition better discriminated the behavioral phenotype of male APP23 mice through the three old ages compared with controls. Most importantly, non-linear age- and genotype-dependent behavioral signatures were found in long-lived animals, suggesting crosstalk between chronological and biological/behavioral ages useful to study underlying mechanisms and distinct compensations through physiological and AD-associated aging.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-581-23-78
| | - Daniela Marin-Pardo
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Paula Marazuela
- Vall d’Hebron Research Institute (VHIR), E-08035 Barcelona, Spain; (P.M.); (M.H.-G.)
| | | |
Collapse
|