1
|
Sabucedo-Suárez A, López-Peña M, Permuy M, Muñóz F. Soybean and avocado unsaponifiables: a review of their potential use in the treatment of osteoarthritis. Front Vet Sci 2025; 11:1473688. [PMID: 39881723 PMCID: PMC11776088 DOI: 10.3389/fvets.2024.1473688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025] Open
Abstract
Recent research has shown that Avocado-Soybean Unsaponifiables (ASU) greatly reduce the symptoms of osteoarthritis (OA). It's yet unknown exactly how ASU works, however, it has been demonstrated to have analgesic and anti-inflammatory effects. These qualities can potentially lessen the need for non-steroidal anti-inflammatory medicines (NSAIDs) and their secondary effects. This review aims to examine the current literature on ASU, focusing on their efficacy, mechanism of action, and potential utility in treating OA for managing chronic pain associated with this condition. The literature review was conducted manually through Pubmed, Scopus and Web of Science (WOS) databases, covering studies from 2000 to 2022 with terms like "osteoarthritis," "OA," "animal models," "ASU," and "soy/avocado." Two reviewers independently screened each article using inclusion and exclusion criteria and categorized the studies into in vitro, preclinical, and clinical groups. According to in vitro research, ASU affect the regulation of molecules related to OA, increasing structural elements like collagen and aggrecan and decreasing pro-inflammatory mediators. Although results vary, pre-clinical research in different animal models has demonstrated positive effects, such as ameliorating histopathological changes and reduced inflammation. Despite some discrepancies regarding structural changes in the joints, clinical trials typically demonstrate symptom relief and slow down the disease progression. While ASU demonstrates significant promise in alleviating OA symptoms and reducing reliance on NSAIDs, further research is essential to fully understand its mechanisms of action. More studies are needed to determine the precise pathways through which ASU exerts its effects and to establish the most effective dosages for its administration, either alone or in combination with other treatments.
Collapse
Affiliation(s)
- Ana Sabucedo-Suárez
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
- IboneLab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Mónica López-Peña
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
- IboneLab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - María Permuy
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
- IboneLab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Fernando Muñóz
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
- IboneLab S.L., Laboratory of Biomaterials, Lugo, Spain
| |
Collapse
|
2
|
Na KH, Lee HJ, Kim JH, Uddin MS, Park YH, Song YM, Park CS, Park JB. Enhancement of Chondrogenic Differentiation in Bone Marrow-Derived Stem Cell Spheroids by Cuminum cyminum Methanolic Extract: Insights into Concentration-Dependent mRNA Expression and Gene Clustering Analysis. J Pers Med 2024; 14:1142. [PMID: 39728055 PMCID: PMC11679761 DOI: 10.3390/jpm14121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Cuminum cyminum L. has been utilized as a medicinal plant for centuries. This research sought to examine the effects of cumin methanolic extract (CMT) on the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. Methods: Spheroids were generated using human stem cells and cultured with CMT at concentrations between 0 and 1 µg/mL. Morphological assessments and cell viability tests were conducted on days 1 and 3. Chondrogenic differentiation expression was evaluated through quantitative polymerase chain reaction, Western blot, and RNA sequencing. SOX9, FAM20B, COL2A1, and COL1A1 mRNA expression levels were determined using real-time polymerase chain reaction. Protein expression was analyzed via Western blot. Results: Throughout this study, the spheroids maintained their integrity and shape. No significant variations in spheroid diameter were observed among the groups. CMT treatment enhanced the expression of SOX9 and FAM20B. Conclusions: The methanolic extract of Cuminum cyminum facilitated chondrogenic differentiation in human bone marrow-derived mesenchymal stem cells by modulating SOX9 and FAM20B expression. This indicates its potential application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Kyung-Hwan Na
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.); (Y.-M.S.)
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.); (Y.-M.S.)
| | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | | | - Young-Min Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.); (Y.-M.S.)
| | - Chul-Sung Park
- Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea;
| | - Jun-Beom Park
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.); (Y.-M.S.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Yang YZ, Cheng QH, Zhang AR, Qiu Y, Guo HZ. Progress in the treatment of Osteoarthritis with avocado-soybean unsaponifiable. Inflammopharmacology 2024; 32:2177-2184. [PMID: 38814416 DOI: 10.1007/s10787-024-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/30/2024] [Indexed: 05/31/2024]
Abstract
Osteoarthritis (OA) is one of the leading causes of joint dysfunction and disability in the elderly, posing serious social problems and a huge socio-economic burden. Existing pharmacological treatments have significant drawbacks, and searching for an effective pharmacological intervention is an urgent priority. Recent studies have demonstrated the chondroprotective, anabolic, and anti-catabolic properties of avocado-soybean unsaponifiable (ASU), a natural plant extract made from avocado and soybean oils, consisting of the remainder of the saponified portion of the product that cannot be made into soap. The main components of ASU are phytosterols, beta-sitosterol, canola stanols, and soya stanols, which are rapidly incorporated into cells. Studies have confirmed the anti-inflammatory, antioxidant, and analgesic properties of phytosterols. ASU slows down the progression of OA primarily by inhibiting pathways involved in the development of OA disease. ASU prevents cartilage degradation by inhibiting the release and activity of matrix metalloproteinases and by increasing the tissue inhibition of these catabolic enzymes; ASU is also involved in the inhibition of the activation of nuclear factor κB (NF-κB) which is a transcriptional inhibitor that regulates the inflammatory response of chondrocytes. NF-κB is a transcription factor that regulates the inflammatory response of chondrocytes, and inhibition of the transfer of the transcription factor NF-κB from the cytoplasm to the nucleus regulates the transcription of many pro-inflammatory factors. By appealing to the mechanism of action and thus achieving anti-inflammatory, anti-catabolic, and pro-synthetic effects on cartilage tissues, AUS is clinically responsive to the reduction of acute pain and OA symptom progression. This paper aims to summarize the studies on the use of avocado-soybean unsaponifiable in the pharmacological treatment of osteoarticular.
Collapse
Affiliation(s)
- Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Yi Qiu
- Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Fongsodsri K, Tiyasatkulkovit W, Chaisri U, Reamtong O, Adisakwattana P, Supasai S, Kanjanapruthipong T, Sukphopetch P, Aramwit P, Ampawong S. Sericin promotes chondrogenic proliferation and differentiation via glycolysis and Smad2/3 TGF-β signaling inductions and alleviates inflammation in three-dimensional models. Sci Rep 2024; 14:11553. [PMID: 38773312 PMCID: PMC11109159 DOI: 10.1038/s41598-024-62516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-β signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1β, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-β signaling pathways, and exhibiting anti-inflammatory properties.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Ghaedamini S, Karbasi S, Hashemibeni B, Honarvar A, Rabiei A. PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities. Res Pharm Sci 2023; 18:566-579. [PMID: 37842514 PMCID: PMC10568963 DOI: 10.4103/1735-5362.383711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/Results The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction. Conclusion and implications PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.
Collapse
Affiliation(s)
- Sho’leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbasali Rabiei
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
7
|
Teimourinejad A, Hashemibeni B, Salehi H, Mostafavi FS, Kazemi M, Bahramian H. An animal model study of osteochondral defect repair by human adipose stem cells and pomegranate fruit hydroalchoholic extract. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:177-188. [PMID: 37333472 PMCID: PMC10274312 DOI: 10.22038/ajp.2022.21243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/24/2020] [Accepted: 07/10/2022] [Indexed: 06/20/2023]
Abstract
Objective Articular cartilage damages do not repair spontaneously. Tissue engineering is a promising approach to repair cartilage damage. Transforming growth factor-beta (TGF-β) members are the known induction factors in chondrogenic differentiation. However, hypertrophy of the chondrocytes resulting from mesenchymal stem cells (MSCs) induction by TGF-β is inevitable. Pomegranate fruit contains many ingredients which are useful in ensuring the health of organs. This study was designed to investigate the Pomegranate Fruit hydroalchoholic Extract (PFE) capability in human adipose derived stem cells (hASCs) differentiation into the chondrocytes on fibrin scaffold. Materials and Methods Pomegranate fruit hydroalchoholic extract (PFE) was prepared. hASCs were isolated, expanded, labeled, and seeded on the fibrin scaffold. The constructs were divided into three groups including TGF-β3, PFE, and control. The constructs were induced for 14 days, then, the MTT assay, Real-Time Polymerase Chain Reaction (PCR), and histochemistry assessments were run, and finally, the constructs were transplanted into the knee defect of rats. The gross and histological assessments of the transplants were done after 8 weeks. Results The viability rate, COL2A1, Aggrecan (ACAN) and COL10A1 genes expression levels, and histological criterion of the PFE samples were significantly higher than that of the control. The macroscopic grades and histological results of the PFE samples were close to that of the TGF-β3. The number of positive cells for COLІI protein were higher significantly in the PFE group than the control. Conclusion PFE was effective in the chondrogenic induction of hASCs. Further studies are needed to find out the events of the chondrogenic induction using PFE.
Collapse
Affiliation(s)
- Ahmad Teimourinejad
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Sadat Mostafavi
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
9
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|