1
|
Perdue MV, Ghasoub M, Long M, DeMayo MM, Bell TK, McMorris CA, Dewey D, Gibbard WB, Tortorelli C, Harris AD, Lebel C. Altered markers of brain metabolism and excitability are associated with executive functioning in young children exposed to alcohol in utero. Metab Brain Dis 2024; 40:30. [PMID: 39570479 PMCID: PMC11582302 DOI: 10.1007/s11011-024-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Prenatal alcohol exposure (PAE) is the leading known cause of birth defects and cognitive disabilities, with impacts on brain development and executive functioning. Abnormalities in structural and functional brain features are well-documented in children with PAE, but the effects of PAE on brain metabolism in children have received less attention. Levels of brain metabolites can be measured non-invasively using magnetic resonance spectroscopy (MRS). Here, we present the first study of PAE-related brain metabolite differences in early childhood (ages 3-8 years) and their associations with cognitive performance, including executive functioning (EF) and pre-reading skills. We measured metabolites in two cohorts of children with PAE and unexposed children using MRS in the anterior cingulate cortex (ACC; cohort 1) and left temporo-parietal cortex (LTP; cohort 2). Total choline (tCho), a marker of membrane/myelin metabolism, was elevated in both regions in children with PAE compared to unexposed children, and glutamate + glutamine (Glx), a marker of excitability, was elevated in the ACC. The PAE group exhibited more difficulties with EF, and higher tCho was associated with better EF in both PAE and unexposed groups. In addition, elevated Glx in the ACC was associated with poorer inhibitory control within the PAE group only. LTP metabolites were not significantly associated with pre-reading skills in PAE or unexposed groups. Together, these findings point to altered membrane metabolism and excitability in young children with PAE. These findings provide new insight to potential mechanisms by which PAE disrupts brain development and cognitive functioning in early childhood.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Mohammad Ghasoub
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Madison Long
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carly A McMorris
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- University of Calgary, Werklund School of Education, Calgary, AB, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | | | - Ashley D Harris
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, 28 Oki Drive NW, Calgary, T3B 6A8, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Xiao J, Zhu H, Kong W, Jiang X, Wu C, Chen JG, Li X. Stabilizing axin leads to optic nerve hypoplasia in a mouse model of autism. Exp Eye Res 2024; 245:109988. [PMID: 38964496 DOI: 10.1016/j.exer.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.
Collapse
Affiliation(s)
- Jian Xiao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Hao Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Weixi Kong
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuefeng Jiang
- The Third Hospital of Nanchang, Nanchang, 330000, China
| | - Chunping Wu
- The Third Hospital of Nanchang, Nanchang, 330000, China
| | - Jie-Guang Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xue Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Milos RI, Schmidbauer V, Watzenboeck ML, Stuhr F, Gruber GM, Mitter C, Dovjak GO, Milković-Periša M, Kostovic I, Jovanov-Milošević N, Kasprian G, Prayer D. T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) enables the visualization and quantification of fetal brain myelination in utero. Eur Radiol 2024; 34:4573-4584. [PMID: 38019312 PMCID: PMC11213743 DOI: 10.1007/s00330-023-10401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES To investigate the advantage of T1-weighted fast fluid-attenuated inversion-recovery MRI sequence without (T1-FFLAIR) and with compressed sensing technology (T1-FFLAIR-CS), which shows improved T1-weighted contrast, over standard used T1-weighted fast field echo (T1-FFE) sequence for the assessment of fetal myelination. MATERIALS AND METHODS This retrospective single-center study included 115 consecutive fetal brain MRI examinations (63 axial and 76 coronal, mean gestational age (GA) 28.56 ± 5.23 weeks, range 19-39 weeks). Two raters, blinded to GA, qualitatively assessed a fetal myelin total score (MTS) on each T1-weighted sequence at five brain regions (medulla oblongata, pons, mesencephalon, thalamus, central region). One rater performed region-of-interest quantitative analysis (n = 61) at the same five brain regions. Pearson correlation analysis was applied for correlation of MTS and of the signal intensity ratios (relative to muscle) with GA on each T1-weighted sequence. Fetal MRI-based results were compared with myelination patterns of postmortem fetal human brains (n = 46; GA 18 to 42), processed by histological and immunohistochemical analysis. RESULTS MTS positively correlated with GA on all three sequences (all r between 0.802 and 0.908). The signal intensity ratios measured at the five brain regions correlated best with GA on T1-FFLAIR (r between 0.583 and 0.785). T1-FFLAIR demonstrated significantly better correlations with GA than T1-FFE for both qualitative and quantitative analysis (all p < 0.05). Furthermore, T1-FFLAIR enabled the best visualization of myelinated brain structures when compared to histology. CONCLUSION T1-FFLAIR outperforms the standard T1-FFE sequence in the visualization of fetal brain myelination, as demonstrated by qualitative and quantitative methods. CLINICAL RELEVANCE STATEMENT T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) provided best visualization and quantification of myelination in utero that, in addition to the relatively short acquisition time, makes feasible its routine application in fetal MRI for the assessment of brain myelination. KEY POINTS • So far, the assessment of fetal myelination in utero was limited due to the insufficient contrast. • T1-weighted fast fluid-attenuated inversion-recovery sequence allows a qualitative and quantitative assessment of fetal brain myelination. • T1-weighted fast fluid-attenuated inversion-recovery sequence outperforms the standard used T1-weighted sequence for visualization and quantification of myelination in utero.
Collapse
Affiliation(s)
- Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin L Watzenboeck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Friedrich Stuhr
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor O Dovjak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marija Milković-Periša
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Petrova 13, 10000, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Payette K. Stripping away the mysteries of the brain's insulation: might T1-FFLAIR improve our understanding of prenatal myelination? Eur Radiol 2024; 34:4570-4572. [PMID: 38032402 DOI: 10.1007/s00330-023-10450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 1St Floor South Wing, London, SE1 7EH, UK.
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 1St Floor South Wing, London, SE1 7EH, UK.
| |
Collapse
|
5
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
6
|
González-Flores D, Márquez A, Casimiro I. Oxidative Effects in Early Stages of Embryo Development Due to Alcohol Consumption. Int J Mol Sci 2024; 25:4100. [PMID: 38612908 PMCID: PMC11012856 DOI: 10.3390/ijms25074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol, a widely consumed drug, exerts significant toxic effects on the human organism. This review focuses on its impact during fetal development, when it leads to a spectrum of disorders collectively termed Fetal Alcohol Spectrum Disorders (FASD). Children afflicted by FASD exhibit distinct clinical manifestations, including facial dysmorphism, delayed growth, and neurological and behavioral disorders. These behavioral issues encompass diminished intellectual capacity, memory impairment, and heightened impulsiveness. While the precise mechanisms underlying alcohol-induced fetal damage remain incompletely understood, research indicates a pivotal role for reactive oxygen species (ROS) that are released during alcohol metabolism, inciting inflammation at the cerebral level. Ethanol metabolism amplifies the generation of oxidant molecules, inducing through alterations in enzymatic and non-enzymatic systems responsible for cellular homeostasis. Alcohol consumption disrupts endogenous enzyme activity and fosters lipid peroxidation in consumers, potentially affecting the developing fetus. Addressing this concern, administration of metformin during the prenatal period, corresponding to the third trimester of human pregnancy, emerges as a potential therapeutic intervention for mitigating FASD. This proposed approach holds promise for ameliorating the adverse effects of alcohol exposure on fetal development and warrants further investigation.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Antonia Márquez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ilda Casimiro
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
7
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
8
|
Wang Y, Wang J, Feng J. Multiple sclerosis and pregnancy: Pathogenesis, influencing factors, and treatment options. Autoimmun Rev 2023; 22:103449. [PMID: 37741528 DOI: 10.1016/j.autrev.2023.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system, characterized by inflammatory demyelination. It is primarily found in women of childbearing age, making pregnancy a significant concern for both patients with MS and clinicians. To assist these patients in achieving their desire for pregnancy, reducing MS relapses during all stages of pregnancy, preventing the progression of MS, mitigating the impact of MS treatment on the course and outcome of pregnancy, and a thorough understanding of the relationship between pregnancy and MS, as well as specific management and the application of relevant medications for MS patients at each stage of pregnancy, are essential. This article provides an update on pregnancy-related issues in women with MS, including the general recommendations for management at each stage of pregnancy.
Collapse
Affiliation(s)
- Yinxiang Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St., Shenyang 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St., Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St., Shenyang 110004, China.
| |
Collapse
|
9
|
Darbinian N, Gallia GL, Darbinyan A, Vadachkoria E, Merabova N, Moore A, Goetzl L, Amini S, Selzer ME. Effects of In Utero EtOH Exposure on 18S Ribosomal RNA Processing: Contribution to Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:13714. [PMID: 37762017 PMCID: PMC10531167 DOI: 10.3390/ijms241813714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11-22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene-environment interactions contribute to FASD vulnerability.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Ekaterina Vadachkoria
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Amos Moore
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Departments of Neurology and Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Darbinian N, Darbinyan A, Merabova N, Kassem M, Tatevosian G, Amini S, Goetzl L, Selzer ME. In utero ethanol exposure induces mitochondrial DNA damage and inhibits mtDNA repair in developing brain. Front Neurosci 2023; 17:1214958. [PMID: 37621718 PMCID: PMC10444992 DOI: 10.3389/fnins.2023.1214958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11-21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | - Myrna Kassem
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, University of Texas, Houston, TX, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Qu J, Zong HF, Shan Y, Zhang SC, Guan WP, Yang Y, Zhao HL. Piezo1 suppression reduces demyelination after intracerebral hemorrhage. Neural Regen Res 2023; 18:1750-1756. [PMID: 36751801 PMCID: PMC10154511 DOI: 10.4103/1673-5374.361531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Piezo1 is a mechanically-gated calcium channel. Recent studies have shown that Piezo1, a mechanically-gated calcium channel, can attenuate both psychosine- and lipopolysaccharide-induced demyelination. Because oligodendrocyte damage and demyelination occur in intracerebral hemorrhage, in this study, we investigated the role of Piezo1 in intracerebral hemorrhage. We established a mouse model of cerebral hemorrhage by injecting autologous blood into the right basal ganglia and found that Piezo1 was largely expressed soon (within 48 hours) after intracerebral hemorrhage, primarily in oligodendrocytes. Intraperitoneal injection of Dooku1 to inhibit Piezo1 resulted in marked alleviation of brain edema, myelin sheath loss, and degeneration in injured tissue, a substantial reduction in oligodendrocyte apoptosis, and a significant improvement in neurological function. In addition, we found that Dooku1-mediated Piezo1 suppression reduced intracellular endoplasmic reticulum stress and cell apoptosis through the PERK-ATF4-CHOP and inositol-requiring enzyme 1 signaling pathway. These findings suggest that Piezo1 is a potential therapeutic target for intracerebral hemorrhage, as its suppression reduces intracellular endoplasmic reticulum stress and cell apoptosis and protects the myelin sheath, thereby improving neuronal function after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jie Qu
- Department of Emergency, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hang-Fan Zong
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yi Shan
- Department of Emergency, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shan-Chun Zhang
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wei-Ping Guan
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Heng-Li Zhao
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Darbinian N, Sparks EC, Darbinyan A, Merabova N, Tatevosian-Geller T, Calaku K, Bachman S, Zhao H, Amini S, Goetzl L, Samuel SP, Samdani A, Selzer ME. Exosomal Lipid Biomarkers of Oligodendrocyte Pathology to Predict Scoliosis in Children with Cerebral Palsy. OBSTETRICS AND GYNECOLOGY RESEARCH 2023; 6:160-170. [PMID: 37538811 PMCID: PMC10399299 DOI: 10.26502/ogr0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Introduction Cerebral Palsy (CP), the most common cause of disability in children, is phenotypically heterogeneous. Approximately 20% of cases develop severe scoliosis. A pathological hallmark of CP is periventricular leukomalacia (PVL), which is due to dysmyelination, suggesting the possibility of a lipidomic abnormality. Risk factors for CP include perinatal hypoxia, prematurity, multiple gestation, ischemia, infection, and maternal alcohol consumption. There is evidence for low serum levels of omega-3 (ω-3) fatty acids in CP patients, and separately in idiopathic scoliosis. Many effects of free fatty acids (FFAs) are mediated via specific G protein-coupled free fatty acid receptors (FFARs), which play essential roles as nutritional and signaling molecules. FFAs, including ω-3, and their receptors are involved in the development and metabolism of oligodendrocytes (OLs), and are critical to myelination. Thus, the cases of CP that will develop severe scoliosis might be those in which there is a deficiency of ω-3, FFARs, or other lipidomic abnormality that is detectable early in the plasma. If so, we might be able to predict scoliosis and prevent it with dietary supplementation. Methods Blood samples were collected from four groups of patients at the Philadelphia Shriners Children's Hospital (SCH-P): 1) patients with CP; 2) severe scoliosis (>40o); 3) CP plus scoliosis; and 4) non-impaired controls stratified by age (2-18 yrs), gender, and race/ethnicity, under an IRB-approved protocol. Serum proteins and RNA were purified, and OL-derived exosomes (OL-Es) isolated, using myelin basic protein (MBP) as a late OL marker. Protein was used for the detection of MBP and FFAR by enzyme-linked immunosorbent assays (ELISAs), and by flow cytometry. RNA was assayed by digital droplet polymerase chain reaction (ddPCR) for OL markers and FFAR expression. Results FFAR and MBP proteins were downregulated in each of the three patient groups compared to controls, and this difference was greatest in both patients with CP plus scoliosis. Conclusion Altogether, MBP and FFAR levels were reduced in OL-Es from both children with CP plus scoliosis. The lipid abnormalities specific to CP with scoliosis were concentrated in OLs. Our data might i) suggest therapeutic targets to reduce dysmyelination and scoliosis in CP, ii) predict which children are at risk for developing scoliosis, iii) lead to therapeutic trials of fatty acids for CP and other dysmyelinating neurological disorders.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily C Sparks
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Tamara Tatevosian-Geller
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Katie Calaku
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah Bachman
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | | | - Amer Samdani
- Shriners Hospital FOR Children, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| |
Collapse
|
13
|
Darbinian N, Sparks EC, Darbinyan A, Merabova N, Tatevosian G, Vadachkoria E, Zhao H, Amini S, Goetzl L, Selzer ME. Maternal Blood Lipid Biomarkers of Oligodendrocyte Pathology to Predict Fetal Alcohol Spectrum Disorders. OBSTETRICS AND GYNECOLOGY RESEARCH 2023; 6:127-138. [PMID: 38125903 PMCID: PMC10732461 DOI: 10.26502/ogr0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Introduction Up to 9.9% of children have fetal alcohol spectrum disorders (FASD), the most frequent cause of intellectual disability in the US. FASD may involve abnormal brain development, including dysmyelination, suggesting abnormal development of oligodendrocytes (OLs), which make myelin and are rich in lipids. Indeed, low serum levels of omega-3 fatty acids (ω-3) have been reported in FASD. Free fatty acids bind to specific receptors (FFARs). We have isolated cell type-specific fetal brain-derived exosomes (FB-E) from maternal blood and sampled their contents to search for lipid-related biomarkers that predict FASD. Methods Blood samples were collected from two groups of pregnant women: 1) those who consumed EtOH during pregnancy, and 2) non-EtOH using controls, under an IRB-approved protocol. Serum and OL-derived exosomes (OL-Es) were used to assay myelin basic protein (MBP) and FFAR by ELISA and droplet digital PCR (ddPCR), respectively. Results FFAR and MBP proteins were downregulated in the EtOH group compared to controls, and this difference was greatest in OL-Es from maternal blood compared maternal serum. Conclusion MBP and FFAR levels were reduced in OL-Es from EtOH-consuming pregnant women. The data suggest potential therapeutic targets to predict which children are at risk for developing FASD and reduce dysmyelination in developing.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily C Sparks
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ekaterina Vadachkoria
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| |
Collapse
|
14
|
Schriml LM, Lichenstein R, Bisordi K, Bearer C, Baron JA, Greene C. Modeling the enigma of complex disease etiology. J Transl Med 2023; 21:148. [PMID: 36829165 PMCID: PMC9957692 DOI: 10.1186/s12967-023-03987-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Complex diseases often present as a diagnosis riddle, further complicated by the combination of multiple phenotypes and diseases as features of other diseases. With the aim of enhancing the determination of key etiological factors, we developed and tested a complex disease model that encompasses diverse factors that in combination result in complex diseases. This model was developed to address the challenges of classifying complex diseases given the evolving nature of understanding of disease and interaction and contributions of genetic, environmental, and social factors. METHODS Here we present a new approach for modeling complex diseases that integrates the multiple contributing genetic, epigenetic, environmental, host and social pathogenic effects causing disease. The model was developed to provide a guide for capturing diverse mechanisms of complex diseases. Assessment of disease drivers for asthma, diabetes and fetal alcohol syndrome tested the model. RESULTS We provide a detailed rationale for a model representing the classification of complex disease using three test conditions of asthma, diabetes and fetal alcohol syndrome. Model assessment resulted in the reassessment of the three complex disease classifications and identified driving factors, thus improving the model. The model is robust and flexible to capture new information as the understanding of complex disease improves. CONCLUSIONS The Human Disease Ontology's Complex Disease model offers a mechanism for defining more accurate disease classification as a tool for more precise clinical diagnosis. This broader representation of complex disease, therefore, has implications for clinicians and researchers who are tasked with creating evidence-based and consensus-based recommendations and for public health tracking of complex disease. The new model facilitates the comparison of etiological factors between complex, common and rare diseases and is available at the Human Disease Ontology website.
Collapse
Affiliation(s)
- Lynn M. Schriml
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD USA
| | - Richard Lichenstein
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Katharine Bisordi
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Cynthia Bearer
- grid.67105.350000 0001 2164 3847Case Western Reserve University, Cleveland, OH USA
| | - J. Allen Baron
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD USA
| | - Carol Greene
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
15
|
Reece AS, Hulse GK. Patterns of Cannabis- and Substance-Related Congenital General Anomalies in Europe: A Geospatiotemporal and Causal Inferential Study. Pediatr Rep 2023; 15:69-118. [PMID: 36810339 PMCID: PMC9944887 DOI: 10.3390/pediatric15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Recent series of congenital anomaly (CA) rates (CARs) have showed the close and epidemiologically causal relationship of cannabis exposure to many CARs. We investigated these trends in Europe where similar trends have occurred. METHODS CARs from EUROCAT. Drug use from European Monitoring Centre for Drugs and Drug Addiction. Income data from World Bank. RESULTS CARs were higher in countries with increasing daily use overall (p = 9.99 × 10-14, minimum E-value (mEV) = 2.09) and especially for maternal infections, situs inversus, teratogenic syndromes and VACTERL syndrome (p = 1.49 × 10-15, mEV = 3.04). In inverse probability weighted panel regression models the series of anomalies: all anomalies, VACTERL, foetal alcohol syndrome, situs inversus (SI), lateralization (L), and teratogenic syndromes (TS; AAVFASSILTS) had cannabis metric p-values from: p < 2.2 × 10-16, 1.52 × 10-12, 1.44 × 10-13, 1.88 × 10-7, 7.39 × 10-6 and <2.2 × 10-16. In a series of spatiotemporal models this anomaly series had cannabis metric p-values from: 8.96 × 10-6, 6.56 × 10-6, 0.0004, 0.0019, 0.0006, 5.65 × 10-5. Considering E-values, the cannabis effect size order was VACTERL > situs inversus > teratogenic syndromes > FAS > lateralization syndromes > all anomalies. 50/64 (78.1%) E-value estimates and 42/64 (65.6%) mEVs > 9. Daily cannabis use was the strongest predictor for all anomalies. CONCLUSION Data confirmed laboratory, preclinical and recent epidemiological studies from Canada, Australia, Hawaii, Colorado and USA for teratological links between cannabis exposure and AAVFASSILTS anomalies, fulfilled epidemiological criteria for causality and underscored importance of cannabis teratogenicity. VACTERL data are consistent with causation via cannabis-induced Sonic Hedgehog inhibition. TS data suggest cannabinoid contribution. SI&L data are consistent with results for cardiovascular CAs. Overall, these data show that cannabis is linked across space and time and in a manner which fulfills epidemiological criteria for causality not only with many CAs, but with several multiorgan teratologic syndromes. The major clinical implication of these results is that access to cannabinoids should be tightly restricted in the interests of safeguarding the community's genetic heritage to protect and preserve coming generations, as is done for all other major genotoxins.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
16
|
Mishra NK, Shrinath P, Rao R, Shukla PK. Sex-Specific Whole-Transcriptome Analysis in the Cerebral Cortex of FAE Offspring. Cells 2023; 12:328. [PMID: 36672262 PMCID: PMC9856965 DOI: 10.3390/cells12020328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are associated with systemic inflammation and neurodevelopmental abnormalities. Several candidate genes were found to be associated with fetal alcohol exposure (FAE)-associated behaviors, but a sex-specific complete transcriptomic analysis was not performed at the adult stage. Recent studies have shown that they are regulated at the developmental stage. However, the sex-specific role of RNA in FAE offspring brain development and function has not been studied yet. Here, we carried out the first systematic RNA profiling by utilizing a high-throughput transcriptomic (RNA-seq) approach in response to FAE in the brain cortex of male and female offspring at adulthood (P60). Our RNA-seq data analysis suggests that the changes in RNA expression in response to FAE are marked sex-specific. We show that the genes Muc3a, Pttg1, Rec8, Clcnka, Capn11, and pnp2 exhibit significantly higher expression in the male offspring than in the female offspring at P60. FAE female mouse brain sequencing data also show an increased expression of Eno1, Tpm3, and Pcdhb2 compared to male offspring. We performed a pathway analysis using a commercial software package (Ingenuity Pathway Analysis). We found that the sex-specific top regulator genes (Rictor, Gaba, Fmri, Mlxipl) are highly associated with eIF2 (translation initiation), synaptogenesis (the formation of synapses between neurons in the nervous system), sirtuin (metabolic regulation), and estrogen receptor (involved in obesity, aging, and cancer) signaling. Taken together, our transcriptomic results demonstrate that FAE differentially alters RNA expression in the adult brain in a sex-specific manner.
Collapse
Affiliation(s)
- Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Pulastya Shrinath
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep K. Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
17
|
Darbinian N, Darbinyan A, Sinard J, Tatevosian G, Merabova N, D’Amico F, Khader T, Bajwa A, Martirosyan D, Gawlinski AK, Pursnani R, Zhao H, Amini S, Morrison M, Goetzl L, Selzer ME. Molecular Markers in Maternal Blood Exosomes Allow Early Detection of Fetal Alcohol Spectrum Disorders. Int J Mol Sci 2022; 24:ijms24010135. [PMID: 36613580 PMCID: PMC9820501 DOI: 10.3390/ijms24010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Prenatal alcohol exposure can cause developmental abnormalities (fetal alcohol spectrum disorders; FASD), including small eyes, face and brain, and neurobehavioral deficits. These cannot be detected early in pregnancy with available imaging techniques. Early diagnosis could facilitate development of therapeutic interventions. Banked human fetal brains and eyes at 9−22 weeks’ gestation were paired with maternal blood samples, analyzed for morphometry, protein, and RNA expression, and apoptotic signaling. Alcohol (EtOH)-exposed (maternal self-report) fetuses were compared with unexposed controls matched for fetal age, sex, and maternal race. Fetal brain-derived exosomes (FB-E) were isolated from maternal blood and analyzed for protein, RNA, and apoptotic markers. EtOH use by mothers, assessed by self-report, was associated with reduced fetal eye diameter, brain size, and markers of synaptogenesis. Brain caspase-3 activity was increased. The reduction in eye and brain sizes were highly correlated with amount of EtOH intake and caspase-3 activity. Levels of several biomarkers in FB-E, most strikingly myelin basic protein (MBP; r > 0.9), correlated highly with morphological abnormalities. Reduction in FB-E MBP levels was highly correlated with EtOH exposure (p < 1.0 × 10−10). Although the morphological features of FAS appear long before they can be detected by live imaging, FB-E in the mother’s blood may contain markers, particularly MBP, that predict FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John Sinard
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Faith D’Amico
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tarek Khader
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alina K. Gawlinski
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Richa Pursnani
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Mary Morrison
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| |
Collapse
|
18
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
19
|
Jia F, Liao Y, Li X, Ye Z, Li P, Zhou X, Li Q, Wang S, Ning G, Qu H. Preliminary Study on Quantitative Assessment of the Fetal Brain Using MOLLI T1 Mapping Sequence. J Magn Reson Imaging 2022; 56:1505-1512. [PMID: 35394092 DOI: 10.1002/jmri.28195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prenatal quantitative evaluation of myelin is important. However, few techniques are suitable for the quantitative evaluation of fetal myelination. PURPOSE To optimize a modified Look-Locker inversion recovery (MOLLI) T1 mapping sequence for fetal brain development study. STUDY TYPE Prospective observational preliminary cohort study. POPULATION A total of 71 women with normal fetuses divided into mid-pregnancy (gestational age 24-28 weeks, N = 25) and late pregnancy (gestational age > 28 weeks, N = 46) groups. FIELD STRENGTH/SEQUENCE A 3 T/MOLLI sequence. ASSESSMENT T1 values were measured in pedunculus cerebri, basal ganglia, thalamus, posterior limb of the internal capsule, temporal white matter, occipital white matter, frontal white matter, and parietal white matter by two radiologists (11 and 16 years of experience, respectively). STATISTICAL TESTS The Kruskal-Wallis test was used for reginal comparison. For each region of interest (ROI), differences in T1 values between the mid and late pregnancy groups were assessed by the Mann Whitney U test. Pearson correlation coefficients (r) were used to evaluate the correlations between T1 values and gestational age for each ROI. Intraobserver and interobserver agreement was determined by the intraclass correlation coefficient (ICC). A P value <0.05 was considered statistically significant. RESULTS Interobserver and intraobserver agreements of T1 were good for all ROIs (all ICCs > 0.700). There were significant differences in T1 values between lobal white matter and deep regions, respectively. Significant T1 values differences were found between middle and late pregnancy groups in pedunculus cerebri, basal ganglion, thalamus, posterior limb of the internal capsule, temporal, and occipital white matter. The T1 values showed significantly negative correlations with gestational weeks in pedunculus cerebri (r = -0.80), basal ganglion (r = -0.60), thalamus (r = -0.68), and posterior limb of the internal capsule (r = -0.77). DATA CONCLUSION The T1 values of fetal brain may be assessed using the MOLLI sequence and may reflect the myelination. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhijun Ye
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyue Zhou
- MR Collaborations, Siemens Healthineers, Shanghai, People's Republic of China
| | - Qing Li
- MR Collaborations, Siemens Healthineers, Shanghai, People's Republic of China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, People's Republic of China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Brosolo M, Lecointre M, Laquerrière A, Janin F, Genty D, Lebon A, Lesueur C, Vivien D, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure impairs vessel-associated positioning and differentiation of oligodendrocytes in the developing neocortex. Neurobiol Dis 2022; 171:105791. [PMID: 35760273 DOI: 10.1016/j.nbd.2022.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is a major cause of nongenetic mental retardation and can lead to fetal alcohol syndrome (FAS), the most severe manifestation of fetal alcohol spectrum disorder (FASD). FASD infants present behavioral disabilities resulting from neurodevelopmental defects. Both grey and white matter lesions have been characterized and are associated with apoptotic death and/or ectopic migration profiles. In the last decade, it was shown that PAE impairs brain angiogenesis, and the radial organization of cortical microvessels is lost. Concurrently, several studies have reported that tangential migration of oligodendrocyte precursors (OPCs) originating from ganglionic eminences is vascular associated. Because numerous migrating oligodendrocytes enter the developing neocortex, the present study aimed to determine whether migrating OPCs interacted with radial cortical microvessels and whether alcohol-induced vascular impairments were associated with altered positioning and differentiation of cortical oligodendrocytes. Using a 3D morphometric analysis, the results revealed that in both human and mouse cortices, 15 to 40% of Olig2-positive cells were in close association with radial cortical microvessels, respectively. Despite perinatal vascular disorganization, PAE did not modify the vessel association of Olig2-positive cells but impaired their positioning between deep and superficial cortical layers. At the molecular level, PAE markedly but transiently reduced the expression of CNPase and MBP, two differentiation markers of immature and mature oligodendrocytes. In particular, PAE inverted their distribution profiles in cortical layers V and VI and reduced the thickness of the myelin sheath of efferent axons. These perinatal oligo-vascular defects were associated with motor disabilities that persisted in adults. Altogether, the present study provides the first evidence that Olig2-positive cells entering the neocortex are associated with radial microvessels. PAE disorganized the cortical microvasculature and delayed the positioning and differentiation of oligodendrocytes. Although most of these oligovascular defects occurred in perinatal life, the offspring developed long-term motor troubles. Altogether, these data suggest that alcohol-induced oligo-vascular impairments contribute to the neurodevelopmental issues described in FASD.
Collapse
Affiliation(s)
- M Brosolo
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - M Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - A Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - F Janin
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Genty
- Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - A Lebon
- Normandie Univ, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, 76000 Rouen, France
| | - C Lesueur
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France
| | - S Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, 76000 Rouen, France
| | - F Marguet
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - B J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France.
| |
Collapse
|